欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (9): 2505-2516.doi: 10.3724/SP.J.1006.2023.24217

• 耕作栽培·生理生化 • 上一篇    下一篇

土壤增氮对棉铃对位叶Bt杀虫蛋白含量影响及氮代谢机制

李亦扬(), 李远, 赵子胥, 张鼎顺, 杜嘉宁, 吴淑娟, 孙思琦, 陈媛, 张祥, 陈德华(), 刘震宇()   

  1. 扬州大学 / 江苏省作物遗传生理国家重点实验室培育点 / 粮食作物现代产业技术协同创新中心, 江苏扬州 225009
  • 收稿日期:2022-09-30 接受日期:2023-02-10 出版日期:2023-09-12 网络出版日期:2023-02-23
  • 通讯作者: *刘震宇, E-mail: liuzhenyu1124@163.com; 陈德华, E-mail: cdh@yzu.edu.cn
  • 作者简介:李亦扬, E-mail: 1798489678@qq.com
  • 基金资助:
    国家自然科学基金项目(31901462);国家自然科学基金项目(31671613);江苏省自然科学基金项目(BK20191439);江苏省高等教育优势学科发展计划(PAPD);江苏省高等学校大学生创新创业训练计划(202111117074Y)

Effects of increased nitrogen on Bt protein expression and nitrogen metabolism in the leaf subtending to cotton boll

LI Yi-Yang(), LI Yuan, ZHAO Zi-Xu, ZHANG Ding-Shun, DU Jia-Ning, WU Shu-Juan, SUN Si-Qi, CHEN Yuan, ZHANG Xiang, CHEN De-Hua(), LIU Zhen-Yu()   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops / Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2022-09-30 Accepted:2023-02-10 Published:2023-09-12 Published online:2023-02-23
  • Supported by:
    National Natural Science Foundation of China(31901462);National Natural Science Foundation of China(31671613);Natural Science Foundation of Jiangsu Province(BK20191439);Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD);Higher School in Jiangsu Province College Students’ Innovation and Entrepreneurship Training Programs(202111117074Y)

摘要:

为探讨土壤增氮对Bt棉棉铃对位叶杀虫蛋白表达量影响程度及相关的氮代谢生理机制, 提高Bt棉花铃期抗虫性的农学调节提供理论和技术支撑。采用裂区设计, 以Bt棉常规品种泗抗1号(SK-1)、杂交品种泗抗3号(SK-3)为材料, 在常规施氮量300 kg hm-2基础上, 设计施氮量分别增加25%、50%、75%、100%的处理, 研究土壤增氮对Bt棉棉铃对位叶杀虫蛋白表达量影响。结果表明, 2个类型品种棉铃对位叶中Bt杀虫蛋白含量均随增施氮量提高呈一直增加的特征, 与对照相比, 施氮量增加25%~100%, 棉铃对位叶Bt杀虫蛋白增加6.1%~96.9%。氮代谢生理机制进一步表明, 棉铃对位叶中可溶性蛋白含量、游离氨基酸含量、谷氨酸丙酮酸转氨酶活性和谷氨酰胺合成酶活性的变化趋势与Bt蛋白含量表现一致, 而蛋白质分解关键酶(蛋白酶、肽酶)活性则随施氮量的增加呈下降趋势。叶面积指数(LAI)随增施氮量的提高而增大, 而产量则随土壤氮量的增加呈先升高后降低特征, 最适LAI和产量最大值均出现在常规施氮的1.25倍(375 kg hm-2)。综上, 在常规施氮基础上适量增施氮肥有利于棉铃对位叶中Bt蛋白的合成、最适LAI的形成和产量的提高, 有利于实现Bt棉丰产性和抗虫性协同表达。

关键词: Bt棉, 土壤增氮, 杀虫蛋白, 氮代谢, 产量

Abstract:

The objective of this study is to explore the effect of soil nitrogen increase on the expression of insecticidal proteins in the leaf subtending to cotton boll and the related physiological mechanism of nitrogen metabolism and to provide the theoretical and technical support for agronomic regulation of Bt cotton boll stage insect resistance. A split-plot experiment was conducted. The conventional cultivar Sikang 1 and hybrid cultivar Sikang 3 were used as the experimental materials. Enhanced nitrogen fertilizer rates of increased 25% to 100% nitrogen [300 (CK), 375, 450, 525, and 600 kg hm-2 as pure nitrogen] were designed to study the effect on Bt protein content and nitrogen metabolic physiological in the leaf subtending to cotton boll. The results showed that the content of Bt protein in the leaf subtending to cotton boll of two types of cultivars showed a constant increase with the increase of nitrogen application rate. Compared with the control (300 kg hm-2), Bt protein content in the leaf subtending to cotton boll increased by 6.1%-96.9% with the increase of 25%-100% nitrogen application. The physiological mechanism of nitrogen metabolism showed that the trend of soluble protein (SP), free amino acid (AA), and key enzymes of protein synthesis [Glutamic Oxalacetic Transaminase (GOT) and Glutamine Synthetase (GS)] in the leaf subtending to cotton boll were consistent with those of Bt protein. The activities of key enzymes of protein decomposition (protease and peptidase) decreased with the increase of nitrogen application. The leaf area index (LAI) increased with the increase of nitrogen application, while the yield increased first and then decreased with the increase of soil nitrogen. The optimum LAI and the maximum yield were both 1.25 times (375 kg hm-2) that of conventional nitrogen application. In conclusion, on the basis of conventional nitrogen application, an appropriate amount of nitrogen fertilizer was beneficial to the synthesis of Bt protein, the formation of the optimal LAI, and the increase of yield in the counter-position leaves of cotton boll, which was conductive to the synergistic expression of high yield and insect resistance of Bt cotton.

Key words: Bt cotton, the enhanced nitrogen application, the insecticidal protein, nitrogen metabolism, yield

表1

增施氮素对棉铃对位叶Bt蛋白表达量的影响"

品种
Cultivar
处理
Treatment
2017年花后天数Days after flowering in 2017 2018年花后天数Days after flowering in 2018
15 d 20 d 25 d 15 d 20 d 25 d
SK-1 CK 169.54±5.96 c 117.61±5.59 g 133.67±2.91 e 136.30±2.70 ef 138.88±1.36 e 135.93±1.09 d
N1 184.31±4.54 c 162.29±5.79 ef 151.92±0.40 d 156.53±3.78 c 158.37±2.86 d 145.17±2.79 bcd
N2 257.71±2.31 b 179.08±0.68 e 174.42±0.44 c 163.06±1.30 bc 171.06±1.31 bc 152.36±4.02 bc
N3 277.43±21.15 ab 201.19±11.67 d 197.97±11.41 b 172.19±2.84 b 175.14±2.28 b 155.25±1.23 b
N4 317.85±12.69 a 231.54±17.47 bc 202.76±5.72 b 192.62±2.28 a 198.64±5.12 a 174.89±1.56 a
SK-3 CK 171.21±5.89 c 151.66±5.44 f 128.29±5.80 e 125.30±3.58 f 134.86±2.53 e 133.76±2.41 d
N1 265.59±3.91 b 162.09±5.84 ef 137.19±2.96 e 141.18±2.72 de 155.79±1.77 d 141.86±3.41 cd
N2 272.65±30.34 ab 215.44±3.01 cd 153.26±0.58 d 151.48±3.47 cd 157.99±2.99 d 144.76±0.64 bcd
N3 288.06±19.46 ab 250.09±5.92 ab 183.66±2.82 c 161.54±4.20 bc 163.77±2.23 cd 151.22±2.10 bc
N4 315.68±29.14 a 263.03±0.15 a 232.21±5.81 a 187.59±1.92 a 192.42±5.03 a 170.83±2.64 a
方差分析ANOVA
品种Variety NS NS NS NS * NS
处理Treatment ** ** ** ** ** **
品种×处理Variety×treatment NS ** NS NS NS NS

表2

增施氮素对棉铃对位叶可溶性蛋白含量的影响"

品种
Cultivar
处理
Treatment
2017年花后天数Days after flowering in 2017 2018年花后天数Days after flowering in 2018
15 d 20 d 25 d 15 d 20 d 25 d
SK-1 CK 0.46±0.06 d 0.43±0.01 d 0.40±0.01 e 0.42±0.00 f 0.39±0.08 e 0.44±0.07 e
N1 0.58±0.12 cd 0.65±0.24 d 0.60±0.01 de 0.49±0.04 ef 0.45±0.07 e 0.54±0.03 de
N2 0.76±0.18 bc 0.93±0.04 c 0.72±0.01 cd 0.65±0.03 ef 0.75±0.26 cd 0.69±0.10 cd
N3 0.94±0.01 ab 1.03±0.07 bc 0.89±0.01 bc 1.27±0.16 b 0.79±0.17 cd 0.68±0.24 cd
N4 1.14±0.00 a 1.27±0.04 b 1.01±0.02 ab 1.41±0.04 b 0.91±0.21 c 1.10±0.13 ab
SK-3 CK 0.44±0.00 d 0.56±0.03 d 0.38±0.01 e 0.51±0.03 ef 0.44±0.21 e 0.55±0.11 de
N1 0.58±0.03 cd 0.93±0.01 c 0.67±0.06 cd 0.74±0.01 de 0.66±0.15 d 0.72±0.20 c
N2 0.74±0.09 bc 1.13±0.18 bc 0.80±0.06 bcd 0.97±0.01 cd 1.13±0.19 b 0.79±0.14 c
N3 0.78±0.09 bc 1.19±0.01 b 1.01±0.12 ab 1.18±0.13 bc 0.93±0.16 bc 0.98±0.25 b
N4 1.03±0.00 a 1.59±0.07 a 1.19±0.07 a 1.75±0.09 a 2.00±0.09 a 1.18±0.21 a
方差分析ANOVA
品种 Variety NS NS NS NS NS NS
处理 Treatment ** ** ** ** ** **
品种×处理 Variety×treatment NS NS NS * NS NS

