作物学报 ›› 2024, Vol. 50 ›› Issue (3): 669-685.doi: 10.3724/SP.J.1006.2024.34055
王瑞1(), 张福耀1, 詹鹏杰1, 楚建强1, 晋敏姗2, 赵威军1, 程庆军1,*()
WANG Rui1(), ZHANG Fu-Yao1, ZHAN Peng-Jie1, CHU Jian-Qiang1, JIN Min-Shan2, ZHAO Wei-Jun1, CHENG Qing-Jun1,*()
摘要:
研究低氮胁迫条件下不同高粱材料间的基因差异表达, 为耐低氮型高粱品种选育和耐低氮胁迫的分子机制探究提供参考。选取2个耐低氮型高粱(BSX44和BTx378)为试验材料, 设置正常和低氮胁迫2个处理, 利用RNA-Seq技术对高粱苗期、抽穗期和开花期的基因表达进行分析, 通过生物信息学对差异基因的生物学功能和代谢途径进行研究, 筛选可能参与低氮调控的基因, 了解氮高效基因型在氮素吸收利用过程中可能的分子途径。结果表明, 在正常和低氮胁迫下, BTx378和BSX44在苗期分别筛选出937个和787个差异表达基因, 抽穗期分别筛选出1305个和935个差异表达基因, 开花期分别筛选出1402个和963个差异表达基因。对3个时期的差异表达基因进行鉴定, 发现在苗期、抽穗期和开花期分别有246、371和306个基因在2个耐低氮高粱品种中共同差异表达, 有28个基因在2个耐低氮品种的不同生育时期均差异表达, 其中有5个基因上调表达, 23个基因下调表达; 对共同差异表达基因的KEGG相关代谢通路富集分析, 发现主要集中在氮代谢、丙氨酸, 天冬氨酸和谷氨酸代谢、甘油磷脂代谢、氨基酸的生物合成等途径, 表明耐低氮型高粱可能通过这些途径相关基因的表达影响其对低氮胁迫的耐受性。
[1] |
Morris G P, Ramu P, Deshpande S P, Hash C T, Shah T, Upadhyaya H D, Riera-Lizarazu O, Brown P J, Acharya C B, Mitchell S E, Harriman J, Glaubitz J C, Buckler E S, Kresovich S. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA, 2013, 110: 453-458.
doi: 10.1073/pnas.1215985110 pmid: 23267105 |
[2] |
李顺国, 刘猛, 刘斐, 邹剑秋, 陆晓春, 刁现民. 中国高粱产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 471-482.
doi: 10.3864/j.issn.0578-1752.2021.03.002 |
Li S G, Liu M, Liu F, Zou J Q, Lu X C, Diao X M. Current status and future prospective of sorghum production and seed industry in China. Sci Agric Sin, 2021, 54: 471-482 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.03.002 |
|
[3] | 邹剑秋, 王艳秋, 柯福来. 高粱产业发展现状及前景展望. 山西农业大学学报(自然科学版), 2020, 40(3): 2-8. |
Zou J Q, Wang Y Q, Ke F L. Developing situation and prospect forecast of sorghum industry in China. J Shanxi Agric Univ (Nat Sci Edn), 2020, 40(3): 2-8 (in Chinese with English abstract). | |
[4] |
张福耀, 平俊爱, 赵威军. 中国酿造高粱品质遗传改良研究进展. 农学学报, 2019, 9(3): 21-25.
doi: 10.11923/j.issn.2095-4050.cjas18030019 |
Zhang F Y, Ping J A, Zhao W J. Genetic quality improvement of brewing sorghum in China: research progress. J Agric, 2019, 9(3): 21-25 (in Chinese with English abstract).
doi: 10.11923/j.issn.2095-4050.cjas18030019 |
|
[5] |
李嵩博, 唐朝臣, 陈峰, 谢光辉. 中国粒用高粱改良品种的产量和品质性状时空变化. 中国农业科学, 2018, 51: 246-256.
