欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (9): 2517-2527.doi: 10.3724/SP.J.1006.2023.24212

• 耕作栽培·生理生化 • 上一篇    下一篇

椰糠施用量对土壤理化性状和甘薯产量的影响

杨毅1,2(), 何志强1, 林佳慧1, 李洋1, 陈飞1, 吕长文1, 唐道彬1, 周全卢2,*(), 王季春1,*()   

  1. 1西南大学农学与生物科技学院 / 薯类生物学与遗传育种重庆市重点实验室, 重庆 400715
    2南充市农业科学院, 四川南充 637000
  • 收稿日期:2022-09-16 接受日期:2023-02-21 出版日期:2023-09-12 网络出版日期:2023-03-07
  • 通讯作者: *王季春, E-mail: wjchun@swu.edu.cn; 周全卢, E-mail: zhouquanlu@163.com
  • 作者简介:杨毅, E-mail: 1090007936@qq.com
  • 基金资助:
    重庆市科委重点项目(甘薯鲜食营养型及高直淀粉组分新品种创制)(cstc2019jscx-gksbx0100)

Effects of coconut bran application rate on soil physicochemical properties and sweet-potato yield

YANG Yi1,2(), HE Zhi-Qiang1, LIN Jia-Hui1, LI Yang1, CHEN Fei1, LYU Chang-Wen1, TANG Dao-Bin1, ZHOU Quan-Lu2,*(), WANG Ji-Chun1,*()   

  1. 1College of Agronomy and Biotechnology, Southwest University / Chongqing Key Laboratory of Tuber Biology and Genetics, Chongqing 400715, China
    2Nanchong Academy of Agricultural Sciences, Nanchong 637000, Sichuan, China
  • Received:2022-09-16 Accepted:2023-02-21 Published:2023-09-12 Published online:2023-03-07
  • Supported by:
    Chongqing Municipal Science and Technology Commission Key Project Fund (Creation of New Varieties of Sweet Potato with Fresh Nutrition and High Straight Starch Components)(cstc2019jscx-gksbx0100)

摘要:

研究不同施用量的椰糠对土壤理化性状和甘薯产量的影响, 探索椰糠的施入量与土壤理化性状的相关关系, 为农田土壤肥力的提高与保持以及鲜食型甘薯高产优质栽培提供理论依据和实际生产指导。本试验于2020年和2021年, 采用随机区组试验设计, 研究了椰糠(干重)施用量0、20,250、40,500和60,750 kg hm-2共4个处理对土壤及甘薯的影响。结果表明, 随着椰糠施用量的增加, 土壤容重逐渐降低, 而土壤孔隙度、土壤质量含水量、土壤有机质含量和土壤速效氮、磷、钾养分含量逐渐增加, 其中土壤速效钾含量增加最多, 碱解氮次之, 速效磷最少; 根际土壤细菌数量、真菌数量、放线菌数量都随椰糠施用量的增加而增加。增施椰糠能提高甘薯块根的单株结薯数, 增加200~ 400 g、100~200 g和50~100 g块根的数量, 提高甘薯的商品薯率; 甘薯块根产量随椰糠施用量增加先增后减, 以椰糠40,500 kg hm-2施用量最高; 甘薯块根淀粉率随椰糠施用量的增加而递减。施加椰糠能有效的改善土壤结构和培肥地力, 有利于促进甘薯结薯和大薯的形成, 提高块根产量和增加商品薯率。

关键词: 甘薯, 椰糠, 土壤理化性状, 产量, 品质

Abstract:

The objective of this study is to study the effects of different application rate of coconut bran on soil physical and chemical properties and sweet-potato yield, and to explore the correlation between the application rate of coconut bran and soil physical and chemical properties, which can provide the theoretical basis and practical production guidance for the improvement and maintenance of farmland soil fertility and the high-yield and high-quality cultivation of fresh-eating sweet potato. In 2020 and 2021, a randomized block design was used to study the effects of coconut bran (dry weight) application rate of 0, 20,250, 40,500, and 60,750 kg hm-2 on soil and sweet potato. The results showed that, with the increase of coconut bran application, soil bulk density decreased gradually, but soil porosity, soil mass water content, soil organic matter content, soil available nitrogen, phosphorus and potassium contents increased gradually. Among them, soil available potassium content increased the most, followed by alkali-hydrolyzed nitrogen and the least available phosphorus. The number of bacteria, fungi, and actinomycetes in rhizosphere soil all increased with the increase of coconut bran application. Moreover, the application of coconut bran can increase the number of storage root per plant, increase the number of 200-400 g, 100-200 g, and 50-100 g of storage root, and improve the commodity rate of sweet-potato. The yield of sweet-potato storage root increased first and then decreased with the increase of coconut bran application, and the highest was 40,500 kg hm-2 of coconut bran application, while the starch content of sweet-potato storage roots decreased with the increase of coconut bran application. In conclusion, the application of coconut bran can effectively improve the soil structure and fertility, promote the formation of sweet-potato storage roots and large potatoes, increase the yield of storage root and the commodity rate of sweet potato.

Key words: sweet potato, coconut bran, soil physical and chemical properties, yield, quality

表1

椰糠基础养分和试验田土壤基础肥力"

类别
Type
年份
Year
pH 速效钾
Available
potassium
(mg kg-1)
速效磷
Available
phosphorus
(mg kg-1)
碱解氮
Alkaline
nitrogen
(mg kg-1)
有机质
Organic
matter
(g kg-1)
全氮
Total
nitrogen
(g kg-1)
全磷
Total
phosphorus
(g kg-1)
全钾
Total
potassium
(g kg-1)
椰糠基础养分
Basic nutrients of
coconut bran
2020 7.27 5.20 0.21 7.80 694.49 0.16 0.24 4.11
2021 7.03 5.06 0.15 7.01 685.66 0.17 0.21 4.03
试验田土壤基础肥力
Soil basal fertility of experimental field
2020 7.75 86.36 14.46 68.56 11.36 0.61 1.40 17.20
2021 8.18 33.50 3.54 48.60 12.95 0.13 0.26 3.12

图1

椰糠施用量对土壤容重、孔隙度和质量含水量的影响 T0、T1、T2和T3表示椰糠施用量0、20,250、40,500和60,750 kg hm-2, 图注上标以不同小写字母表示同一年处理间在0.05概率水平差异显著。"

表2

不同处理对土壤养分的影响"

年份
Year
处理
Treatment
有机质
Organic matter
(g kg-1)
碱解氮
Alkaline nitrogen
(mg kg-1)
速效磷
Available phosphorus
(mg kg-1)
速效钾
Available potassium
(mg kg-1)
2020 T0 10.97±0.15 d 37.10±1.21 c 15.57±0.45 d 15.61±1.76 d
T1 24.10±0.10 c 48.4±0.72 b 17.10±0.05 c 23.91±2.02 c
T2 35.33±3.26 b 52.73±3.23 b 19.02±0.66 b 52.67±1.60 b
T3 46.50±0.53 a 61.13±3.27 a 20.31±0.48 a 77.34±2.76 a
2021 T0 11.50±0.30 d 35.70±0.70 c 14.41±0.28 b 12.85±0.73 d
T1 22.87±1.47 c 47.83±0.40 b 15.39±0.31 b 25.24±3.84 c
T2 32.30±0.79 b 48.07±1.62 b 17.47±1.34 a 81.58±5.56 b
T3 46.80±2.10 a 59.97±3.45 a 17.89±1.34 a 98.72±0.98 a
平均值 Y1 29.23 A 49.84 A 18.00 A 42.38 B
Average Y2 28.37 A 47.89 A 16.29 A 54.60 A
T0 11.23 D 36.40 C 14.99 C 14.23 D
T1 23.48 C 48.12 B 16.25 B 24.57 C
T2 33.82 B 50.40 B 18.25 A 67.12 B
T3 46.65 A 60.55 A 19.10 A 88.03 A
因素显著性
Significance of ANOVA
Y ns ns ns **
T ** ** ** **
Y×T ns ns ns **

表3

不同处理对土壤微生物数量的影响"

年份
Year
处理
Treatment
细菌
Bacteria (×106 CFU g-1)
真菌
Fungus (×103 CFU g-1)
放线菌
Actinomycetes (×105 CFU g-1)
2020 T0 6.67±1.53 c 16.67±1.53 c 8.33±1.53 c
T1 13.67±1.53 b 29.67±2.52 b 14.00±1.00 b
T2 14.67±1.53 b 32.67±1.53 ab 16.00±1.00 b
T3 17.33±0.58 a 34.33±1.53 a 18.33±1.53 a
2021 T0 7.00±1.00 d 15.33±1.53 c 12.33±2.08 c
T1 9.00±1.00 c 21.67±1.53 b 15.00±1.00 b
T2 14.67±0.58 b 32.67±2.52 a 17.33±1.53 b
T3 17.00±1.00 a 33.67±1.53 a 22.33±1.53 a
平均值 Y1 13.08 A 28.33 A 15.25 A
Average Y2 11.92 A 25.83 A 16.75 A
T0 6.83 D 16.00 C 10.33 C
T1 11.33 C 25.67 B 14.50 B
T2 14.67 B 32.67 A 16.67 B
T3 17.17 A 34.00 A 22.50 A
因素显著性
Significance of ANOVA
Y ns * ns
T ** ** **
Y×T ** ** ns

表4

不同处理对栽后25 d甘薯根系形态的影响(2021年)"

处理
Treatment
长度
Length (cm)
表面积
Surface area (cm2)
体积
Volume (cm3)
根尖数
Root tips (pieces)
T0 253.87±36.48 c 55.74±6.35 c 1.27±0.08 c 328.00±19.00 c
T1 455.47±31.19 b 89.34±5.04b c 2.08±0.26 b 490.33±75.64 b
T2 607.11±108.93 a 144.18±39.12 ab 2.86±0.20 a 680.33±68.63 a
T3 671.81±32.19 a 169.75±14.20 a 3.20±0.45 a 710.67±67.57 a

表5

不同处理对甘薯块根产量及其构成因素的影响"

年份
Year
处理
Treatment
产量
Yield (kg hm-2)
单株结薯数
Storage root (lump plant-1)
2020 T0 13,670.14±1705.67 c 3.09±0.39 b
T1 17,796.63±2122.1 b 3.61±0.47 a
T2 23,035.71±1778.20 a 3.94±0.21 a
T3 21,109.52±2679.33 ab 4.02±0.59 a
2021 T0 18,997.80±1983.65 c 3.75±0.24 c
T1 24,915.03±2317.57 b 4.61±0.40 b
T2 31,072.17±2608.79 a 4.86±0.54 ab
T3 29,339.64±4163.89 a 5.42±0.98 a
平均值 Y1 18,903.00 A 3.66 A
Average Y2 26,149.46 A 4.66 A
T0 16,333.97 C 3.42 C
T1 21,355.83 B 4.11 B
T2 27,190.54 A 4.40 AB
T3 25,224.58 A 4.72 A
因素显著性
Significance of ANOVA
Y * ns
T ** **
Y×T ns ns

表6

不同处理对甘薯块根商品薯数及商品薯率的影响"

年份
Year
处理
Treatment
一级薯数
Level 1
(×104 lump hm-2)
二级薯数
Level 2
(×104 lump hm-2)
迷你薯数
No of mini potatoes
(×104 lump hm-2)
总薯数
Total potatoes
(×104 lump hm-2)
商品薯率
Commodity rate
(%)
2020 T0 2.57±0.18 c 4.18±0.31 c 4.90±0.52 b 18.25±3.04 c 58.90±2.74 c
T1 3.13±0.33 b 6.07±0.12 b 5.74±0.67 b 22.00±1.80 bc 62.14±1.70 bc
T2 3.29±0.40 ab 7.31±0.76 ab 6.65±0.74 b 26.92±1.59 b 67.15±1.12 ab
T3 3.54±0.38 a 7.50±1.12 a 10.81±1.45 a 34.60±3.84 a 71.89±6.35 a
2021 T0 2.80±0.20 b 5.13±0.81 b 6.00±0.92 a 23.08±0.42 b 56.85±5.93 b
T1 3.53±0.42 b 6.21±0.93 b 7.40±0.92 a 28.28±2.01 ab 60.58±4.85 b
T2 4.80±0.60 a 9.20±1.64 a 6.13±0.87 a 29.15±3.22 a 73.16±3.94 ab
T3 5.21±0.86 a 9.14±0.91 a 6.47±1.12 a 31.88±6.73 a 66.16±4.13 a
平均值 Y1 3.13 A 6.27 A 7.03 A 25.44 A 65.02 A
Average Y2 4.09 A 7.42 A 6.50 A 28.10 A 64.19 A
T0 2.69 C 4.66 C 5.45 B 20.67 C 57.88 C
T1 3.33 B 6.14 B 6.57 AB 25.14 BC 61.36 BC
T2 4.05 A 8.26 A 6.39 AB 28.03 AB 70.16 A
T3 4.38 A 8.32 A 8.64 A 33.24 A 69.03 AB
因素显著性
Significance of ANOVA
Y ns ns ns ns ns
T ** ** * ** **
Y×T ** ns * ns ns