表3

增施氮素对棉铃对位叶游离性氨基酸含量的影响"

品种
Cultivar
处理
Treatment
2017年花后天数 Days after flowering in 2017 2018年花后天数Days after flowering in 2018
15 d 20 d 25 d 15 d 20 d 25 d
SK-1 CK 1.27±0.02 g 1.13±0.02 g 1.23±0.02 g 1.32±0.02 d 1.66±0.02 c 1.64±0.02 f
N1 1.43±0.02 e 1.18±0.02 fg 1.35±0.04 de 1.33±0.02 d 1.90±0.02 b 1.86±0.04 e
N2 1.53±0.05 cd 1.25±0.03 ef 1.38±0.04 cd 1.66±0.05 c 1.67±0.03 c 2.21±0.04 c
N3 1.65±0.03 b 1.34±0.02 d 1.39±0.02 c 1.80±0.03 b 1.76±0.02 bc 2.44±0.02 b
N4 1.75±0.03 a 1.44±0.07 b 1.48±0.04 b 1.94±0.03 a 1.94±0.07 ab 2.59±0.04 a
SK-3 CK 1.27±0.02 g 1.28±0.02 de 1.26±0.02 g 0.79±0.02 e 1.30±0.02 d 1.51±0.02 g
N1 1.34±0.02 f 1.35±0.02 cd 1.31±0.02 f 1.23±0.02 d 1.83±0.02 bc 1.72±0.02 f
N2 1.51±0.03 d 1.42±0.09 bc 1.32±0.04 ef 1.69±0.03 c 1.77±0.09 bc 1.99±0.04 d
N3 1.58±0.07 c 1.49±0.04 b 1.38±0.06 cd 1.79±0.07 b 1.87±0.04 b 2.27±0.06 c
N4 1.73±0.04 a 1.66±0.03 a 1.53±0.03 a 1.95±0.04 a 2.12±0.03 a 2.37±0.03 b
方差分析ANOVA
品种 Variety NS NS NS NS NS NS
处理 Treatment ** ** ** ** ** **
品种×处理 Variety×treatment NS NS NS NS NS NS

表4

增施氮素对棉铃对位叶GPT活性的影响"

品种
Cultivar
处理
Treatment
2017年花后天数 Days after flowering in 2017 2018年花后天数Days after flowering in 2018
15 d 20 d 25 d 15 d 20 d 25 d
SK-1 CK 4.63±0.56 f 4.43±0.56 e 4.90±0.50 f 5.45±0.03 cd 6.27±0.96 b 3.02±0.30 f
N1 6.02±0.57 de 5.67±0.57 de 5.96±0.34 e 5.52±0.33 cd 6.27±0.82 b 4.71±0.22 de
N2 7.05±1.10 bcd 7.21±0.58 bc 8.19±0.42 c 6.13±0.54 bcd 6.74±0.84 b 4.99±0.54 cde
N3 8.18±0.59 b 7.14±0.76 bc 8.94±0.43 b 7.64±0.78 bc 7.99±0.31 ab 6.47±0.23 bc
N4 9.96±0.59 a 8.17±0.59 ab 9.53±0.37 ab 8.08±1.04 b 9.07±0.11 ab 8.85±0.93 a
SK-3 CK 5.50±0.57 ef 4.84±0.56 de 4.79±0.33 f 5.49±0.45 d 6.45±0.33 b 3.76±0.53 ef
N1 6.64±0.75 cde 6.08±0.57 cd 6.34±0.35 e 5.01±0.08 cd 6.48±0.12 b 4.39±0.53 ef
N2 7.41±0.58 bc 7.28±0.18 bc 7.37±0.18 d 6.61±0.37 bcd 6.55±0.03 b 6.26±0.17 bcd
N3 9.54±0.15 a 7.99±0.16 ab 9.43±0.20 ab 8.25±0.75 b 6.98±0.03 b 7.42±0.25 ab
N4 9.58±0.07 a 8.92±0.12 a 9.89±0.95 a 9.14±0.84 a 9.89±0.88 a 8.15±0.71 a
方差分析ANOVA
品种 Variety NS NS * NS NS NS
处理 Treatment ** ** ** ** ** **
品种×处理 Variety×treatment NS NS NS ** NS NS

表5

增施氮素对棉铃对位叶GS活性的影响"

品种
Cultivar
处理
Treatment
2017年花后天数 Days after flowering in 2017 2018年花后天数Days after flowering in 2018
15 d 20 d 25 d 15 d 20 d 25 d
SK-1 CK 0.66±0.06 f 0.66±0.01 d 0.72±0.01 c 0.48±0.05 e 0.82±0.05 cd 0.96±0.07 cd
N1 0.90±0.12 e 0.90±0.24 cd 0.84±0.01 bc 0.57±0.03 de 1.07±0.09 bc 1.38±0.01 b
N2 1.08±0.01 cd 0.96±0.01 bc 0.90±0.01 b 0.69±0.04 cde 1.08±0.06 bc 1.42±0.17 ab
N3 1.14±0.02 bcd 1.14±0.01 abc 1.26±0.07 a 0.93±0.06 bcd 1.13±0.09 b 1.63±0.13 ab
N4 1.26±0.03 ab 1.20±0.13 ab 1.26±0.07 a 1.37±0.26 a 1.46±0.07 a 1.82±0.05 a
SK-3 CK 0.54±0.03 f 0.66±0.03 d 0.72±0.01 c 0.63±0.01 de 0.59±0.07 d 0.90±0.07 d
N1 0.90±0.09 e 0.90±0.01 cd 0.90±0.07 b 0.73±0.06 cde 1.03±0.1 bc 1.35±0.08 bc
N2 1.02±0.02 de 0.90±0.07 cd 0.96±0.07 b 0.76±0.08 cde 1.05±0.07 bc 1.36±0.04 bc
N3 1.20±0.01 abc 1.20±0.18 ab 1.26±0.03 a 1.03±0.05 abc 1.16±0.07 b 1.41±0.16 ab
N4 1.32±0.00 a 1.26±0.13 a 1.32±0.13 a 1.26±0.02 ab 1.21±0.06 b 1.64±0.05 ab
方差分析ANOVA
品种 Variety NS NS NS NS NS NS
处理 Treatment ** ** ** ** ** **
品种×处理 Variety×treatment NS NS NS NS NS NS

表6

增施氮素对棉铃对位叶蛋白酶活性的影响"

品种
Cultivar
处理
Treatment
2017年花后天数 Days after flowering in 2017 2018年花后天数Days after flowering in 2018
15 d 20 d 25 d 15 d 20 d 25 d
SK-1 CK 15.04±0.71 ab 15.74±1.35 a 15.13±1.86 a 16.08±0.31 bc 19.22±1.37 a 16.53±1.27 b
N1 13.49±1.27 bc 14.20±0.65 bc 11.87±1.55 b 13.84±0.71 cd 16.11±0.43 bc 13.05±1.41 c
N2 12.32±1.11 c 12.89±1.21 cd 8.84±1.00 de 13.15±0.17 d 13.52±0.83 de 11.92±0.09 cd
N3 10.07±0.38 d 11.99±0.23 d 9.47±1.01 cd 8.27±0.54 ef 12.97±0.97 ef 10.84±0.16 cde
N4 7.88±0.58 e 8.34±0.36 e 7.51±0.36 e 6.31±0.22 f 8.46±0.39 g 10.19±0.51 de
SK-3 CK 15.66±1.29 a 15.10±1.23 ab 13.73±0.99 a 21.58±0.26 a 17.60±0.15 ab 19.94±0.90 a
N1 14.17±0.99 ab 12.09±0.91 d 12.16±0.97 b 17.42±0.77 b 15.76±0.30 bcd 16.06±0.85 b
N2 11.99±1.55 c 11.67±1.37 d 10.98±1.37 bc 16.54±0.22 b 14.03±0.59 cde 13.22±0.57 c
N3 9.84±0.78 d 9.64±0.75 e 9.86±1.93 cd 15.71±1.67 bc 11.69±1.08 ef 10.32±0.30 de
N4 7.98±1.05 e 8.99±0.12 e 8.65±0.37 de 8.84±0.28 e 10.87±0.37 f 8.72±0.28 e
方差分析ANOVA
品种 Variety NS * ** ** NS NS
处理 Treatment ** ** ** ** ** **
品种×处理 Variety×treatment NS NS NS * NS *

表7

增施氮素对棉铃对位叶肽酶活性的影响"

品种
Cultivar
处理
Treatment
2017年花后天数 Days after flowering in 2017 2018年花后天数Days after flowering in 2018
15 d 20 d 25 d 15 d 20 d 25 d
SK-1 CK 7.22±0.24 abc 7.04±0.12 ab 8.14±0.65 b 7.88±0.22 ab 10.89±0.93 a 5.19±0.47 a
N1 6.53±0.52 abcd 5.43±0.57 bc 8.09±1.51 b 7.31±0.98 ab 8.51±0.86 ab 4.48±0.72 abc
N2 5.37±0.76 cde 4.80±0.56 cde 6.49±0.52 bc 6.71±0.33 ab 7.83±0.02 b 3.99±0.26 abc
N3 5.03±0.22 de 3.48±0.15 de 3.99±0.38 d 6.58±0.48 ab 7.12±0.36 b 3.73±0.38 abc
N4 3.37±0.29 e 3.07±0.32 e 3.20±0.32 d 5.46±0.53 b 4.13±0.37 c 3.02±0.09 c
SK-3 CK 8.41±1.40 a 7.24±0.58 a 7.47±0.64 bc 8.61±1.28 a 9.39±0.61 ab 4.76±0.47 ab
N1 7.58±1.11 ab 5.59±0.86 abc 10.51±0.38 a 7.66±0.50 ab 9.03±0.44 ab 4.49±0.41 abc
N2 7.65±0.82 ab 5.09±1.31 cd 3.77±0.15 d 6.72±0.15 ab 8.45±0.89 ab 4.17±0.48 abc
N3 6.02±0.23 bcd 4.60±0.70 cde 3.50±0.15 d 6.58±1.11 ab 7.41±0.47 b 3.55±0.02 bc
N4 5.28±0.76 cde 3.37±0.06 de 5.97±0.34 c 5.81±0.32 ab 4.11±0.49 c 3.14±0.34 c
方差分析ANOVA
品种 Variety NS NS NS NS NS NS
处理 Treatment ** ** ** ** ** **
品种×处理 Variety×treatment NS NS NS NS NS NS

表8

增施氮素对棉花LAI的影响"

品种
Cultivar
处理
Treatment
2017年花后天数 Days after flowering in 2017 2018年花后天数Days after flowering in 2018
15 d 20 d 25 d 15 d 20 d 25 d
SK-1 CK 3.4±0.1 e 3.7±0.1 e 3.9±0.1 f 3.6±0 g 3.8±0.1 f 4.1±0.1 e
N1 3.7±0 d 4.0±0.3 cde 4.2±0 e 3.9±0.1 f 4.2±0 def 4.4±0.1 d
N2 4.2±0.1 c 4.3±0.1 bc 4.6±0.1 d 4.3±0.1 d 4.5±0.1 bcd 4.7±0 c
N3 4.4±0.1 bc 4.5±0.1 ab 4.9±0 c 4.5±0.1 bc 4.7±0.1 abc 4.9±0.1 c
N4 4.5±0 ab 4.7±0.3 a 5.1±0 bc 4.7±0 a 4.8±0 ab 5.2±0.1 b
SK-3 CK 3.6±0.2 de 3.8±0.1 de 4.1±0.2 ef 3.7±0 g 3.9±0 ef 4.2±0 e
N1 3.8±0 d 4.1±0 cd 4.5±0 d 4.1±0.1 e 4.3±0 cde 4.5±0 d
N2 4.5±0 ab 4.6±0 ab 4.9±0 c 4.4±0 cd 4.7±0 abc 4.8±0 c
N3 4.6±0 ab 4.8±0 a 5.2±0 ab 4.6±0.1 ab 5.0±0.4 a 5.3±0.1 b
N4 4.7±0 a 4.9±0 a 5.3±0.1 a 4.7±0 a 5.1±0.1 a 5.5±0 a
方差分析ANOVA
品种 Variety ** ** ** * NS *
处理 Treatment ** ** ** ** ** **
品种×处理 Variety×treatment NS NS NS NS NS **
[1] 陈晨. 中国六省转基因抗虫棉对棉花害虫的影响及社会经济效益研究. 中央民族大学硕士学位论文, 北京, 2013.
Chen C. Study on the Impact of Transgenic Insect Resistant Cotton on Cotton Pests and Its Social and Economic Benefits in Six Provinces of China. MS Thesis of Minzu University of China, Beijing, China, 2013. (in Chinese with English abstract)
[2] Zhang X, Zhou M Y, Li Y B, Liu Z Y, Chen Y, Chen D H. Nitrogen spraying affected seed Bt toxin concentration and yield in Bt cotton. J Integr Agric, 2021, 20: 1229-1238.
doi: 10.1016/S2095-3119(20)63243-9
[3] Frankenhuyzen K V. Insecticidal activity of bacillus thuringiensis crystal proteins. J Invertebr Pathol, 2009, 101: 9.
[4] Liu Z Y, Abidallha E H M A, Wu H M, Wu H M, Zhou M Y, Zhang X, Chen Y, Chen D H. Bt insecticidal efficacy variation and agronomic regulation in Bt cotton. J Cotton Res, 2019, 2: 23.
doi: 10.1186/s42397-019-0042-1
[5] 郭旺珍, 孙敬, 郭玉芳, 张天真. 转基因抗虫棉Bt基因不同剂量的聚合与抗虫性表现. 遗传学报, 2001, 28: 668-676.
Guo W Z, Sun J, Guo Y F, Zhang T Z. Investigation of different dosage of inserted Bt genes and their insect-resistance in transgenic Bt cotton. Acta Genet Sin, 2001, 28: 668-676. (in Chinese with English abstract)
[6] Kranthi K R, Naidu S, Dhawad C S, Tatwawadi A, Mate K, Patil E, Bharose A A, Behere G T, Wadaskar R M, Kranthi S. Temporal and intraplant variability of Cry1Ac expression in Bt-cotton and its influence on the survival of the cotton bollworm, Helicoverpa armigera. Curr Sci, 2005, 89: 291-298.
[7] 王冬梅, 李海强, 丁瑞丰, 汪飞, 李号宾, 徐遥, 阿克旦·吾外士, 刘建. 新疆北部地区转Bt基因棉外源杀虫蛋白表达时空动态研究. 棉花学报, 2012, 24: 18-26.
Wang D M, Li H Q, Ding R F, Wang F, Li H B, Xu Y, Akedan W W S, Liu J. Spatio-temporal expression of foreign Bt insecticidal protein in transgenic Bt cotton varieties in northern Xinjiang province, China. Cotton Sci, 2012, 24: 18-26. (in Chinese with English abstract)
[8] Chen Y, Li Y B, Zhou M Y, Cai Z Z, Tambel L I M, Zhang X, Chen Y, Chen D H. Nitrogen deficit decreases seed Cry1Ac endotoxin expression in Bt transgenic cotton. Plant Physiol Bio chem, 2019, 141: 114-121.
[9] 孙伟, 曹玉洪. 转Bt基因抗虫棉Bt毒蛋白表达量的时空变化. 安徽农业科学, 2005, 33(2): 202-203.
Sun W, Cao Y H. Study on the temporal and spatial expressions of Bt toxin protein of Bt transgenic cotton. J Anhui Agric Sci, 2005, 33(2): 202-203. (in Chinese with English abstract)
[10] Olsen K M, Daly J C, Holt H E. Season-long variation in expression of Cry1Ac gene and efficacy of Bacillus thuringiensis toxin in transgenic cotton against Helicoverpa armigera (Lepidoptera: Noctuidae). J Econ Entomol, 2005, 98: 1007-1017.
doi: 10.1603/0022-0493-98.3.1007 pmid: 16022333
[11] 李汝忠, 沈法富, 王宗文, 王景会, 刘承运, 申贵芳. 转Bt基因抗虫棉Bt基因表达的时空动态. 山东农业科学, 2002, (2): 7-9.
Li R Z, Shen F F, Wang Z W, Wang J H, Liu C Y, Shen G F. Temporal and spatial dynamics of Bt gene expression in Bt transgenic cotton. Shandong Agric Sci, 2002, (2): 7-9. (in Chinese with English abstract)
[12] Pettigrew W T, Adamczyk J J. Nitrogen fertility and planting date effects on lint yield and Cry1Ac (Bt) endotoxin production. Agron J, 2006, 98: 691-697.
doi: 10.2134/agronj2005.0327
[13] Chen Y, Li Y B, Zhou M Y, Rui Q Z, Cai Z Z, Zhang X, Chen D H. Nitrogen (N) application gradually enhances boll development and decreases boll shell insecticidal protein content in N-deficient cotton. Front Plant Sci, 2018, 9: 51.
doi: 10.3389/fpls.2018.00051 pmid: 29441082
[14] 李鹏程, 董合林, 刘爱忠, 刘敬然, 李如义, 孙淼, 李亚兵, 毛树春. 施氮量对棉花功能叶片生理特性、氮素利用效率及产量的影响. 植物营养与肥料学报, 2015, 21: 81-91.
Li P C, Dong H L, Liu A Z, Liu J R, Li R Y, Sun M, Li Y B, Mao S C. Effects of nitrogen application rates on physiological characteristics of functional leaves, nitrogen use efficiency and yield of cotton. J Plant Nutr Fert, 2015, 21: 81-91. (in Chinese with English abstract)
[15] 李鹏程, 董合林, 刘爱忠, 刘敬然, 孙淼, 王国平, 刘绍东, 赵新华, 李亚兵. 种植密度氮肥互作对棉花产量及氮素利用效率的影响. 农业工程学报, 2015, 31(23): 122-130.
Li P C, Dong H L, Liu A Z, Liu J R, Sun M, Wang G P, Liu S D, Zhao X H, Li Y B. Effect of interplay of planting density and nitrogen fertilizer on cotton yield and nitrogen use efficiency. Trans CSAE, 2015, 31(23): 122-130. (in Chinese with English abstract)
[16] Chen Y, Liu Z Y, Tambel L I M, Zhang X, Chen Y, Chen D H. Reduced square Bacillus thuringiensis insecticidal protein content of transgenic cotton under N deficit. J Integr Agric, 2021, 20: 100-108.
doi: 10.1016/S2095-3119(20)63190-2
[17] 李涵佳, 李远, 刘震宇, 张晨霞, 徐泽, 吴天凡, 陈媛, 张祥, 陈源, 陈德华. 土壤增施氮肥对棉蕾Bt杀虫蛋白表达量影响及氮代谢机制. 作物学报, 2022, 48: 2567-2574.
doi: 10.3724/SP.J.1006.2022.14205
Li H J, Li Y, Liu Z Y, Zhang C X, Xu Z, Wu T F, Chen Y, Zhang X, Chen Y, Chen D H. Effects of increased nitrogen fertilizer on square Bt protein expression and nitrogen metabolism in cotton. Acta Agron Sin, 2022, 48: 2567-2574. (in Chinese with English abstract)
[18] 陈立昶, 吉守银, 孙宝林, 王卫军. 泗抗1号棉花新品种. 中国棉花, 2006, (8): 24-25.
Chen L X, Ji S Y, Sun B L, Wang W J. New cotton variety Sikang 1. China Cotton, 2006, (8): 24-25. (in Chinese)
[19] 陈立昶, 吉守银, 孙宝林, 王卫军, 崔小萍. 杂交棉新品种泗抗3号. 中国棉花, 2004, (10): 22.
Chen L X, Ji S Y, Sun B L, Wang W J, Cui X P. New hybrid cotton variety Sikang 3. China Cotton, 2004, (10): 22. (in Chinese)
[20] 陈松, 吴敬音, 何小兰, 黄骏麒, 周宝良, 张荣铣. 转基因抗虫棉组织中Bt毒蛋白表达量的ELISA测定. 江苏农业学报, 1997, 13(3): 27-29.
Chen S, Wu J Y, He X L, Huang J L, Zhou B L, Zhang R X. Quantification using ELISA of Bacillus thuringiensis insecticidal protein expressed in the tissue of transgenic insect resistant cotton. Jiangsu J Agric Sci, 1997, 13(3): 27-29. (in Chinese with English abstract)
[21] 扬州大学农学院. 作物栽培生理研究法实验讲义. 扬州: 扬州大学出版社, 2007. pp 3-6.
Agricultural College, Yangzhou University. Crop Cultivation Physiological Study Lab Handouts. Yangzhou: Yangzhou University Press, 2007. pp 3-6. (in Chinese)
[22] 邵金良, 黎其万, 董宝生, 刘宏程, 束继红. 茚三酮比色法测定茶叶中游离氨基酸总量. 中国食品添加剂, 2008, (2): 162-165.
Shao J L, Li Q W, Dong B S, Liu H C, Shu J H. Determination of total free-amino acid in tea by Nihydrin colorimetry. China Food Add, 2008, (2): 162-165. (in Chinese with English abstract)
[23] 吴良欢, 蒋式洪, 陶勤南. 植物转氨酶(GOT和GPT)活度比色测定方法及其应用. 土壤通报, 1998, 29(3): 41-43.
Wu L H, Jiang S H, Tao Q N. Plant aminotransferase (GOT and GPT) determination method and its application of activity colorimetric. China J Soil Sci, 1998, 29(3): 41-43. (in Chinese with English abstract)
[24] Mifin B J, Lea P J. The Biochemistry of Plants. New York: Academic Press, 1980. pp 169-202.
[25] 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2003. pp 129-131.
Zou Q. Experimental Guide of Plant Physiology. Beijing: China Agriculture Press, 2003. pp 129-131. (in Chinese)
[26] 廖士尧. 棉花叶面积快速测定法. 中国棉花, 1983, (3): 40.
Liao S Y. Rapid determination of cotton leaf area. China Cotton, 1983, (3): 40. (in Chinese)
[27] Zhou M Y, Liu Z Y, Li L N, Chen Y, Zhang X, Chen D H. Effect of urea spray on boll shell insecticidal protein content in Bt cotton. Front Plant Sci, 2021, 12: 623504.
doi: 10.3389/fpls.2021.623504
[28] Maike S, Joseph M, Jan K. Review article: the silence of genes in transgenic plants. Ann Bot, 1997, 79: 3-12.
[29] Fitt G, Finnegan E, Llewellyn D. What is happening to the expression of the insect protection in field-grown INGARD cotton? In: The Ninth Australian Cotton Conference Proceedings, Australian: CRDC, 1998. pp 291-297.
[30] Liu Z Y, Wang G X, Zhang Z N, Zhang C X, Li H J, Wu T F, Zhang X, Chen D H. Recovery characteristics of Cry1Ac endotoxin expression and related physiological mechanisms in Bt transgenic cotton squares after high-temperature stress termination. Agronomy, 2022, 12: 668.
doi: 10.3390/agronomy12030668
[31] Chen Y, Liu Z Y, Heng L, Tambel L I M, Chen D H. High plant density increases seed Bt endotoxin content in Bt transgenic cotton. J Integr Agric, 2021, 20: 1796-1806.
doi: 10.1016/S2095-3119(20)63232-4
[32] 陈媛, 刘震宇, 周明园, 张晨霞, 田巧凤, 张中宁, 张祥, 陈德华. 种植密度对转Bt棉纤维杀虫蛋白表达量及氮代谢的影响. 中国农业科技导报, 2021, 23(7): 45-53.
Chen Y, Liu Z Y, Zhou M Y, Zhang C X, Tian Q F, Zhang Z N, Zhang X, Chen D H. Effect of planting density on the expression of insecticidal protein and nitrogen metabolism in the fiber of Bt transgenic cotton. J Agric Sci Technol, 2021, 23(7): 45-53. (in Chinese with English abstract)
[33] 刘震宇, 王桂霞, 李丽楠, 蔡泽洲, 梁潘潘, 吴莘玲, 张祥, 陈德华. 高温胁迫终止后Bt棉蕾杀虫蛋白的恢复特征及相关生理机制. 作物学报, 2020, 46: 440-447.
doi: 10.3724/SP.J.1006.2020.94080
Liu Z Y, Wang G X, Li L N, Cai Z Z, Liang P P, Wu X L, Zhang X, Chen D H. Recovery characteristics of Bt insecticidal protein and relative physiological mechanisms after high temperature stress termination in square of Bt cotton. Acta Agron Sin, 2020, 46: 440-447. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94080
[34] 王子胜, 徐敏, 刘瑞显, 吴晓东, 朱鹤, 陈兵林, 周治国. 施氮量对不同熟期棉花品种的生物量和氮素累积的影响. 棉花学报, 2011, 23: 537-544.
Wang Z S, Xu M, Liu R X, Wu X D, Zhu H, Chen B L, Zhou Z G. Effects of nitrogen rates on biomass and nitrogen accumulation of cotton with different varieties in growth duration. Cotton Sci, 2011, 23: 537-544. (in Chinese with English abstract)
[1] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[2] 房孟颖, 任粱, 卢霖, 董学瑞, 武志海, 闫鹏, 董志强. 乙矮合剂对粒用高粱根系建构和产量的影响[J]. 作物学报, 2023, 49(9): 2528-2538.
[3] 杨毅, 何志强, 林佳慧, 李洋, 陈飞, 吕长文, 唐道彬, 周全卢, 王季春. 椰糠施用量对土壤理化性状和甘薯产量的影响[J]. 作物学报, 2023, 49(9): 2517-2527.
[4] 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551.
[5] 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581.
[6] 曹玉军, 刘志铭, 兰天娇, 刘小丹, 魏雯雯, 姚凡云, 吕艳杰, 王立春, 王永军. 吉林省不同年代玉米品种光合生理特性对施氮量的响应[J]. 作物学报, 2023, 49(8): 2183-2195.
[7] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
[8] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224.
[9] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[10] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[11] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[12] 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918.
[13] 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质[J]. 作物学报, 2023, 49(7): 1942-1953.
[14] 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941.
[15] 宋毅, 李静, 谷贺贺, 陆志峰, 廖世鹏, 李小坤, 丛日环, 任涛, 鲁剑巍. 氮肥用量对冬油菜籽粒产量和品质的影响[J]. 作物学报, 2023, 49(7): 2002-2011.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[2] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[3] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[4] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .
[5] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[6] 崔秀辉. 化学杂交剂SQ-1诱导糜子雄性不育效果研究[J]. 作物学报, 2008, 34(01): 106 -110 .
[7] 阿加拉铁;曾龙军;薛大伟;胡江;曾大力;高振宇;郭龙彪;李仕贵;钱前. 水稻灌浆期不同阶段叶绿素含量的QTL分析[J]. 作物学报, 2008, 34(01): 61 -66 .
[8] 杨文雄;杨芳萍;梁丹;何中虎;尚勋武;夏先春. 中国小麦育成品种和农家种中慢锈基因Lr34/Yr18的分子检测[J]. 作物学报, 2008, 34(07): 1109 -1113 .
[9] 王英;吴存祥;张学明;王云鹏;韩天富. 不同光周期条件下大豆生育期主基因的效应[J]. 作物学报, 2008, 34(07): 1160 -1168 .
[10] 王国莉;郭振飞. 磷营养对水稻不同耐冷品种光合特性的影响[J]. 作物学报, 2007, 33(08): 1385 -1389 .