doi: 10.3864/j.issn.0578-1752.2018.02.005 |
Li S B, Tang C C, Chen F, Xie G H. Temporal and spatial changes in yield and quality with grain sorghum variety improvement in China. Sci Agric Sin, 2018, 51: 246-256 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.02.005 |
|
[6] |
Vogan P J, Sage R F. Water-use efficiency and nitrogen-use efficiency of C(3)-C(4) intermediate species of Flaveria juss. (Asteraceae). Plant Cell Environ, 2011, 34: 1415-1430.
doi: 10.1111/pce.2011.34.issue-9 |
[7] |
Liu X J, Zhang Y, Han W X, Tang A H, Shen J L, Cui Z L, Vitousek P, Erisman J W, Goulding K, Christie P, Fangmeier A, Zhang F S. Enhanced nitrogen deposition over China. Nature, 2013, 494: 459-462.
doi: 10.1038/nature11917 |
[8] |
Yang Y Y, Liu L, Zhang F, Zhang X Y, Xu W, Liu X J, Li Y, Wang Z, Xie Y W. Enhanced nitrous oxide emissions caused by atmospheric nitrogen deposition in agroecosystems over China. Environ Sci Pollut Res Int, 2021, 28: 15350-15360.
doi: 10.1007/s11356-020-11591-5 |
[9] | 米国华. 论作物养分效率及其遗传改良. 植物营养与肥料学报, 2017, 23: 1525-1535. |
Mi G H. Nutrient use efficiency in crops and its genetic improvement. J Plant Nutr Fert, 2017, 23: 1525-1535 (in Chinese with English abstract). | |
[10] | 凌宏清, 袁力行. 我国作物养分高效研究的现状与未来发展趋势. 中国基础科学, 2016, 18(2): 54-60. |
Ling H Q, Yuan L X. Research status of crop nutrient efficiency and its future development in China. China Basic Sci, 2016, 18(2): 54-60 (in Chinese with English abstract). | |
[11] |
Tantray A Y, Hazzazi Y, Ahmad A. Physiological, agronomical, and proteomic studies reveal crucial players in rice nitrogen use efficiency under low nitrogen supply. Int J Mol Sci, 2022, 23: 6410.
doi: 10.3390/ijms23126410 |
[12] |
Hou M M, Yu M, Li Z Q, Ai Z Y, Chen J G. Molecular regulatory networks for improving nitrogen use efficiency in rice. Int J Mol Sci, 2021, 22: 9040.
doi: 10.3390/ijms22169040 |
[13] |
Tang W J, Ye J, Yao X M, Zhao P Z, Xuan W, Tian Y L, Zhang Y Y, Xu S, An H Z, Chen G M, Yu J, Wu W, Ge Y W, Liu X L, Li J, Zhang H Z, Zhao Y Q, Yang B, Jiang X Z, Peng C, Zhou C, Terzaghi W, Wang C M, Wan J M. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nat Commun, 2019, 10: 5279.
doi: 10.1038/s41467-019-13187-1 pmid: 31754193 |
[14] |
Gao Z Y, Wang Y F, Chen G, Zhang A P, Yang S L, Shang L G, Wang D Y, Ruan B P, Liu C L, Jiang H Z, Dong G J, Zhu L, Hu J, Zhang G H, Zeng D L, Guo L B, Xu G H, Teng S, Harberd N P, Qian Q. The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nat Commun, 2019, 10: 5207.
doi: 10.1038/s41467-019-13110-8 pmid: 31729387 |
[15] |
Lupini A, Preiti G, Badagliacca G, Abenavoli M R, Sunseri F, Monti M, Bacchi M. Nitrogen use efficiency in durum wheat under different nitrogen and water regimes in the Mediterranean Basin. Front Plant Sci, 2021, 11: 607226.
doi: 10.3389/fpls.2020.607226 |
[16] |
Cormier F, Gouis J L, Dubreuil P, Lafarge S, Praud S. A genome-wide identification of chromosomal regions determining nitrogen use efficiency components in wheat (Triticum aestivum L.). Theor Appl Genet, 2014, 127: 2679-2693.
doi: 10.1007/s00122-014-2407-7 pmid: 25326179 |
[17] |
Sandhu N, Kaur A, Sethi M, Kaur S, Varinderpal-Singh, Sharma A, Bentley A R, Barsby T, Chhuneja P. Genetic dissection uncovers genome-Wide marker-trait associations for plant growth, yield, and yield-related traits under varying nitrogen levels in nested synthetic wheat introgression libraries. Front Plant Sci, 2021, 12: 738710.
doi: 10.3389/fpls.2021.738710 |
[18] |
Ciampitti I A, Lemaire G. From use efficiency to effective use of nitrogen: a dilemma for maize breeding improvement. Sci Total Environ, 2022, 826: 154125.
doi: 10.1016/j.scitotenv.2022.154125 |
[19] |
Simons M, Saha R, Guillard L, Clément G, Armengaud P, Cañas R, Maranas C D, Lea P J, Bertrand Hirel B. Nitrogen-use efficiency in maize (Zea mays L.): from ‘omics’ studies to metabolic modelling. J Exp Bot, 2014, 65: 5657-5671.
doi: 10.1093/jxb/eru227 |
[20] |
Gallais A, Hirel B. An approach to the genetics of nitrogen use efficiency in maize. J Exp Bot, 2004, 55: 295-306.
doi: 10.1093/jxb/erh006 pmid: 14739258 |
[21] |
刘鹏, 武爱莲, 王劲松, 南江宽, 董二伟, 焦晓燕, 平俊爱, 白文斌. 不同基因型高粱的氮效率及对低氮胁迫的生理响应. 中国农业科学, 2018, 51: 3074-3083.
doi: 10.3864/j.issn.0578-1752.2018.16.004 |
Liu P, Wu A L, Wang J S, Nan J K, Dong E W, Jiao X Y, Ping J A, Bai W B. Nitrogen use efficiency and physiological responses of different sorghum genotypes influenced by nitrogen deficiency. Sci Agric Sin, 2018, 51: 3074-3083 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.16.004 |
|
[22] |
Singh P, Kumar K, Jha A K, Yadava P, Pal M, Rakshit S, Singh I. Global gene expression profiling under nitrogen stress identifies key genes involved in nitrogen stress adaptation in maize (Zea mays L.). Sci Rep, 2022, 12: 4211.
doi: 10.1038/s41598-022-07709-z |
[23] |
Ge L H, Dou Y N, Li M M, Qu P J, He Z, Liu Y, Xu Z S, Chen J, Chen M, Ma Y Z. SiMYB3 in foxtail millet (Setaria italica) confers tolerance to low-nitrogen stress by regulating root growth in transgenic plants. Int J Mol Sci, 2019, 20: 5741.
doi: 10.3390/ijms20225741 |
[24] |
Sultana N, Islam S, Juhasz A, Yang R C, She M Y, Alhabbar Z, Zhang J J, Ma W J. Transcriptomic study for identification of major nitrogen stress responsive genes in australian bread wheat cultivars. Front Genet, 2020, 11: 583785.
doi: 10.3389/fgene.2020.583785 |
[25] | Ding Q Q, Wang X T, Hu L Q, Qi X, Ge L H, Xu W Y, Xu Z S, Zhou Y B, Jia G Q, Diao X M, Min D H, Ma Y Z, Chen M. MYB-like transcription factor SiMYB42 from foxtail millet (Setaria italica L.) enhances Arabidopsis tolerance to low-nitrogen stress. Hereditas, 2018, 40: 327-338. |
[26] |
Yan H S, Shi H W, Hu C M, Luo M Z, Xu C J, Wang S G, Li N, Tang W S, Zhou Y B, Wang C X, Xu Z S, Chen J, Ma Y Z, Sun D Z, Chen M. Transcriptome differences in response mechanisms to low-nitrogen stress in two wheat varieties. Int J Mol Sci, 2021, 22: 12278.
doi: 10.3390/ijms222212278 |
[27] |
Zhang C J, Hou Y Q, Hao Q N, Chen H F, Chen L M, Yuan S L, Shan Z H, Zhang X J, Yang Z L, Qiu D Z, Zhou X N, Huang W J. Genome-wide survey of the soybean GATA transcription factor gene family and expression analysis under low nitrogen stress. PLoS One, 2015, 10: e0125174.
doi: 10.1371/journal.pone.0125174 |
[28] |
Jagadhesan B, Sathee L, Meena H S, Jha S K, Chinnusamy V, Kumar A, Kumar S. Genome wide analysis of NLP transcription factors reveals their role in nitrogen stress tolerance of rice. Sci Rep, 2020, 10: 9368.
doi: 10.1038/s41598-020-66338-6 pmid: 32523127 |
[29] |
Gelli M, Duo Y C, Konda A R, Zhang C, Holding D, Dweikat I. Identification of differentially expressed genes between sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling. BMC Genomics, 2014, 15: 179.
doi: 10.1186/1471-2164-15-179 pmid: 24597475 |
[30] |
Zhu Z X, Li D, Wang P, Li J H, Lu X C. Transcriptome and ionome analysis of nitrogen, phosphorus and potassium interactions in sorghum seedlings. Theor Exp Plant Physiol, 2020, 32: 271-285.
doi: 10.1007/s40626-020-00183-w |
[31] |
Massel K, Campbell B C, Mace E S, Tai S S, Tao Y F, Worland B G, Jordan D R, Botella J R, Godwin I D. Whole genome sequencing reveals potential new targets for improving nitrogen uptake and utilization in Sorghum bicolor. Front Plant Sci, 2016, 7: 1544.
pmid: 27826302 |
[32] | 王瑞, 平俊爱, 张福耀, 詹鹏杰, 楚建强. 高粱育种资源耐瘠性鉴定及评价. 作物杂志, 2020, (6): 30-37. |
Wang R, Ping J A, Zhang F Y, Zhan P J, Chu J Q. Identification and evaluation of sorghum breeding resources for barren tolerance. Crops, 2020, (6): 30-37 (in Chinese with English abstract). | |
[33] |
Chalmel F, Lardenois A, Thompson J D, Muller J, Sahel J-A, Léveillard T, Poch O. GOAnno: GO annotation based on multiple alignment. Bioinformatics, 2005, 21: 2095-2096.
pmid: 15647299 |
[34] |
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000, 28: 27-30.
doi: 10.1093/nar/28.1.27 pmid: 10592173 |
[35] |
Kanehisa M, Araki M, Goto S, Hattor M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. KEGG for linking genomes to life and the environment. Nucleic Acids Res, 2008, 36: D480-D484.
doi: 10.1093/nar/gkm882 pmid: 18077471 |
[36] |
Mao X Z, Cai T, Olyarchuk J G, Wei L P. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics, 2005, 21: 3787-3793.
doi: 10.1093/bioinformatics/bti430 pmid: 15817693 |
[37] |
Miyake K, Ito T, Senda M, Ishikawa R, Harada T, Niizeki M, Akada S. Isolation of a subfamily of genes for R2R3-MYB transcription factors showing up-regulated expression under nitrogen nutrient-limited conditions. Plant Mol Biol, 2003, 53: 237-245.
pmid: 14756320 |
[38] |
Lea U S, Slimestad R, Smedvig P, Lillo C. Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway. Planta, 2007, 225: 1245-1253.
doi: 10.1007/s00425-006-0414-x pmid: 17053893 |
[39] | 胡利斧. 谷子低氮胁迫转录组分析及SiMYB3基因特性与功能鉴定. 中国农业科学院硕士学位论文, 北京, 2015. |
Hu L F. Transcriptome Analysis of Foxtail millet (Setaria italic) under Low Nitrogen Stress and Characteristics and Functional Identification of SiMYB3. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract). | |
[40] | 张玉宁, 史宏志, 王景, 周炎, 杨惠娟. 高、低硝态氮营养条件下烟草根系基因表达谱及代谢途径的差异分析. 烟草科技, 2019, 52(4): 1-8. |
Zhang Y N, Shi H Z, Wang J, Zhou Y, Yang H J. Analysis of gene expression profile and metabolic pathway of tobacco root at high and low levels of nitrate nitrogen. Tobacco Sci Technol, 2019, 52(4): 1-8 (in Chinese with English abstract). | |
[41] |
刘天奇, 高红秀, 谢威, 张雪晴, 陈娜娜, 梅雪锋, 邢佳妮, 徐振华, 张忠臣. 水稻分蘖期氮素应答的转录组动态分析. 华北农学报, 2021, 36(1): 44-53.
doi: 10.7668/hbnxb.20191406 |
Liu T Q, Gao H X, Xie W, Zhang X Q, Chen N N, Mei X F, Xing J N, Xu Z H, Zhang Z C. Dynamic transcriptome analysis of rice response to nitrogen treatment at tillering stage. Acta Agric Boreali-Sin, 2021, 36(1): 44-53 (in Chinese with English abstract).
doi: 10.7668/hbnxb.20191406 |
|
[42] |
Less H, Galili G. Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses. Plant Physiol, 2008, 147: 316-330.
doi: 10.1104/pp.108.115733 pmid: 18375600 |
[43] | 王娇, 李萍, 宗毓铮, 张东升, 史鑫蕊, 杨净, 郝兴宇. 大气CO2浓度和气温升高对玉米灌浆期碳氮代谢的影响. 中国生态农业学报, 2023, 31: 325-335. |
Wang J, Li P, Zong Y Z, Zhang D S, Shi X R, Yang J, Hao X Y. Effects of increased atmospheric CO2 concentration and temperature on carbon and nitrogen metabolism in maize at the grain filling stage. Chin J Eco-Agric, 2023, 31: 325-335 (in Chinese with English abstract). | |
[44] | 师进霖, 陈恩波, 姜跃丽. PEG6000渗透胁迫对甜瓜幼苗叶片渗透调节物质及膜脂过氧化的影响. 西北农业学报, 2010, 19(1): 186-189. |
Shi J L, Chen E B, Jiang Y L. Effect of osmotic stress with PEG6000 on smolytes and lipid peroxidation in muskmelon seedling leaves. Acta Agric Boreali-occident Sin, 2010, 19(1): 182-185 (in Chinese with English abstract). | |
[45] |
Warth B, Parich A, Bueschl C, Schoefbeck D, Neumann NKN, Kluger B, Schuster K, Krska R, Adam G, Lemmens M, Schuhmacher R. GC-MS based targeted metabolic profiling identifies changes in the wheat metabolome following deoxynivalenol treatment. Metabolomics, 2015, 11: 722-738.
pmid: 25972772 |
[46] | Dhiman A, Nanda A, Ahmad S A. Quest for staunch effects of flavonoids: utopian protection against hepatic ailments. Arab J Chem, 2012, 12: 1702-1711. |
[47] |
Masclaux D C, Daniel V F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot, 2010, 105: 1141-1157.
doi: 10.1093/aob/mcq028 |
[48] |
Xu G, Fan X R, Miller A J. Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol, 2012, 63: 153-182.
doi: 10.1146/annurev-arplant-042811-105532 pmid: 22224450 |
[49] |
Krapp A. Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Curr Opin Plant Biol, 2015, 25: 115-122.
doi: 10.1016/j.pbi.2015.05.010 pmid: 26037390 |
[50] |
Ohashi M, Ishiyama K, Kojima S, Konishi N, Nakano K, Kanno K, Hayakawa T, Yamaya T. Asparagine synthetase1, but not asparagine synthetase2, is responsible for the biosynthesis of asparagine following the supply of ammonium to rice roots. Plant Cell Physiol, 2015, 56: 769-778.
doi: 10.1093/pcp/pcv005 pmid: 25634963 |
[51] | 王嘉文, 吴刚, 徐云敏. 谷氨酰胺合成酶在植物氮同化及再利用中的研究进展. 分子植物育种, 2019, 17: 1373-1377. |
Wang J W, Wu G, Xu Y M. Research progress of glutamine synthetase in plant nitrogen assimilation and recycling. Mol Plant Breed, 2019, 17: 1373-1377 (in Chinese with English abstract). | |
[52] |
Zhong C, Cao X C, Hu J J, Zhu L F, Zhang J H, Huang J L, Jin Q Y. Nitrogen metabolism in adaptation of photosynthesis to water stress in rice grown under different nitrogen levels. Front Plant Sci, 2017, 8: 1079.
doi: 10.3389/fpls.2017.01079 pmid: 28690622 |
[53] | 姜苏育. 低氮营养对小麦幼苗根系生长与氮素吸收利用的影响及其生理机制. 南京农业大学博士学位论文, 江苏南京, 2018. |
Jiang S Y. Effects of N-deficiency Supply on Root Growth and Nitrogen Uptake in Wheat Seedlings and its Physiological Mechanism. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2018 (in Chinese with English abstract). |
[1] | 张宝华, 刘佳静, 田晓, 田旭钊, 董阔, 武郁洁, 肖凯, 李小娟. 小麦TaSPX1基因的克隆、表达及耐低氮逆境的功能研究[J]. 作物学报, 2024, 50(3): 576-589. |
[2] | 陈天, 李昱樱, 荣二花, 吴玉香. 棉属人工异源四倍体后代性状鉴定及花器转录组学分析[J]. 作物学报, 2024, 50(2): 325-339. |
[3] | 房孟颖, 任粱, 卢霖, 董学瑞, 武志海, 闫鹏, 董志强. 乙矮合剂对粒用高粱根系建构和产量的影响[J]. 作物学报, 2023, 49(9): 2528-2538. |
[4] | 王媛, 王劲松, 董二伟, 刘秋霞, 武爱莲, 焦晓燕. 施氮量对高粱籽粒灌浆及淀粉累积的影响[J]. 作物学报, 2023, 49(7): 1968-1978. |
[5] | 陆梦琪, 谢若涵, 李想, 杨明冲, 何紫薇, 高杰, 赵晓燕, 沈祥陵, 陈燕, 王继斌, 胡利华, 段明政, 王令强. 基于“LabelmeP1.0”提取的高粱维管束参数与农艺性状关联研究[J]. 作物学报, 2023, 49(7): 1954-1967. |
[6] | 李邦, 刘春娟, 郭俊杰, 武宇昕, 邓志成, 张敏, 崔彤, 刘畅, 周宇飞. 低氮胁迫下外源色氨酸对高粱幼苗根系伸长的调控作用[J]. 作物学报, 2023, 49(5): 1372-1385. |
[7] | 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868. |
[8] | 王劲松, 白歌, 张艳慧, 申甜雨, 董二伟, 焦晓燕. 长期不同施肥处理对高粱花后叶片衰老、抗氧化酶活性及产量的影响[J]. 作物学报, 2023, 49(3): 845-855. |
[9] | 陈冰嬬, 于淼, 葛占宇, 李洪奎, 黄炎, 李海青, 石贵山, 谢利, 徐宁, 闫峰, 高士杰, 周紫阳, 王鼐. 春播早熟区高粱杂种优势群及杂种优势模式分析[J]. 作物学报, 2023, 49(2): 343-353. |
[10] | 赵冬兰, 赵凌霄, 刘洋, 张安, 戴习彬, 周志林, 曹清河. 基于RNA-seq的甘薯芽变株系类胡萝卜素基因代谢差异分析[J]. 作物学报, 2023, 49(12): 3239-3249. |
[11] | 刘秋霞, 董二伟, 黄晓磊, 王劲松, 王媛, 焦晓燕. 不同生态区高粱籽粒产量和品质对氮肥施用的响应[J]. 作物学报, 2023, 49(10): 2766-2776. |
[12] | 杨亚杰, 李昱樱, 申状状, 陈天, 荣二花, 吴玉香. 草棉不同倍性材料叶片转录组差异表达分析[J]. 作物学报, 2022, 48(11): 2733-2748. |
[13] | 王倩, 刘少雄, 柴晓娇, 李海, 张芬, 陆平, 王瑞云, 刘敏轩. 中国不同省(市、自治区)糯高粱籽粒酚类物质含量差异分析[J]. 作物学报, 2022, 48(10): 2505-2516. |
[14] | 王媛, 王劲松, 董二伟, 武爱莲, 焦晓燕. 长期施用不同剂量氮肥对高粱产量、氮素利用特性和土壤硝态氮含量的影响[J]. 作物学报, 2021, 47(2): 342-350. |
[15] | 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422. |
|