作物学报 ›› 2024, Vol. 50 ›› Issue (3): 656-668.doi: 10.3724/SP.J.1006.2024.34069
DAI Hong-Wei(), LIU Jie-Qiang, ZHANG Li, TONG Hua-Rong(), YUAN Lian-Yu()
摘要:
组蛋白乙酰化修饰由组蛋白乙酰化酶(histone acetyltransferases, HATs)和脱乙酰化酶(histone deacetylase, HDACs)共同催化完成, 是重要的表观遗传调控方式之一, 在植物生长发育、逆境胁迫响应和激素响应的调控过程中均具有重要意义, 但对茶树(Camellia sinensis)组蛋白乙酰化修饰的研究还比较少。本研究从‘福鼎大白茶’茶树中克隆获得了2个HATs家族的MCC (MEIOTIC CONTROL OF CROSSOVERS)基因: CsMCC1和CsMCC2, 通过生物信息学分析、实时荧光定量PCR技术 (Real-time quantitative PCR, qRT-PCR)和亚细胞定位试验对其功能进行解析。结果显示, CsMCC1和CsMCC2基因分别位于茶树1号和7号染色体, 分别编码257 aa和269 aa, 均属于碱性不稳定亲水性蛋白, 与拟南芥AtMCC1具有高度相似的基因结构和蛋白空间结构。系统进化树和保守结构域分析表明, CsMCC蛋白与葡萄、番茄的同源蛋白有较近的亲缘关系, MCC蛋白序列高度保守, 均含有GNAT保守结构, 属于HAT蛋白的GNAT (GCN5-related N-terminal acetyltransferases)亚家族。拟南芥原生质体亚细胞定位结果显示, CsMCC1和CsMCC2蛋白均定位于细胞质膜。启动子分析显示, 在CsMCC1和CsMCC2基因启动子中包含多个与胁迫、光和植物激素调节响应相关的元件。转录组数据和表达分析发现, CsMCC1基因在叶、花和根发育早期的表达量明显高于后期; CsMCC2基因在茶树根部有最高表达, 并在根部发育的较长阶段均有较高水平的表达量; 2个CsMCC基因均能够被多种非生物胁迫(干旱、盐和冷)和外源激素(MeJA、GA3和IAA)诱导表达。蛋白相互作用预测分析显示, CsMCC蛋白与多个乙酰化转移酶相关蛋白具有关联性。综上所述, CsMCC1和CsMCC2基因具有通过组蛋白乙酰化修饰作用广泛参与茶树的生长发育和环境响应过程的潜能, 可为进一步研究CsMCC基因在茶树中的功能提供理论参考。
[1] |
Wang Z, Hong C, Chen F Y, Liu Y X. The roles of histone acetylation in seed performance and plant development. Plant Physiol Biochem, 2014, 84: 125-133.
doi: 10.1016/j.plaphy.2014.09.010 |
[2] |
Hollender C, Liu Z C. Histone deacetylase genes in Arabidopsis development. J Integr Plant Biol, 2008, 50: 875-885.
doi: 10.1111/j.1744-7909.2008.00704.x |
[3] |
Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Gene Dev, 1998, 12: 599-606.
doi: 10.1101/gad.12.5.599 pmid: 9499396 |
[4] |
Jenuwein T, Allis C D. Translating the histone code. Science, 2001, 293: 1074-1080.
doi: 10.1126/science.1063127 pmid: 11498575 |
[5] | Millán-Zambrano G, Burton A, Bannister A J, Schneider R. Histone post-translational modifications-cause and consequence of genome function. Nat Rev Genet, 2022, 23: 563-580. |
[6] |
Kuo M H, Allis C D. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays, 1998, 20: 615-626.
doi: 10.1002/(SICI)1521-1878(199808)20:8<615::AID-BIES4>3.0.CO;2-H pmid: 9780836 |
[7] |
Cosgrove M S, Boeke J D, Wolberger C. Regulated nucleosome mobility and the histone code. Nat Struct Mol Biol, 2004, 11: 1037-1043.
pmid: 15523479 |
[8] |
Chen Z J, Tian L. Roles of dynamic and reversible histone acetylation in plant development and polyploidy. Biochim Biophys Acta, 2007, 1769: 295-307.
doi: 10.1016/j.bbaexp.2007.04.007 pmid: 17556080 |
[9] |
Liu X, Yang S, Yu C W, Chen C Y, Wu K. Histone acetylation and plant development. Enzymes, 2016, 40: 173-199.
doi: S1874-6047(16)30023-3 pmid: 27776781 |
[10] |
Lu Y, Xu Q, Liu Y, Yu Y, Cheng Z Y, Zhao Y, Zhou D X. Dynamics and functional interplay of histone lysine butyrylation, crotonylation, and acetylation in rice under starvation and submergence. Genome Biol, 2018, 19: 144.
doi: 10.1186/s13059-018-1533-y pmid: 30253806 |
[11] |
Aquea F, Timmermann T, Arce-Johnson P. Analysis of histone acetyltransferase and deacetylase families of Vitis vinifera. Plant Physiol Biochem, 2010, 48: 194-199.
doi: 10.1016/j.plaphy.2009.12.009 |
[12] |
Liu X, Luo M, Zhang W, Zhao J H, Zhang J X, Wu K Q, Tian L N, Duan J. Histone acetyltransferases in rice (Oryza sativa L.): phylogenetic analysis, subcellular localization and expression. BMC Plant Biol, 2012, 12: 145.
doi: 10.1186/1471-2229-12-145 |
[13] |
Aiese Cigliano R, Sanseverino W, Cremona G, Ercolano M R, Conicella C, Consiglio F M. Genome-wide analysis of histone modifiers in tomato: gaining an insight into their developmental roles. BMC Genomics, 2013, 14: 57.
doi: 10.1186/1471-2164-14-57 pmid: 23356725 |
[14] |
Peng M J, Ying P Y, Liu X C, Li C Q, Xia R, Li J G, Zhao M L. Genome-wide identification of histone modifiers and their expression patterns during fruit abscission in Litchi. Front Plant Sci, 2017, 8: 639.
doi: 10.3389/fpls.2017.00639 pmid: 28496451 |
[15] |
Gao S Q, Li L Z, Han X L, Liu T T, Jin P, Cai L N, Xu M Z, Zhang T Y, Zhang F, Chen J P, Yang J, Zhong K L. Genome-wide identification of the histone acetyltransferase gene family in Triticum aestivum. BMC Genomics, 2021, 22: 49.
doi: 10.1186/s12864-020-07348-6 |
[16] |
Cheng Y F, Ning K, Chen Y Z, Hou C, Yu H B, Yu H T, Chen S L, Guo X T, Dong L L. Identification of histone acetyltransferase genes responsible for cannabinoid synthesis in hemp. Chin Med, 2023, 18: 16.
doi: 10.1186/s13020-023-00720-0 |
[17] |
Chu J S, Chen Z. Molecular identification of histone acetyltransferases and deacetylases in lower plant Marchantia polymorpha. Plant Physiol Biochem, 2018, 132: 612-622.
doi: 10.1016/j.plaphy.2018.10.012 |
[18] |
Patrick R M, Huang X Q, Dudareva N, Li Y. Dynamic histone acetylation in floral volatile synthesis and emission in petunia flowers. J Exp Bot, 2021, 72: 3704-3722.
doi: 10.1093/jxb/erab072 pmid: 33606881 |
[19] |
Papaefthimiou D, Likotrafiti E, Kapazoglou A, Bladenopoulos K, Tsaftaris A. Epigenetic chromatin modifiers in barley: III. Isolation and characterization of the barley GNAT-MYST family of histone acetyltransferases and responses to exogenous ABA. Plant Physiol Biochem, 2010, 48: 98-107.
doi: 10.1016/j.plaphy.2010.01.002 |
[20] |
Latrasse D, Benhamed M, Henry Y, Domenichini S, Kim W, Zhou D X, Delarue M. The MYST histone acetyltransferases are essential for gametophyte development in Arabidopsis. BMC Plant Biol, 2008, 8: 121.
doi: 10.1186/1471-2229-8-121 pmid: 19040736 |
[21] |
Deng W W, Liu C Y, Pei Y X, Deng X, Niu L F, Cao X F. Involvement of the histone acetyltransferase AtHAC1 in the regulation of flowering time via repression of FLOWERING LOCUS C in Arabidopsis. Plant Physiol, 2007, 143: 1660-1668.
doi: 10.1104/pp.107.095521 |
[22] |
Han S K, Song J D, Noh Y S, Noh B. Role of plant CBP/p300-like genes in the regulation of flowering time. Plant J, 2007, 49: 103-114.
doi: 10.1111/tpj.2007.49.issue-1 |
[23] |
Benhamed M, Bertrand C, Servet C, Zhou D X. Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression. Plant Cell, 2006, 18: 2893-2903.
doi: 10.1105/tpc.106.043489 pmid: 17085686 |
[24] |
Dunphy E L, Johnson T, Auerbach S S, Wang E H. Requirement for TAFII250 acetyltransferase activity in cell cycle progression. Mol Cell Biol, 2000, 20: 1134-1139.
doi: 10.1128/MCB.20.4.1134-1139.2000 pmid: 10648598 |
[25] |
Stockinger E J, Mao Y P, Regier M K, Triezenberg S J, Thomashow M F. Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Res, 2001, 29: 1524-1533.
doi: 10.1093/nar/29.7.1524 pmid: 11266554 |
[26] |
Kornet N, Scheres B. Members of the GCN5 histone acetyltransferase complex regulate PLETHORA-mediated root stem cell niche maintenance and transit amplifying cell proliferation in Arabidopsis. Plant Cell, 2009, 21: 1070-1079.
doi: 10.1105/tpc.108.065300 |
[27] |
Li H, Yan S H, Zhao L, Tan J J, Zhang Q, Gao F, Wang P, Hou H L, Li L J. Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling. BMC Plant Biol, 2014, 14: 105.
doi: 10.1186/1471-2229-14-105 pmid: 24758373 |
[28] |
Perrella G, Consiglio M F, Aiese-Cigliano R, Cremona G, Sanchez-Moran E, Barra L, Errico A, Bressan R A, Franklin F C, Conicella C. Histone hyperacetylation affects meiotic recombination and chromosome segregation in Arabidopsis. Plant J, 2010, 62: 796-806.
doi: 10.1111/tpj.2010.62.issue-5 |
[29] |
Barra L, Aiese-Cigliano R, Cremona G, De Luca P, Zoppoli P, Bressan R A, Consiglio F M, Conicella C. Transcription profiling of laser microdissected microsporocytes in an Arabidopsis mutant (Atmcc1) with enhanced histone acetylation. J Plant Biol, 2012, 55: 281-289.
doi: 10.1007/s12374-011-0268-z |
[30] |
Yuan L Y, Dai H W, Zheng S T, Huang R, Tong H R. Genome-wide identification of the HDAC family proteins and functional characterization of CsHD2C, a HD2-type histone deacetylase gene in tea plant (Camellia sinensis L. O. Kuntze). Plant Physiol Biochem, 2020, 155: 898-913.
doi: 10.1016/j.plaphy.2020.07.047 |
[31] |
Gu D C, Wu S H, Yu Z M, Zeng L T, Qian J J, Zhou X C, Yang Z Y. Involvement of histone deacetylase CsHDA2 in regulating (E)-nerolidol formation in tea (Camellia sinensis) exposed to tea green leafhopper infestation. Hortic Res, 2022, 9: uhac158.
doi: 10.1093/hr/uhac158 |
[32] |
Zhang S P, Guo Y, Chen S Q, Li H. The histone acetyltransferase CfGcn5 regulates growth, development, and pathogenicity in the anthracnose fungus Colletotrichum fructicola on the tea-oil tree. Front Microbiol, 2021, 12: 680415.
doi: 10.3389/fmicb.2021.680415 |
[33] |
Wu Z J, Tian C, Jiang Q, Li X H, Zhuang J. Selection of suitable reference genes for qRT-PCR normalization during leaf development and hormonal stimuli in tea plant (Camellia sinensis). Sci Rep, 2016, 6: 19748.
doi: 10.1038/srep19748 |
[34] |
Xing G F, Jin M S, Qu R F, Zhang J W, Han Y H, Han Y Q, Wang X C, Li X K, Ma F F, Zhao X W. Genome-wide investigation of histone acetyltransferase gene family and its responses to biotic and abiotic stress in foxtail millet (Setaria italica [L.] P. Beauv). BMC Plant Biol, 2022, 22: 292.
doi: 10.1186/s12870-022-03676-9 |
[35] |
Sterner D E, Berger S L. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev, 2000, 64: 435-459.
doi: 10.1128/MMBR.64.2.435-459.2000 |
[36] |
Ogryzko V. Mammalian histone acetyltransferases and their complexes. Cell Mol Life Sci, 2001, 58: 683-692.
pmid: 11437230 |
[37] |
Salah Ud-Din A I M, Tikhomirova A, Roujeinikova A. Structure and functional diversity of GCN5-related N-acetyltransferases (GNAT). Int J Mol Sci, 2016, 17: 1018.
doi: 10.3390/ijms17071018 |
[38] |
Imran M, Shafiq S, Farooq M A, Naeem M K, Widemann E, Bakhsh A, Jensen K B, Wang R R C. Comparative genome-wide analysis and expression profiling of histone acetyltransferase (HAT) gene family in response to hormonal applications, metal and abiotic stresses in cotton. Int J Mol Sci, 2019, 20: 5311.
doi: 10.3390/ijms20215311 |
[1] | 张力岚, 杨军, 王让剑. 茶树橙花叔醇和芳樟醇樱草糖苷含量全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(4): 871-886. |
[2] | 李海芬, 鲁清, 刘浩, 温世杰, 王润风, 黄璐, 陈小平, 洪彦彬. 花生赤霉素3-β-双加氧酶(AhGA3ox)基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(4): 932-943. |
[3] | 代书桃, 朱灿灿, 马小倩, 秦娜, 宋迎辉, 魏昕, 王春义, 李君霞. 谷子HAK/KUP/KT钾转运蛋白家族全基因组鉴定及其对低钾和高盐胁迫的响应[J]. 作物学报, 2023, 49(8): 2105-2121. |
[4] | 文利超, 熊涛, 邓智超, 刘涛, 郭存, 李伟, 郭永峰. 烟草转录因子NtNAC080在非生物胁迫下的表达分析及功能鉴定[J]. 作物学报, 2023, 49(8): 2171-2182. |
[5] | 王让剑, 杨军, 张力岚, 高香凤. 茶树新梢中香叶醇樱草糖苷含量的全基因组关联分析[J]. 作物学报, 2023, 49(7): 1843-1859. |
[6] | 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784. |
[7] | 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725. |
[8] | 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析[J]. 作物学报, 2023, 49(6): 1480-1495. |
[9] | 贾玉库, 高宏欢, 冯健超, 郝紫瑞, 王晨阳, 谢迎新, 郭天财, 马冬云. 小麦G2-like转录因子家族基因鉴定与表达模式分析[J]. 作物学报, 2023, 49(5): 1410-1425. |
[10] | 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954. |
[11] | 齐燕妮, 李闻娟, 赵丽蓉, 李雯, 王利民, 谢亚萍, 赵玮, 党照, 张建平. 亚麻生氰糖苷合成关键酶CYP79基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(3): 687-702. |
[12] | 赵丽蓉, 李雯, 王利民, 齐燕妮, 李闻娟, 谢亚萍, 党照, 赵玮, 张建平. 亚麻PLA1基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(11): 2949-3295. |
[13] | 朱金勇, 刘震, 曾钰婷, 李志涛, 陈丽敏, 李泓阳, 史田斌, 张俊莲, 白江平, 刘玉汇. 马铃薯PAL基因家族的全基因组鉴定及其在非生物胁迫下和块茎花色素苷合成中的表达分析[J]. 作物学报, 2023, 49(11): 2978-2990. |
[14] | 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937. |
[15] | 陈璐, 周淑倩, 李永新, 陈刚, 陆国权, 杨虎清. 甘薯解偶联蛋白基因家族鉴定与表达分析[J]. 作物学报, 2022, 48(7): 1683-1696. |
|