图2

椰糠施用量对甘薯块根淀粉率的影响 图注上标以不同小写字母表示同一年处理间差异在0.05概率水平差异显著。处理同图1。"

[1] 陈源泉, 隋鹏, 严玲玲, 龙攀, 李柘锦, 王彬彬. 有机物料还田对华北小麦玉米两熟农田土壤有机碳及其组分的影响. 农业工程学报, 2016, 32(增刊2): 94-102.
Chen Y Q, Sui P, Yan L L, Long P, Li Z J, Wang B B. Effects of returning organic materials on soil organic carbon and its components in wheat and maize double-cropping farmland in North China. Trans CSAE, 2016, 32(S2): 94-102. (in Chinese with English abstract)
[2] Liu Z. Effects of long-term various organic materials incorporation on characteristics of soil quality and crop yield. IOP Conference Series. Earth Environ Sci, 2018, 170: 22086.
[3] Bandyopadhyay K K, Misra A K, Ghosh P K, Hati K M. Effect of integrated use of farmyard manure and chemical fertilizers on soil physical properties and productivity of soybean. Soil Tillage Res, 2010, 110: 115-125.
doi: 10.1016/j.still.2010.07.007
[4] 梁尧, 韩晓增, 宋春, 李海波. 不同有机物料还田对东北黑土活性有机碳的影响. 中国农业科学, 2011, 44: 3565-3574.
doi: 10.3864/j.issn.0578-1752.2011.17.009
Liang Y, Han X Z, Song C, Li H B. Effects of returning different organic materials to the field on activated organic carbon in black soil in northeast China. Sci Agric Sin, 2011, 44: 3565-3574. (in Chinese with English abstract)
[5] 武志杰, 张海军, 许广山, 张玉华, 刘春萍. 玉米秸秆还田培肥土壤的效果. 应用生态学报, 2002, 13: 539-542.
Wu Z J, Zhang H J, Xu G S, Zhang Y H, Liu C P. Effects of returning corn stalks to field for fertilizing soil. Chin J Appl Ecol, 2002, 13: 539-542. (in Chinese with English abstract)
[6] 张健男, 谢洪宝, 孙阎. 有机肥料的合理增施对土壤性质影响研究综述. 中国农学通报, 2018, 34(27): 124-129.
doi: 10.11924/j.issn.1000-6850.casb18050152
Zhang J N, Xie H B, Sun Y. A review of the effects of rationally increasing organic fertilizer application on soil properties. Chin Agric Sci Bull, 2018, 34(27): 124-129. (in Chinese with English abstract)
[7] 徐节田, 邸文静, 杜刚, 郭德广, 王兴远. 有机物料还田方式及对土壤培肥的作用. 现代农业科技, 2019, (1): 182-184.
Xu J T, Di W J, Du G, Guo D G, Wang X Y. Methods of returning organic materials to the field and their effects on soil fertilization. Modern Agric Sci Technol, 2019, (1): 182-184. (in Chinese with English abstract)
[8] 王刚, 王业勤, 王倩, 薛忠, 宋刚, 郭昌进. 椰糠有机肥混合机设计与试验. 农机化研究, 2022, 44(3): 231-235.
Wang G, Wang Y Q, Wang Q, Xue Z, Song G, Guo C G. Design and experiment of coconut bran organic fertilizer mixer. J Agric Mechan Res, 2022, 44(3): 231-235 (in Chinese with English abstract).
[9] 刘佳, 季延海, 王宝驹, 武占会, 刘明池, 王丽萍. 椰糠复合基质对温室番茄生长及品质的影响. 江苏农业科学, 2019, 47(17): 150-154.
Liu J, Ji Y H, Wang B J, Wu Z H, Liu M C, Wang L P. Effects of coconut bran composite matrix on the growth and quality of greenhouse tomato. Jiangsu Agric Sci, 2019, 47(17): 150-154. (in Chinese with English abstract)
[10] 何立中, 丁小涛, 金海军, 张红梅, 崔佳维, 周强, 余纪柱. 商品岩棉条和椰糠条对黄瓜生长、光合、产量和品质的影响. 中国蔬菜, 2021, (10): 91-96.
He L Z, Ding X T, Jin H J, Zhang H M, Cui J W, Zhou Q, Yu J Z. Effects of commercial rock wool strips and coconut bran strips on the growth, photosynthesis, yield and quality of cucumber. China Veget, 2021, (10): 91-96. (in Chinese with English abstract)
[11] 张立明, 王庆美, 王荫墀. 甘薯的主要营养成分和保健作用. 杂粮作物, 2003, (3): 162-166.
Zhang L M, Wang Q M, Wang Y C. Main nutrients and health benefits of sweet potato. Multi-grain Crop, 2003, (3): 162-166. (in Chinese with English abstract)
[12] Sun H, Mu B, Song Z, Ma Z, Mu T. The in vitro antioxidant activity and inhibition of intracellular reactive oxygen species of sweet potato leaf polyphenols. Oxid Med Cell Longev, 2018, 2018: 9017828-11.
[13] 马代夫, 李强, 曹清河, 钮福祥, 谢逸萍, 唐君, 李洪民. 中国甘薯产业及产业技术的发展与展望. 江苏农业学报, 2012, 28: 969-973.
Ma D F, Li Q, Cao Q H, Niu F X, Xie Y P, Tang J, Li H M. Development and prospect of sweet potato industry and industrial technology in China. Jiangsu J Agric Sci, 2012, 28: 969-973. (in Chinese with English abstract)
[14] 郭小丁, 谢一芝, 尹晴红. 鲜食甘薯分级标准探讨. 江苏农业科学, 2005, (4): 115-117.
Guo X D, Xie Y Z, Yin Q H. Discussion on grading standard of fresh sweet potato. Jiangsu Agric Sci, 2005, (4): 115-117. (in Chinese with English abstract)
[15] 王文质, 以凡, 杜述荣, 魏秀玲, 许莉萍, 曹化林. 甘薯淀粉含量换算公式及换算表. 作物学报, 1989, 40: 94-96.
Wang W Z, Yi F, Du S R, Wei X L, Xu L P, Cao H L. Conversion formula and conversion table of starch content in sweet potato. Acta Agron Sin, 1989, 40: 94-96 (in Chinese with English abstract).
[16] 华孟, 王坚. 土壤物理学. 北京: 北京农业大学出版社, 1993. pp 38-44.
Hua M, Wang J. Soil Physics. Beijing: Beijing Agricultural University Press, 1993. pp 38-44. (in Chinese)
[17] 刘爱叶, 朱德余. 土中有机质含量测定方法的优化. 中国勘察设计, 2015, (4): 88-91.
Liu A Y, Zhu D Y. Optimization of the method for the determination of organic matter content in soil. Chin Eng Consult, 2015, (4): 88-91. (in Chinese)
[18] 王晓岚, 卡丽毕努尔, 杨文念. 土壤碱解氮测定方法比较. 北京师范大学学报(自然科学版), 2010, 46(1): 76-78.
Wang X L, Kali B, Yang W N. Comparison of methods for the determination of soil nitrogen by alkaline hydrolysis. J Beijing Norm Univ (Nat Sci Edn), 2010, 46(1): 76-78. (in Chinese with English abstract)
[19] 夏国芳, 严红, 魏湜, 潘凤荣, 刘红霞. 有机物料施用量对黑土有机碳积累的影响. 辽宁农业科学, 2010, 51(5): 37-39.
Xia G F, Yan H, Wei W, Pan F G, Liu H G. Effects of organic material application rate on organic carbon accumulation in black soil. Liaoning Agric Sci, 2010, 51(5): 37-39. (in Chinese with English abstract)
[20] 孔晓民, 韩成卫, 曾苏明, 吴秋平, 刘丽. 不同耕作方式对土壤物理性状及玉米产量的影响. 玉米科学, 2014, 22(1): 108-113.
Kong X M, Han C G, Zeng S M, Wu Q P, Liu L. Effects of different tillage methods on soil physical properties and maize yield. J Maize Sci, 2014, 22(1): 108-113 (in Chinese with English abstract).
[21] 邵云, 王敬婼, 张紧紧, 韩蕊, 冯荣成, 马守臣, 李昊烊. 耕作和有机物料还田对麦田土壤理化性质及产量效益的影响. 华北农学报, 2017, 32(5): 208-215.
doi: 10.7668/hbnxb.2017.05.031
Shao Y, Wang J G, Zhang J J, Han R, Feng R C, Ma S C, Li H Y. Effects of tillage and organic material returning on soil physicochemical properties and yield benefit of wheat fields. Acta Agric Boreali-Sin, 2017, 32(5): 208-215 (in Chinese with English abstract).
[22] 陈冬林, 易文新, 屠乃美. 不同土壤耕作方式下秸秆还田量对晚稻土壤养分与微生物的影响. 环境科学学报, 2010, 30: 1722-1728.
Chen D L, Yi W X, Tu N M. Effects of straw returning amount on soil nutrients and microorganisms in late rice under different soil tillage methods. Acta Sci Circumst, 2010, 30: 1722-1728. (in Chinese with English abstract)
[23] Hou R X, Ou-Yang Z, Li Y S. Effects of tillage and residue management on soil organic carbon and total nitrogen in the North China plain. Soil Sci Soc Am J, 2012, 76: 230-240.
doi: 10.2136/sssaj2011.0107
[24] 邓晓, 武春媛, 吴永梅, 李怡, 吴东明, 谭华东, 李勤奋. 蚯蚓粪与椰糠配施对盐渍土的改良效应. 中国土壤与肥料, 2021, (1): 212-219.
Deng X, Wu C Y, Wu Y M, Li Y, Wu D G, Tan H D, Li Q F. Improvement effect of combined application of vermicompost and coconut bran on saline soil. China Soils Fert, 2021, (1): 212-219. (in Chinese with English abstract)
[25] 余延丰, 熊桂云, 张继铭, 万炎生, 苏运河, 彭红, 孙爱红. 秸秆还田对作物产量和土壤肥力的影响. 湖北农业科学, 2008, 47(2): 169-171.
Yu Y F, Xiong G Y, Zhang J M, Wan Y S, Su Y H, Peng H, Sun A H. Effects of straw returning on crop yield and soil fertility. Hubei Agric Sci, 2008, 47(2): 169-171. (in Chinese with English abstract)
[26] 夏枫, 成善汉, 林师森, 苏蓉蓉, 赵柳莹, 王龙飞. 不同基肥对大棚土壤养分、豇豆产量及品质的影响. 热带生物学报, 2017, 8(1): 42-47.
Xia F, Cheng S H, Lin S S, Su R G, Zhao L Y, Wang L F. Effects of different base fertilizers on soil nutrients, cowpea yield and quality in greenhouses. J South Chin Univ Trop Agric, 2017, 8(1): 42-47. (in Chinese with English abstract)
[27] Cardinale B J, Srivastava D S, Duffy J E, Wright J P, Downing A L, Sankaran M, Sankaran M, Jouseau C. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature, 2006, 443: 989-992.
doi: 10.1038/nature05202
[28] 胡诚, 曹志平, 罗艳蕊, 马永良. 长期施用生物有机肥对土壤肥力及微生物生物量碳的影响. 中国生态农业学报, 2007, 15(3): 48-51.
Hu C, Cao Z P, Luo Y R, Ma Y L. Effects of long-term application of bio-organic fertilizer on soil fertility and microbial biomass carbon. Chin J Eco-Agric, 2007, 15(3): 48-51. (in Chinese with English abstract)
[29] 许仁良, 王建峰, 张国良, 戴其根. 秸秆、有机肥及氮肥配合使用对水稻土微生物和有机质含量的影响. 生态学报, 2010, 30: 3584-3590.
Xu R L, Wang J F, Zhang G L, Dai Q G. Effects of combined use of straw, organic fertilizer and nitrogen fertilizer on the content of microorganisms and organic matter in paddy soil. Acta Ecol Sin, 2010, 30: 3584-3590. (in Chinese with English abstract)
[30] 母养秀, 李凤霞, 王长军, 郭永忠, 汤冬. 不同有机物料对宁夏盐碱地土壤微生物数量的影响研究. 宁夏农林科技, 2021, 62(1): 29-33.
Mu Y X, Li F X, Wang C G, Guo Y Z, Tang D. Effects of different organic materials on soil microbial counts in Ningxia saline-alkali land. Ningxia Agric Forest Sci Technol, 2021, 62(1): 29-33. (in Chinese with English abstract)
[31] Głąb T, Gondek K, Mierzwa-Hersztek M, Szewczyk W. Effects of straw and biochar amendments on grassland productivity and root morphology. Agronomy (Basel), 2020, 10: 1794.
doi: 10.3390/agronomy10111794
[32] Sun C, Wang D, Shen X, Li C, Liu J, Lan T, Wang W, Xie H, Zhang Y. Effects of biochar, compost and straw input on root exudation of maize (Zea mays L.): from function to morphology. Agric Ecosyst Environ, 2020, 297: 106952.
doi: 10.1016/j.agee.2020.106952
[33] Ros A B, Filho J T, de Cesare Barbosa G M. Sweet potato tuberous roots yield under different soil managements/Produtivida de raizes tuberosas de batata-doce em diferentes sistemas de preparo do solo. Ciencia Rural, 2014, 44: 1929-1935.
doi: 10.1590/0103-8478cr20121169
[34] 康国栋, 魏家星, 邬梦成, 李鹏, 成艳红, 李大明, 刘满强, 李辉信, 胡锋, 焦加国, 王霞. 有机物料施用对旱地红壤作物产量和有机质活性组分的影响. 土壤, 2017, 49: 1084-1091.
Kang G D, Wei J X, Wu M C, Li P, Cheng Y H, Li D M, Liu M Q, Li H X, Hu F, Jiao J G, Wang X. Effects of organic material application on crop yield and active components of organic matter in dryland red soil. Soils, 2017, 49: 1084-1091. (in Chinese with English abstract)
[35] 杨苏, 李传哲, 王静, 汪吉东, 张永春, 李辉信, 艾玉春. 有机物料投入对作物产量及潮土固碳的影响. 江苏农业学报, 2020, 36: 569-576.
Yang S, Li C Z, Wang J, Wang J D, Zhang Y C, Li H X, Ai Y C. Effects of organic material input on crop yield and carbon sequestration in fluvo-aquic soil. Jiangsu J Agric Sci, 2020, 36: 569-576. (in Chinese with English abstract)
[36] 朱国鹏, 刘士哲, 陈业渊, 黄宏坤. 基于椰糠的新型无土栽培基质研究(II.):配方试种筛选. 热带作物学报, 2005, 26(2): 100-106.
Zhu G P, Liu S Z, Chen Y Y, Huang H K. Research on a new type of soilless culture substrate based on coconut bran (II.): recipe test selection. Chin J Trop Crops, 2005, 26(2): 100-106. (in Chinese with English abstract)
[37] 狄文伟, 赵瑞, 张婷, 杜亮. 基于椰糠的基质配比对袋培黄瓜生长的影响. 湖北农业科学, 2008, 47: 440-442.
Di W W, Zhao R, Zhang T, Du L. Effects of substrate ratio based on coconut bran on the growth of cucumber grown in bags. Hubei Agric Sci, 2008, 47: 440-442. (in Chinese with English abstract)
[38] 仇淑芳, 杨乐琦, 黄丹枫, 唐东芹. 草炭椰糠复合基质对‘紫油菜’生长和品质的影响. 上海交通大学学报(农业科学版), 2016, 34(2): 40-46.
Qiu S F, Yang L Q, Huang D F, Tang D Q. Effects of peat and coconut bran composite matrix on the growth and quality of ‘Purple rape’. J Shanghai Jiaotong Univ (Agric Sci Edn), 2016, 34(2): 40-46. (in Chinese with English abstract)
[39] 宋蒙亚, 李忠佩, 刘明, 刘满强, 江春玉. 不同农田有机物料组合对物料分解过程的影响. 土壤通报, 2014, 45: 685-690.
Song M Y, Li Z P, Liu M, Liu M Q, Jiang C Y. Effects of different organic material combinations in farmland on material decomposition process. Chin J Soil Sci, 2014, 45: 685-690. (in Chinese with English abstract)
[40] 史春余, 王振林, 余松烈. 土壤通气性对甘薯产量的影响及其生理机制. 中国农业科学, 2001, 34: 173-178.
Shi C Y, Wang Z L, Yu S L. Effects of soil aeration on sweet potato yield and its physiological mechanism. Sci Agric Sin, 2001, 34: 173-178. (in Chinese with English abstract)
[41] 刘国群, 章明奎, 严建立. 施用高量有机物料对新垦耕地红壤有机碳积累及性态的影响. 安徽农业大学学报, 2021, 48(1): 101-107.
Liu G Q, Zhang M K, Yan J L. Effects of high-amount application of organic materials on organic carbon accumulation and properties of red soil in newly cultivated land. J Anhui Agric Univ, 2021, 48(1): 101-107. (in Chinese with English abstract)
[42] Bengough A G, Mullins C E. The resistance experienced by roots growing in a pressurised cell. Plant Soil, 1990, 123: 73-82.
doi: 10.1007/BF00009928
[43] 杨晓娟, 李春俭. 机械压实对土壤质量、作物生长、土壤生物及环境的影响. 中国农业科学, 2008, 41: 2008-2015.
Yang X J, Li C J. Effects of mechanical compaction on soil quality, crop growth, soil biology and environment. Sci Agric Sin, 2008, 41: 2008-2015. (in Chinese with English abstract)
[44] 杨林丰, 钟南. 根系生长与土壤物理性状之间的关系. 农机化研究, 2007, (8): 22-24.
Yang L F, Zhong N. Relationship between root growth and soil physical properties. J Agric Mechan Res, 2007, (8): 22-24. (in Chinese with English abstract)
[45] 朱绿丹, 张珮琪, 陈杰, 张辉, 张永春, 邵孝侯, 许建平. 不同土壤水分条件下施氮对甘薯干物质积累及块根品质的影响. 江苏农业学报, 2013, 29: 533-539.
Zhu L D, Zhang P Q, Chen J, Zhang H, Zhang Y C, Shao X H, Xu J P. Effects of nitrogen application on dry matter accumulation and root quality of sweet potato under different soil moisture conditions. Jiangsu J Agric Sci, 2013, 29: 533-539. (in Chinese with English abstract)
[1] 李亦扬, 李远, 赵子胥, 张鼎顺, 杜嘉宁, 吴淑娟, 孙思琦, 陈媛, 张祥, 陈德华, 刘震宇. 土壤增氮对棉铃对位叶Bt杀虫蛋白含量影响及氮代谢机制[J]. 作物学报, 2023, 49(9): 2505-2516.
[2] 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551.
[3] 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581.
[4] 苏一钧, 赵路宽, 唐芬, 戴习彬, 孙亚伟, 周志林, 刘亚菊, 曹清河. 378份甘薯引进种遗传多样性及群体结构分析[J]. 作物学报, 2023, 49(9): 2582-2593.
[5] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[6] 房孟颖, 任粱, 卢霖, 董学瑞, 武志海, 闫鹏, 董志强. 乙矮合剂对粒用高粱根系建构和产量的影响[J]. 作物学报, 2023, 49(9): 2528-2538.
[7] 曹玉军, 刘志铭, 兰天娇, 刘小丹, 魏雯雯, 姚凡云, 吕艳杰, 王立春, 王永军. 吉林省不同年代玉米品种光合生理特性对施氮量的响应[J]. 作物学报, 2023, 49(8): 2183-2195.
[8] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
[9] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224.
[10] 刘琼, 杨洪坤, 陈艳琦, 吴东明, 黄秀兰, 樊高琼. 施氮量对糯和非糯小麦原粮品质、酿酒品质及挥发性风味物质的影响[J]. 作物学报, 2023, 49(8): 2240-2258.
[11] 贾瑞雪, 陈伊航, 张荣, 唐朝臣, 王章英. 超高效液相色谱法同时测定甘薯中13种类胡萝卜素的含量[J]. 作物学报, 2023, 49(8): 2259-2274.
[12] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[13] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[14] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[15] 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .