欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (4): 932-943.doi: 10.3724/SP.J.1006.2024.34122

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生赤霉素3-β-双加氧酶(AhGA3ox)基因家族的全基因组鉴定及表达分析

李海芬(), 鲁清, 刘浩, 温世杰, 王润风, 黄璐, 陈小平, 洪彦彬, 梁炫强()   

  1. 广东省农业科学院作物研究所 / 广东省农作物遗传改良重点实验室 / 国家油料作物改良中心南方花生分中心, 广东广州 510640
  • 收稿日期:2023-07-14 接受日期:2023-10-23 出版日期:2024-04-12 网络出版日期:2023-11-14
  • 通讯作者: * 梁炫强, E-mail: Liangxuanqiang@gdaas.cn
  • 作者简介:E-mail: lihaifen@gdaas.cn
  • 基金资助:
    广东省“十四五”农业科技创新十大重点项目公开竞争计划(2022SDZG05);广东省重点研发计划-现代种业(2020B020219003);广东省重点研发计划-现代种业(2022B0202060004);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-13);国家自然科学基金项目(32001442);国家自然科学基金项目(32172051);广东省基础与应用基础研究基金项目(2021A1515010811);广东省基础与应用基础研究基金项目(2023A1515010098);广东省农业和农村厅科技专项资金项目(2019KJ136-02);广东省海外名师计划项目(207124505346);广东省农业科学院农业优势产业学科团队建设项目(202104TD)

Genome-wide identification and expression analysis of AhGA3ox gene family in peanut (Arachis hypogaea L.)

LI Hai-Fen(), LU Qing, LIU Hao, WEN Shi-Jie, WANG Run-Feng, HUANG Lu, CHEN Xiao-Ping, HONG Yan-Bin, LIANG Xuan-Qiang()   

  1. Guangdong Provincial Key Laboratory of Crop Genetic Improvement / South China Peanut Sub-Center of National Center of Oilseed Crops Improvement / Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
  • Received:2023-07-14 Accepted:2023-10-23 Published:2024-04-12 Published online:2023-11-14
  • Contact: * E-mail: Liangxuanqiang@gdaas.cn
  • Supported by:
    Open Competition Program of Top Ten Critical Priorities of Agricultural Science and Technology Innovation for the 14th Five-Year Plan in Guangdong Province(2022SDZG05);Guangdong Provincial Key Research and Development Program- Modern Seed Industry(2020B020219003);Guangdong Provincial Key Research and Development Program- Modern Seed Industry(2022B0202060004);China Agriculture Research System of MOF and MARA(CARS-13);National Natural Science Foundation of China(32001442);National Natural Science Foundation of China(32172051);Guangdong Basic and Applied Basic Research Foundation(2021A1515010811);Guangdong Basic and Applied Basic Research Foundation(2023A1515010098);Technology Special Fund of Guangdong Province Agriculture and Rural Affairs Department(2019KJ136-02);Guangdong Province Overseas Master Teacher Program(207124505346);Agricultural Competitive Industry Discipline Team Building Project of Guangdong Academy of Agricultural Sciences(202104TD)

摘要:

赤霉素3-β-双加氧酶(gibberellin 3-beta-dioxygenase, GA3ox)是参与赤霉素生物合成的关键酶之一, 可通过影响赤霉素的形成调控植物的生长发育, 目前在花生中尚无系统研究。本研究利用生物信息学方法在花生栽培种基因组数据库中筛选花生GA3ox家族基因, 对鉴定出的7个AhGA3ox在栽培种花生基因组中的分布、结构及进化特征、理化性质、启动子顺式作用元件进行分析, 并利用qRT-PCR技术对其进行花生组织结构表达模式分析, 同时对AhGA3ox家族基因在不同荚果大小的2个花生品系中的表达量进行分析。结果表明, 7个AhGA3ox基因分布在7条染色体上, 均由1个内含子和2个外显子组成。花生AhGA3ox蛋白中均包含1个DIOX_N结构域和1个2OG-FeII_Oxy结构域, 系统进化分析表明与大豆的亲缘关系较近, 在根、茎、叶、花、果针5个组织中呈现出不同表达模式, 不仅在花生果壳不同发育时期的表达量不同, 在2个荚果大小不同的花生品系果壳相同发育时期的表达量也不相同, 但多数发育时期在大果品系中的表达量均显著高于小果品系, 推测该家族基因的表达可能对荚果的形成具有促进作用。

关键词: 花生, GA3ox, 表达分析, 生物信息学, 功能分析

Abstract:

Gibberellin 3-beta-dioxygenase (GA3ox) is one of the key enzymes involved in gibberellin biosynthesis, which can regulate plant growth and development by affecting gibberellin formation. There were no systematic studies in peanut genome. In this study, AhGA3ox family genes were identified from the genome database of cultivated peanut species by bioinformatics, and the distribution, structure, evolutionary characteristics, physical and chemical properties, promoter cis-acting elements were also analyzed. The relative expression pattern of AhGA3oxs in different peanut tissues was analyzed by qRT-PCR, and the relative expression level of in shell of two peanut lines with different pod size were also analyzed. The results showed that 7 AhGA3oxs were distributed on 7 chromosomes of peanut, all of which were composed of 1 intron and 2 exons. All the AhGA3ox proteins contained 1 DIOX_N domain and 1 2OG-FeII_Oxy domain. Phylogenetic analysis showed that they were closely related to GA3ox proteins of soybean,. The AhGA3oxs showed obvious tissue expression specificity in root, stem, leaf, flower and peg. The expression levels of AhGA3oxs were not only different in different development stages of the peanut shell, but also different at the same development stage of the two lines. Interestingly, the relative expression levels in large pod lines were significantly higher than those in small pod lines at most development stages. Therefore, we predict that the gene expression of AhGA3ox gene family may promote the formation of large pod.

Key words: peanut, GA3ox, the relative expression analysis, bioinformatics, functional analysis

表1

qRT-PCR所用引物"

引物名称
Primer name
引物序列
Primers sequence (5°-3°)
引物名称
Primer name
引物序列
Primers sequence (5°-3°)
actin-F CCATTGAGAAGACCTACGA Ahy_A09g046613-F CACATACGTCCACATCCAA
actin-R AATCATGGAAGGCTGGAA Ahy_A09g046613-R TGGTTCCAAGGTACTCATTC
Ahy_A06g030353-F TGGATCAAGTGGTTTCTC Ahy_B06g085507-F GTAGTTTCTCCTTTGGTTCCGAAT
Ahy_A06g030353-R CAAGGCTTTGTCAAGATAC Ahy_B06g085507-R GGCTTTGTCAAGATACTTGTCCTT
Ahy_A07g037374-F TGTCCACATGCGAAGCTA Ahy_B09g094759 -F TCCACATCCAAAGCTAATAGGC
Ahy_A07g037374-R TGGTGCCAAGGTACTCATT Ahy_B09g094759 -R GGTTCCAAGGTACTCATTCCAA
Ahy_A08g040809-F ATTCCCACGCATGGTTTCA Ahy_B08g089553-F CGTTACTCTTTGGCTTATTTCC
Ahy_A08g040809-R CGATGATGGGTATGGATGGAAT Ahy_B08g089553-R CTTCACACTAACCCTACGAAAT

表2

AhGA3ox家族基因蛋白理化性质预测"

基因编号
Gene ID
CDS大小
CDS size (bp)
外显子
数目
No. of exons
亚细胞定位
Subcellular
localization
等电点
pI
不稳定
参数
Instability index
脂溶指数
Aliphatic index
亲水性
平均数
GRAVY
带正电荷残基数
Asp + Glu
带负电荷残基数Arg+Lys
Ahy_A06g030353 1047 2 细胞核 Nucleus 5.53 39.42 82.66 -0.358 46 36
Ahy_A07g037374 1125 2 细胞核 Nucleus 8.11 37.63 86.29 -0.221 31 33
Ahy_A08g040809 1056 2 细胞质 Cytoplasm 7.30 36.94 77.87 -0.434 40 40
Ahy_A09g046613 1068 2 细胞质和细胞核
Cytoplasm and nucleus
7.68 39.04 87.08 -0.231 30 31
Ahy_B06g085507 1047 2 细胞骨架 Cytoskeleton 5.53 39.09 82.66 -0.370 46 36
Ahy_B08g089553 1062 2 细胞质 Cytoplasm 6.49 37.31 75.79 -0.462 43 39
Ahy_B09g094759 1092 2 细胞核 Nucleus 8.08 39.45 85.71 -0.287 31 33

图1

AhGA3ox基因家族的染色体分布 黑色代表染色体, AhGA3ox家族基因标记在染色体右边, 左侧比例尺表示染色体长度。"

图2

花生AhGA3ox家族基因及编码蛋白的系统发育与结构分析 (A) 利用AhGA3ox的氨基酸序列构建系统发育树。(B) AhGA3ox基因的结构。绿色矩形、黄色矩形和黑色线条分别代表UTR、CDS和内含子。底部比例尺代表UTR、CDS和内含子长度。(C) AhGA3ox蛋白的结构。蓝色和紫色矩形表示DIOX_N结构域, 2OG-FeII_Oxy结构域结构域。底部比例尺表示结构域长度。"

图3

GA3ox基因家族的系统发育分析 浅蓝色背景区域为四倍体野生种花生(Arachis monticola), 绿色区域为栽培种大豆(Glycine max), 蓝色区域为水稻(Oryza sativa), 浅灰色区域为拟南芥(Arabidopsis thaliana), 黄色区域为A基因组二倍体野生种花生(Arachis duranensis), 褐色区域为B基因组二倍体野生花生(Arachis ipaensis), 紫色区域为野生种大豆(Glycine soja), 红色区域为四倍体栽培种花生(Arachis hypogaea L.)。花生、拟南芥、水稻、大豆、野生豆系统发育分析将71个GA3ox蛋白分为4类。利用MEGA-X软件以GA3ox蛋白的氨基酸序列为基础, 采用最大似然法构建系统发育树。Bootstrap=1000。"

图4

GA3ox家族蛋白家族蛋白保守基序分布 Motif分析通过MEME在线分析完成, 不同氨基酸的高度代表可重复性, 底部的比例尺表示基序长度。左侧为蛋白系列名称, 右侧不同颜色分别对应不同的保守基序在系列上的位置。"

图5

AhGA3ox家族基因启动子中的顺式作用元件预测分析 不同颜色方框分别代表不同顺式元件, 底部的比例尺表示启动子序列的长度。"

表3

2个花生品系农艺性状比较"

性状Trait P92 P92-1
株高 Plant height (cm) 36.59±1.11 38.33±1.82
分枝数 Branching number 10.33±0.47 9.67±0.47
结果数 Pod number 39.00±0.83 36.00±0.50
荚壳厚度 Pod shell thickness(mm) 1.15±0.06 1.48±0.22*
荚果长 Pod length (mm) 19.21±1.03 35.11±1.59**
荚果宽 Pod width (mm) 12.73±0.19 15.39±0.26**

图6

6个AhGA3ox家族基因在花生品系P92及P92-1各组织中表达模式分析 不同小写字母表示不同花生组织在0.05概率水平差异显著。"

图7

AhGA3ox家族基因在大小果花生品系果壳中表达模式分析 S1~S5分别表示果针进入土壤后第10、17、24、31和38天。*、**分别表示在0.05和0.01概率水平差异显著。"

[1] Hedden P, Thomas S G. Gibberellin biosynthesis and its regulation. Biochem J, 2012, 444: 11-25.
doi: 10.1042/BJ20120245 pmid: 22533671
[2] Yamaguchi S, Kamiya Y. Gibberellin biosynthesis: its regulation by endogenous and environmental signals. Plant Cell Physiol, 2000, 41: 251-257.
doi: 10.1093/pcp/41.3.251 pmid: 10805587
[3] Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol, 2008, 59: 225-251.
doi: 10.1146/annurev.arplant.59.032607.092804 pmid: 18173378
[4] Hedden P. Gibberellin metabolism and its regulation. J Plant Growth Regul, 2001, 20: 317-318.
doi: 10.1007/s003440010039 pmid: 11986757
[5] Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M. Cloning and functional analysis of two gibberellin 3 beta-hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci USA, 2001, 98: 8909-8914.
doi: 10.1073/pnas.141239398 pmid: 11438692
[6] Hedden P, Phillips A L. Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci, 2000, 5: 523-530.
doi: 10.1016/s1360-1385(00)01790-8 pmid: 11120474
[7] Würschum T, Langer S M, Longin C F H, Tucker M R, Leiser W L. A modern Green Revolution gene for reduced height in wheat. Plant J, 2017, 92: 892-903.
doi: 10.1111/tpj.2017.92.issue-5
[8] Pearce S, Huttly A K, Prosser I M, Li Y D, Vaughan S P, Gallova B, Patil A, Coghill J A, Dubcovsky J, Hedden P, Phillips A L. Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family. BMC Plant Biol, 2015, 15: 130.
doi: 10.1186/s12870-015-0520-7
[9] Nomura T, Jager C E, Kitasaka Y, Takeuchi K, Fukami M, Yoneyama K, Matsushita Y, Nyunoya H, Takatsuto S, Fujioka S, Smith J J, Kerckhoffs L H J, Reid J B, Yokota T. Brassinosteroid deficiency due to truncated steroid 5α-reductase causes dwarfism in thelk mutant of pea. Plant Physiol, 2004, 135: 2220-2229.
doi: 10.1104/pp.104.043786
[10] Cheng J, Zhang M, Tan B, Jiang Y, Zheng X, Ye X, Guo Z, Xiong T, Wang W, Li J, Feng J. A single nucleotide mutation in GID 1c disrupts its interaction with DELLA1 and causes a GA-insensitive dwarf phenotype in peach. Plant Biotechnol J, 2019, 17: 1723-1735.
doi: 10.1111/pbi.13094 pmid: 30776191
[11] Chiang H H, Hwang I, Goodman H M. Isolation of the Arabidopsis GA4 locus. Plant Cell, 1995, 7: 195-201.
pmid: 7756830
[12] 殷小林, 张超, 王有成, 袁定阳, 谭炎宁, 段美娟. 水稻赤霉素3β羟化酶基因(OsGA3ox1)同源基因的生物信息学分析. 分子植物育种, 2019, 17: 1054-1060.
Yin X L, Zhang C, Wang Y S, Yuan D Y, Tan Y N, Duan M J. Bioinformatics analysis of homologous genes of gibberellin 3β hydroxylase gene (OsGA3ox1) in rice. Mol Plant Breed, 2019, 17: 1054-1060. (in Chinese with English abstract)
[13] He H, Liang G, Lu S, Wang P, Liu T, Ma Z, Zuo C, Sun X, Chen B, Mao J. Genome-wide identification and expression analysis of GA2ox, GA3ox, and GA20ox are related to gibberellin oxidase genes in grape (Vitis vinifera L.). Genes (Basel), 2019, 10: 680.
doi: 10.3390/genes10090680
[14] Chen Y, Hou M, Liu L, Wu S, Shen Y, Ishiyama K, Kobayashi M, Mccarty D R, Tan B. The maize DWARF1 encodes a gibberellin 3-Oxidase and is dual localized to the nucleus and cytosol. Plant Physiol, 2014, 166: 2028-2039.
doi: 10.1104/pp.114.247486 pmid: 25341533
[15] Dalmadi A, Kalo P, Jakab J, Saskoi A, Petrovics T, Deak G, Kiss G B. Dwarf plants of diploid Medicago sativa carry a mutation in the gibberellin 3-beta-hydroxylase gene. Plant Cell Rep, 2008, 27: 1271-1279.
doi: 10.1007/s00299-008-0546-5 pmid: 18504589
[16] Wei C, Zhu C, Yang L, Zhao W, Ma R, Li H, Zhang Y, Ma J, Yang J, Zhang X. A point mutation resulting in a 13 bp deletion in the coding sequence of Cldf leads to a GA-deficient dwarf phenotype in watermelon. Hortic Res, 2019, 6: 132.
doi: 10.1038/s41438-019-0213-8
[17] Hu D, Li X, Yang Z, Liu S, Hao D, Chao M, Zhang J, Yang H, Su X, Jiang M, Lu S, Zhang D, Wang L, Kan G, Wang H, Cheng H, Wang J, Huang F, Tian Z, Yu D. Downregulation of a gibberellin 3beta-hydroxylase enhances photosynthesis and increases seed yield in soybean. New Phytol, 2022, 235: 502-517.
doi: 10.1111/nph.v235.2
[18] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[19] Davière J, Achard P. Gibberellin signaling in plants. Development, 2013, 140: 1147-1151.
doi: 10.1242/dev.087650
[20] Tudzynski B, Kawaide H, Kamiya Y. Gibberellin biosynthesis in Gibberella fujikuroi: cloning and characterization of the copalyl diphosphate synthase gene. Curr Genet, 1998, 34: 234-240.
pmid: 9745028
[21] van Schie C C, Ament K, Schmidt A, Lange T, Haring M A, Schuurink R C. Geranyl diphosphate synthase is required for biosynthesis of gibberellins. Plant J, 2007, 52: 752-762.
doi: 10.1111/j.1365-313X.2007.03273.x pmid: 17877699
[22] Appleford N E, Evans D J, Lenton J R, Gaskin P, Croker S J, Devos K M, Phillips A L, Hedden P. Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat. Planta, 2006, 223: 568-582.
doi: 10.1007/s00425-005-0104-0 pmid: 16160850
[23] Sun Y, Zhang H, Fan M, He Y, Guo P. A mutation in the intron splice acceptor site of a GA3ox gene confers dwarf architecture in watermelon (Citrullus lanatus L.). Sci Rep, 2020, 10: 14915.
doi: 10.1038/s41598-020-71861-7
[24] Fukazawa J, Mori M, Watanabe S, Miyamoto C, Ito T, Takahashi Y. DELLA-GAF1 Complex is a main component in gibberellin feedback regulation of GA20 oxidase 2. Plant Physiol, 2017, 175: 1395-1406.
doi: 10.1104/pp.17.00282 pmid: 28916594
[25] Mitchum M G, Yamaguchi S, Hanada A, Kuwahara A, Yoshioka Y, Kato T, Tabata S, Kamiya Y, Sun T P. Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant J, 2006, 45: 804-818.
doi: 10.1111/tpj.2006.45.issue-5
[26] 赵慧君, 仝宗勇, 余海忠, 孙永林. 苹果赤霉素3-氧化酶1 (MdGA3ox1)启动子区的克隆及序列分析. 中国农学通报, 2012, 28(10): 146-150.
Zhao H J, Tong Z Y, Yu H Z, Sun Y L. Cloning and sequence analysis of the promoter region of gibberellin 3-oxidase 1 (MdGA3ox1) in apple. Chin Agric Sci Bull, 2012, 28(10): 146-150. (in Chinese with English abstract)
[27] 赵慧君, 余海忠, 王海燕, 朱文权. 苹果赤霉素3-氧化酶1 (MdGA3ox1)在烟草中的表达研究, 湖北文理学报, 36(2): 17-19.
Zhao H J, Yu H Z, Wang H Y, Zhu W Q. Study on the expression of gibberellin 3-oxidase 1 (MdGA3ox1) in apple in tobacco. Hubei J Arts Sci, 36(2): 17-19. (in Chinese with English abstract)
[28] Radi A, Lange T, Niki T, Koshioka M, Lange M J. Ectopic expression of pumpkin gibberellin oxidases alters gibberellin biosynthesis and development of transgenic Arabidopsis plants. Plant Physiol, 2006, 140: 528-536.
doi: 10.1104/pp.105.073668
[29] Reinecke D M, Wickramarathna A D, Ozga J A, Kurepin L V, Jin A L, Good A G, Pharis R P. Gibberellin 3-oxidase gene expression patterns influence gibberellin biosynthesis, growth, and development in pea. Plant Physiol, 2013, 163: 929-945.
doi: 10.1104/pp.113.225987 pmid: 23979969
[30] Israelsson M, Mellerowicz E, Chono M, Gullberg J, Moritz T. Cloning and overproduction of gibberellin 3-oxidase in hybrid aspen trees. Effects on gibberellin homeostasis and development. Plant Physiol, 2004, 135: 221-230.
pmid: 15122019
[1] 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146.
[2] 鲁清, 刘浩, 李海芬, 王润风, 黄璐, 梁炫强, 陈小平, 洪彦彬, 刘海燕, 李少雄. 花生含油量全基因组选择及近红外光谱筛选的育种技术探究[J]. 作物学报, 2024, 50(4): 969-980.
[3] 王添宁, 冯雅岚, 琚吉浩, 吴毅, 张均, 马超. 小麦及其祖先物种GRF转录因子家族鉴定与表达分析[J]. 作物学报, 2024, 50(4): 897-813.
[4] 琚吉浩, 马超, 王添宁, 吴毅, 董钟, 方美娥, 陈钰姝, 张均, 付国占. 小麦TaPOD家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(3): 779-792.
[5] 张宝华, 刘佳静, 田晓, 田旭钊, 董阔, 武郁洁, 肖凯, 李小娟. 小麦TaSPX1基因的克隆、表达及耐低氮逆境的功能研究[J]. 作物学报, 2024, 50(3): 576-589.
[6] 代洪苇, 刘洁强, 张丽, 童华荣, 袁连玉. 茶树CsMCC1CsMCC2基因的克隆及表达特征性分析[J]. 作物学报, 2024, 50(3): 656-668.
[7] 张月, 王志慧, 淮东欣, 刘念, 姜慧芳, 廖伯寿, 雷永. 花生含油量的遗传基础与QTL定位研究进展[J]. 作物学报, 2024, 50(3): 529-542.
[8] 郅晨阳, 薛晓梦, 吴洁, 李雄才, 王瑾, 晏立英, 王欣, 陈玉宁, 康彦平, 王志慧, 淮东欣, 洪彦彬, 姜慧芳, 雷永, 廖伯寿. 花生籽仁蔗糖含量遗传模型分析[J]. 作物学报, 2024, 50(1): 32-41.
[9] 杨晨曦, 周文期, 周香艳, 刘忠祥, 周玉乾, 刘芥杉, 杨彦忠, 何海军, 王晓娟, 连晓荣, 李永生. 控制玉米株高基因PHR1的基因克隆[J]. 作物学报, 2024, 50(1): 55-66.
[10] 胡美玲, 郅晨阳, 薛晓梦, 吴洁, 王瑾, 晏立英, 王欣, 陈玉宁, 康彦平, 王志慧, 淮东欣, 姜慧芳, 雷永, 廖伯寿. 单粒花生蔗糖含量近红外预测模型的建立[J]. 作物学报, 2023, 49(9): 2498-2504.
[11] 王菲菲, 张胜忠, 胡晓辉, 崔凤高, 钟文, 赵立波, 张天雨, 郭进涛, 于豪谅, 苗华荣, 陈静. 比较转录组分析花生种子休眠调控网络[J]. 作物学报, 2023, 49(9): 2446-2461.
[12] 徐扬, 张岱, 康涛, 温赛群, 张冠初, 丁红, 郭庆, 秦斐斐, 戴良香, 张智猛. 盐胁迫对花生幼苗离子动态及耐盐基因表达的影响[J]. 作物学报, 2023, 49(9): 2373-2384.
[13] 黄莉, 陈伟刚, 李威涛, 喻博伦, 郭建斌, 周小静, 罗怀勇, 刘念, 雷永, 廖伯寿, 姜慧芳. 花生根部结瘤性状QTL定位[J]. 作物学报, 2023, 49(8): 2097-2104.
[14] 代书桃, 朱灿灿, 马小倩, 秦娜, 宋迎辉, 魏昕, 王春义, 李君霞. 谷子HAK/KUP/KT钾转运蛋白家族全基因组鉴定及其对低钾和高盐胁迫的响应[J]. 作物学报, 2023, 49(8): 2105-2121.
[15] 李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析[J]. 作物学报, 2023, 49(8): 2160-2170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .