欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (3): 529-542.doi: 10.3724/SP.J.1006.2024.34083

• 综述 •    下一篇

花生含油量的遗传基础与QTL定位研究进展

张月(), 王志慧, 淮东欣, 刘念, 姜慧芳, 廖伯寿(), 雷永()   

  1. 中国农业科学院油料作物研究所 / 农业农村部油料作物生物学与遗传育种重点实验室, 湖北武汉 430062
  • 收稿日期:2023-04-10 接受日期:2023-09-28 出版日期:2024-03-12 网络出版日期:2023-10-12
  • 通讯作者: *雷永, E-mail: leiyong@caas.cn; 廖伯寿, E-mail: lboshou@hotmail.com
  • 作者简介:E-mail: 508276591@qq.com
  • 基金资助:
    国家自然科学青年基金项目(32201770);湖北省重点研发计划项目(2021BBA077);湖北省自然科学基金项目(2022CFB332)

Research progress on genetic basis and QTL mapping of oil content in peanut seed

ZHANG Yue(), WANG Zhi-Hui, HUAI Dong-Xin, LIU Nian, JIANG Hui-Fang, LIAO Bo-Shou(), LEI Yong()   

  1. Oil Crops Research Institute, Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agricultural and Rural Affairs, Wuhan 430062, Hubei, China
  • Received:2023-04-10 Accepted:2023-09-28 Published:2024-03-12 Published online:2023-10-12
  • Contact: *E-mail: leiyong@caas.cn; E-mail: lboshou@hotmail.com
  • Supported by:
    National Natural Science Youth Foundation of China(32201770);Key Area Research and Development Program of Hubei Province(2021BBA077);Natural Science Foundation of Hubei Province(2022CFB332)

摘要:

花生是我国重要的油料作物, 含油量是花生重要的品质性状和育种目标。花生含油量每提高1个百分点, 相当于增产2个百分点, 油脂加工利润可提高7个百分点。培育高油高产花生品种是增加食用油供给和保障食用油供给安全的重要途径。本文概述了花生含油量表型鉴定的4种常用方法; 阐述了花生含油量的遗传特性是多基因控制的数量性状, 即受加性效应和显性效应的影响, 也存在基因型和环境互作; 总结了已报道的含油量QTL 124个, 表型变异解释率超过10%的主效位点有36个, 分布在A03、A05和A08上的8个主效QTL可重复检测到; 构建了一张花生含油量的一致性遗传图谱, A08染色体上33.59~50.24 Mb为热点区间; 介绍了油脂合成及调控相关基因等方面的研究进展, 以期为花生含油量遗传改良和高油品种培育提供理论指导。

关键词: 花生, 含油量, 遗传特性, QTL定位, 基因

Abstract:

Peanut is an important oilseed crop in China, and oil content is an important quality trait and breeding target of peanut. One percentage point increase in peanut oil content is equivalent to an increase of two percentage points in yield, and oil processing profit can be increased by seven percentage points. This study outlined four predominant methods for phenotyping peanut oil content. The genetic characteristics of oil content in peanut were quantitative traits under polygenic control, that were affected by additive and dominant effects, and influenced by G×E interaction. There were 124 QTL reported for oil content, with 36 major effect loci by (phenotypic variation explained) more than 10%. Eight major effect QTL on A03, A05, and A08 can be consistently identified. A consistent genetic map of oil content in peanut was constructed, with a hotspot region on the 33.59-50.24 Mb of A08. In addition, the research progress of lipid synthesis and the regulatory mechanisms of associated genes was detailed. This review aspires to provide theoretical guidance for the genetic improvement of oil content and the breeding of high oil varieties of peanut.

Key words: peanut, oil content, genetic characteristics, QTL mapping, genes

表1

花生含油量的遗传特性"

试验材料
Material name
分析方法
Analysis methods
遗传特性
Genetic characteristics
参考文献
Reference
亲本SPI056 × 花育17及其F1、F2群体
SPI056 with high oil content, Huayu 17 with low oil content, F1 and F2 populations derived from a cross between them
主基因+多基因混合遗传模型
联合分析
Mixed major gene plus polygene inheritance model
2对加性-显性-上位性主基因和加性-
显性多基因共同控制
Two additive-dominant-epistatic major- genes plus additive-dominant polygenes
[22]
不同含油量亲本组成的4个杂交组合的P1、P2、F1和F2
P1, P2, F1, and F2 of four hybrid combinations composed of parents with different oil contents
主基因-多基因遗传分离分析
Major gene-polygene genetic
separation analysis
加性基因起主要作用
Additive gene effects
[18]
包含215个家系的重组自交系群体(F9)及其亲本郑8903 × 豫花4号
215 F9 RILs and their parents Zheng 8903 and Yuhua 4
主基因+多基因混合遗传模型联合分析;
主基因-多基因遗传分离分析
Mixed major gene plus polygene inheritance model; major gene- polygene genetic separation analysis
2对连锁互补的主基因+多基因控制
Two linked complementary major gene plus polygene inheritance mode
[21]
高油613 × 花育36号及其构建的重组自交系, P1、P2、RIL
Gaoyou 613 × Huayu 36, recombinant inbred line constructed by Gaoyou 613 × Huayu 36, P1, P2, RIL
主基因+多基因混合遗传模型
联合分析
Mixed major gene plus polygene inheritance model
2对主基因+加性多基因控制, 且主基因存在抑制作用
Two pairs of major genes with inhibiting effect and polygenes with additive effect
[15]
5个花生材料、通过完全双列杂交构成20个杂交组合产生的F1、F2
Five peanut varieties, F1 and F2 formed by 20 hybrid combinations of five parent varieties through complete diallel cross
广义遗传模型
General genetic model
胚基因型直接控制, 以加性为主; 同时存在母体加性和显性效应, 无细胞质效应
Mainly controlled by embryo genotype, based on additive effect; followed by
maternal additive effect and dominant effects, but no cytoplasmic effect
[23]
高油品种W191和低油JT1配置的正反交组合及F2
A reciprocal cross combination constructed using high-oil parent W191 and low-oil parent JT1, and F2 population
主基因+多基因混合遗传模型
联合分析
Mixed major gene plus polygene inheritance model
2对主基因等显性模型
Two pairs of major gene equal dominance model
[20]
潍花8号 × 12L49的5个家系世代材料
Five pedigrees and generations from hybrid combination with Weihua 8 × 12L49
主基因+多基因混合遗传模型
联合分析; 多世代联合分析
Mixed major gene plus polygene inheritance model; multi-generation joint analysis method
多基因遗传
Polygene inheritance
[17]
5个花生亲本、采用Griffing完全双列杂交配制20个组合产生的F1
Five parental lines, F1 hybrids produced by 20 peanut parents were prepared by Griffing
complete diallel crossing design
完全双列杂交Hayman模型
Hayman model of complete diallel cross
加性效应为主, 显性效应较小且存在部分显性
Mainly additive effect, while the dominant effect was small and partial dominant
[19]
5个亲本材料以及利用不完全双列杂交方式所配置的8个杂交组合产生的F1
Five parental lines, F1 hybrids produced by incomplete diallel crosses
广义遗传模型
General genetic model
主要是胚加性效应, 其次是母体加性效应
Mainly controlled by embryo additive
effect, followed by maternal additive effect
[24]

表2

花生含油量的QTL"

杂交组合
Cross group
群体大小/类型
Population size/type
图谱标记数量/类型
Marker number
/type
表型变异范围
Range of phenotypic variation (%)
QTL数量
QTL number
染色体/连锁群
(Chr./LG)
参考文献
Reference
TamrunOL01 × BSS56 88/RIL 112/SSR 39.84-51.60 1 [31]
TG26 × GPBD4 146/RIL 45/SSR 40.76-49.55 4 LG1, LG2, LG3, LG8 [32]
郑8903 × 豫花4号
Zheng 8903 × Yuhua 4
215/RILs 1556/SSR 2 LG1, LG17 [33]
SunOleic 97R × NC94022 352/RILs 206/SSR 10 A05, A07, A08, B03, B04, B08 [34]
Tifrunner × GT-C20 248/RILs 378/SSR 8 B08
中花10号 × ICG12625
Zhonghua 10 × ICG12625
232/F2:3 470/SSR 45.40-57.10 1 B03 [35]
中花6号 × 徐花13
Zhonghua 6 × Xuhua 13
187/RIL 868/SSR 43.19-56.70 2 A08, B03 [36]
远杂9102 × 徐州68-4
Yuanza 9102 × Xuzhou 68-4
188/RIL 365/SSR 47.20-55.29 3 LG7, LG16 [37]
ICGV07368 × ICGV06420 184/F2 854/DArT, SSR 47.2-55.7 8 A02, A08, A10, B03, B06, B09 [8]
Florunner × TxAG-6 90/BC3F6 91/SSR 44.00-63.00 13 A05, A06 [39]
潍花8号 × 12L49
Weihua 8 × 12L49
140/F2 103/SSR 44.28-54.61 3 Chr13, Chr16, Chr18 [40]
徐花13 × 中花6号
Xuhua 13 × Zhonghua 6
186/RIL 2595/SNP 43.19-56.37 7 A04, A05, A08, B05, B06 [41]
农大D666 × P12
Nongda D666 × P12
568/F2 271376/SNP, 58903/InDel 47.04-61.91 1 A01 [42]
中花10号 × ICG12625
Zhonghua 10 × ICG12625
140/RILs 1443/SSR 39.84-51.60 18 A01, A02, A05, A08, A09, A10, B04, B06, B10 [43]
TMV2 × TMV2-NLM 432/RILs 713/SNP, 143/AhTE, 47/SSR 43-57 11 Ah03, Ah05, Ah10, Ah11, Ah13, Ah20 [44]
花育36 × 6-13
Huayu 36 × 6-13
181/RILs 3866/SNP, SSR 43.18-61.39 5 A06, A08, B05, B07 [46]
豫花15 × W1202
Yuhua 15 × W1202
329/RILs 213868/SNP 45.2-59.8 27 A01, A02, A03, A04, A05, A06, A07, A08, A09, A12, A14, A17 [45]

图1

花生含油量遗传位点一致性图谱 红色标记是表型变异解释率大于或等于10%的关联位点, 绿色标记是表型变异解释率小于10%的关联位点; 红色方框代表主效QTL, 黑色方框代表微效QTL。"

[1] 国家统计局. 中国统计年鉴2022. 北京: 中国统计出版社, 2022. pp 385-392.
National Bureau of Statistics. China Statistical Yearbook 2022. Beijing: China Statistics Press, 2022. pp 385-392 (in Chinese).
[2] 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42: 161-166.
Liao B S. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci, 2020, 42: 161-166 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2020115
[3] 任小平, 姜慧芳, 王圣玉, 黄家权, 雷永, 廖伯寿. 野生花生高油基因资源的发掘与鉴定. 中国油料作物学报, 2010, 32: 30-34.
Ren X P, Jiang H F, Wang S Y, Huang J Q, Lei Y, Liao B S. Identification and evaluation of high oil content in wild Arachis species. Chin J Oil Crop Sci, 2010, 32: 30-34 (in Chinese with English abstract).
[4] 中华人民共和国国家质量监督检验检疫总局. GB/T 14488.1- 2008, 植物油料含油量测定. 北京: 中国标准出版社, 2008. pp 1-16.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. GB/T 14488. 1-2008, Oilseeds-Determination of Oil Content. Beijing: Standards Press of China, 2008. pp 1-16 (in Chinese).
[5] 李钧, 王宁惠, 余青兰, 杜德志, 付忠. 傅立叶变换近红外光谱技术分析完整油菜籽含油量数学模型的建立. 青海大学学报(自然科学版), 2006, 24(6): 28-30.
Li J, Wang N H, Yu Q L, Du D Z, Fu Z. Establishment of math model of Fourier transform NIRS analysis for oil content in intact rapeseed. J Qinghai Univ (Nat Sci Edn), 2006, 24(6): 28-30 (in Chinese with English abstract).
[6] 郭建斌, 吴贝, 陈伟刚, 贾朝阳, 荆建国, 陈四龙, 刘念, 陈玉宁, 周小静, 罗怀勇, 任小平, 姜慧芳, 黄莉. 基于核磁共振法的花生品种含油量遗传变异分析. 中国油料作物学报, 2017, 39: 326-333.
doi: 10.7505/j.issn.1007-9084.2017.03.006
Guo J B, Wu B, Chen W G, Jia C Y, Jing J G, Chen S L, Liu N, Chen Y N, Zhou X J, Ren X P, Jiang H F, Huang L. Variation of oil content in peanut varieties based on nuclear magnetic. Chin J Oil Crop Sci, 2017, 39: 326-333 (in Chinese with English abstract).
doi: 10.7505/j.issn.1007-9084.2017.03.006
[7] 魏利斌, 苗红梅, 李春, 张海洋. 芝麻籽粒脂肪含量核磁共振无损快速测定方法的建立. 江苏农业科学, 2016, 44: 386-388.
Wei L B, Miao H M, Li C, Zhang H Y. Establishment of a method for non-destructive and rapid determination of fat content in sesame seeds by NMR. Jiangsu Agric Sci, 2016, 44: 386-388 (in Chinese with English abstract).
[8] 雷蕾, 梁慧, 彭彤, 刘娟, 刘欣, 唐琳. 核磁共振法测麻疯树种子油含量的研究. 种子, 2009, 28(5): 78-80.
Lei L, Liang H, Peng T, Liu J, Liu X, Tang L. Study on detecting oil content in Jatropha curca seed by Nuclear Magnetic Resonance Technique. Seed, 2009, 28(5): 78-80 (in Chinese with English abstract).
[9] 闫龙, 蒋春志, 于向鸿, 杨春燕, 张孟臣. 大豆粗蛋白、粗脂肪含量近红外检测模型建立及可靠性分析. 大豆科学, 2008, 27: 833-837.
Yan L, Jiang C Z, Yu X H, Yang C Y, Zhang M C. Development and reliability of near infrared spectroscopy (NIS) models protein and oil content in soybean. Soybean Sci, 2008, 27: 833-837 (in Chinese with English abstract).
[10] 李思敏, 覃红阳, 王燕相, 肖惠峰, 林锐. 气相色谱质谱法测定塑胶跑道中邻苯二甲酸酯的含量及其影响因素研究. 合成材料老化与应用, 2022, 51(3): 49-51.
Li S M, Qin H Y, Wang Y X, Xiao H F, Lin R. Research on determination of phthalate content in plastic track mater and influencing factors. Synthetic Mate Aging Appl, 2022, 51(3): 49-51 (in Chinese with English abstract).
[11] 姜慧芳, 任小平. 我国栽培种花生资源农艺和品质性状的遗传多样性. 中国油料作物学报, 2006, 28: 421-426.
Jiang H F, Ren X P. Genetic diversity of peanut resource on morphological characters and seed chemical components in China. Chin J Oil Crop Sci, 2006, 28: 421-426 (in Chinese with English abstract).
[12] 刘立峰, 耿立格, 王静华, 孟成生, 王丽娜. 河北省花生地方品种农艺性状和品质性状的遗传分化. 植物遗传资源学报, 2008, 92: 190-194.
Liu L F, Geng L G, Wang J H, Meng C S, Wang L N. Genetic diversity of peanut landraces in Hebei province based on agronomic and quality traits. J Plant Genet Resour, 2008, 92: 190-194 (in Chinese with English abstract).
[13] 廖伯寿, 雷永, 王圣玉, 李栋, 黄家权, 姜慧芳, 任小平. 花生重组近交系群体的遗传变异与高油种质的创新. 作物学报, 2008, 34: 999-1004.
doi: 10.3724/SP.J.1006.2008.00999
Liao B S, Lei Y, Wang S Y, Li D, Huang J Q, Jiang H F, Ren X P. Genetic diversity of peanut RILs and enhancement for high oil genotypes. Acta Agron Sin, 2008, 34: 999-1004 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2008.00999
[14] 于海洋, 李玉颖, 吕玉英, 张秀荣, 杨会, 张昆, 王林, 刘风珍, 万勇善. 多群体解析高油花生籽仁含油量的遗传效应. 中国油料作物学报, 2021, 43: 487-494.
Yu H Y, Li Y Y, Lyu Y Y, Zhang X R, Yang H, Zhang K, Wang L, Liu F Z, Wan Y S. Analysis of genetic effects for seed high oil content based on multi-population in peanut (Arachis hypogaea L.). Chin J Oil Crop Sci, 2021, 43: 487-494 (in Chinese with English abstract).
[15] 张胜忠, 焦坤, 胡晓辉. 花生百仁质量和含油量的遗传分析. 花生学报, 2018, 47(4): 7-12.
Zhang S Z, Jiao K, Hu X H. Genetic analysis for seed mass and oil content of peanuts. J Peanut Sci, 2018, 47(4): 7-12 (in Chinese with English abstract).
[16] Tai Y P, Young C T. Genetic studies of peanut proteins and oils. J Am Oil Chem Soc, 1975, 52: 377-385.
doi: 10.1007/BF02639201
[17] 牟大林, 韩笑, 李雪莹, 姚丹, 杨松楠, 曲艺伟, 梁嘉宁, 张君. 花生主要品质性状的主基因+多基因遗传分析. 花生学报, 2021, 50(1): 41-44.
Mu D L, Han X, Li X Y, Yao D, Yang S N, Qu Y W, Liang J N, Zhang J. Genetic analysis of major gene plus polygene on main quality traits in peanut. J Peanut Sci, 2021, 50(1): 41-44 (in Chinese with English abstract).
[18] 陈四龙, 李玉荣, 程增书, 廖伯寿, 雷永, 刘吉生. 花生含油量杂种优势表现及主基因+多基因遗传效应分析. 中国农业科学, 2009, 42: 3048-3057.
Chen S L, Li Y R, Cheng Z S, Liao B S, Lei Y, Liu J S. Heterosis and genetic analysis of oil content in peanut using mixed model of major gene and polygene. Sci Agric Sin, 2009, 42: 3048-3057 (in Chinese with English abstract).
[19] 齐飞艳, 孙子淇, 黄冰艳, 秦利, 石磊, 刘华, 汪晓, 田梦迪, 郑峥, 董文召, 张新友. 基于双列杂交的花生主要品质性状遗传效应分析. 中国油料作物学报, 2021, 43: 600-607.
Qi F Y, Sun Z Q, Huang B Y, Qin L, Shi L, Liu H, Wang X, Tian M D, Zheng Z, Dong W Z, Zhang X Y. Genetic analysis of peanut quality traits based on a diallel cross design. Chin J Oil Crop Sci, 2021, 43: 600-607 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2020251
[20] 王娟. 花生籽仁油脂合成遗传规律分析及相关基因的表达研究. 郑州大学硕士学位论文, 河南郑州, 2021.
Wang J. Inheritance Analysis and Related Genes Expression Research of Lipid Synthesis in Peanut Kernel. MS Thesis of Zhengzhou University, Zhengzhou, Henan, China, 2021 (in Chinese with English abstract).
[21] Zhang X Y, Zhu J S, Han S Y, Xu J, Liu H, Tang J F, Dong W Z, Jian X W, Zhang Z X. Inheritance of fat and fatty acid compositions in peanut (Arachis hypogaea L.). Agric Sci Techol, 2011, 12: 943-946.
[22] 禹山林, 杨庆利, 潘丽娟, 薄文娜. 花生种子含油量的遗传分析. 植物遗传资源学报, 2009, 10: 453-456.
Yu S L, Yang Q L, Pan L J, Bo W N. Genetic analysis for oil content of peanut seeds. J Plant Genet Resour, 2009, 10: 453-456 (in Chinese with English abstract).
[23] 黄冰艳, 胡京枝, 张新友, 苗利娟, 石磊, 吕登宇, 柴芃沛, 冯素萍, 刘华, 韩锁义, 汪晓, 齐飞艳, 孙子淇, 秦利, 董文召. 花生种子脂肪含量的直接和母体遗传效应分析. 中国油料作物学报, 2021, 43: 582-589.
Huang B Y, Hu J Z, Zhang X Y, Miao L J, Shi L, Lyu D Y, Chai P P, Feng S P, Liu H, Han S Y, Wang X, Qi F Y, Sun Z Q, Qin L, Dong W Z. Genetic analysis of direct and maternal effects of fat content in peanut seed. Chin J Oil Crop Sci, 2021, 43: 582-589 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2020226
[24] 胡美玲, 薛晓梦, 吴洁, 郅晨阳, 刘念, 陈小平, 王瑾, 晏立英, 王欣, 陈玉宁, 康彦平, 王志慧, 淮东欣, 姜慧芳, 雷永, 廖伯寿. 花生籽仁脂肪和蔗糖含量的胚、细胞质、母体遗传效应分析. 作物学报, 2022, 48: 2724-2732.
doi: 10.3724/SP.J.1006.2022.14201
Hu M L, Xue X M, Wu J, Zhi C Y, Liu N, Chen X P, Wang J, Yan L Y, Wang X, Chen Y N, Kang Y P, Wang Z H, Huai D X, Jiang H F, Lei Y, Liao B S. Genetic analysis of embryo, cytoplasm, and maternal effects for fat and sucrose contents in peanut seed. Acta Agron Sin, 2022, 48: 2724-2732 (in Chinese with English abstract).
[25] Liu N, Huang L, Chen W G, Wu B, Pandey M K, Luo H Y, Zhou X J, Guo J B, Chen H W, Huai D X, Chen Y N, Lei Y, Liao B S, Ren X P, Varshney R K, Jiang H F. Dissection of the genetic basis of oil content in Chinese peanut cultivars through association mapping. BMC Genet, 2020, 21: 60.
doi: 10.1186/s12863-020-00863-1 pmid: 32513099
[26] 史可琳, 薛晓萍, 宋景义, 贾学彬. 花生品质气象条件初探. 花生科技, 1994, (1): 5-7.
Shi K L, Xue X P, Song J Y, Jia X B. Preliminary study on meteorological conditions of peanut quality. Peanut Sci Technol, 1994, (1): 5-7 (in Chinese with English abstract).
[27] 张昆. 光强对花生光合特性、产量和品质的影响及生长模型研究. 山东农业大学博士学位论文, 山东泰安, 2009.
Zhang K. Influence of Light Intensity on Photosynthetic Characteristics, Yield and Quality of Peanut and Its Growth Model. PhD Dissertation of Graduate School of Shandong Agricultural University, Tai’an, Shandong, China, 2009 (in Chinese with English abstract).
[28] 李新华, 郭洪海, 杨丽萍, 杨萍, 万书波. 气象因子对花生品质的影响. 中国农学通报, 2010, 26(16): 90-94.
Li X H, Guo H M, Yang L P, Yang P, Wan S B. The effect of climatic factors on peanut quality. Chin Agric Sci Bull, 2010, 26(16): 90-94 (in Chinese with English abstract).
[29] 胡文广, 邱庆树, 李正超, 吴兰荣, 董杰. 花生品质的影响因素研究: II. 栽培因素. 花生学报, 2002, 31(4): 14-18.
Hu W G, Qiu Q S, Li Z C, Wu L R, Dong J. Studies of the effect factors on peanut qualities: II. Cultural factors. J Peanut Sci, 2002, 31(4): 14-18 (in Chinese with English abstract).
[30] 成波, 王才斌, 孙秀山, 郑亚萍, 张吉民. 施肥对小麦花生两熟制作物产量和品质的影响. 花生科技, 1999, (3): 27-28.
Cheng B, Wang C B, Sun X S, Zheng Y P, Zhang J M. Effect of fertilizer and manure application on wheat and peanut yield and qualit. Peanut Sci Technol, 1999, (3): 27-28 (in Chinese with English abstract).
[31] Gomez S M, Narayana M, Schubert A M, Ayers J L, Baring M R, Burow M D. Identification of QTLs for pod and kernel traits in cultivated peanut by bulked segregant analysis. Electr J Biotechnol, 2009, 12: 3-4.
[32] Sarvamangala C, Gowda M V C, Varshney R K. Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). Field Crops Res, 2011, 122: 49-59.
doi: 10.1016/j.fcr.2011.02.010
[33] 张新友, 韩锁义, 徐静, 严玫, 刘华, 汤丰收, 董文召, 黄冰艳. 花生主要品质性状的QTLs定位分析. 中国油料作物学报, 2012, 34: 311-315.
Zhang X Y, Han S Y, Xu J, Yan M, Liu H, Tang F S, Dong W Z, Huang B Y. Identification of QTLs for important quality traits in cultivated peanut (Arachis hypogaea L.). Chin J Oil Crop Sci, 2012, 34: 311-315 (in Chinese with English abstract).
[34] Pandey M K, Wang M L, Qiao L X, Feng S P, Khera P, Wang H, Tonnis B, Barkley N A, Wang J P, Holbrook C C, Culbreath A K, Varshney R K, Guo B Z. Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). BMC Genet, 2014, 15: 133.
doi: 10.1186/s12863-014-0133-4
[35] Huang L, He H Y, Chen W G, Ren X P, Chen Y N, Zhou X J, Xia Y L, Wang X L, Jiang X G, Liao B S, Jiang H F. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2015, 128: 1103-1115.
doi: 10.1007/s00122-015-2493-1 pmid: 25805315
[36] 郭建斌. 花生含油量及脂肪酸组成的QTL分析. 华中农业大学硕士学位论文, 湖北武汉, 2016.
Guo J B. QTL Analysis for Oil Content and Fatty Acid Traits in Peanut (Arachis hypogaea L.). MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2016 (in Chinese with English abstract).
[37] 李新平, 徐志军, 蔡岩, 郭建斌, 黄莉, 任小平, 李振动, 陈伟刚, 罗怀勇, 周小静, 陈玉宁, 吴明煜, 姜慧芳. 花生主要品质性状的QTL 定位分析. 中国油料作物学报, 2016, 38: 415-422.
Li X P, Xu Z J, Cai Y, Guo J B, Huang L, Ren X P, Li Z D, Chen W G, Luo H Y, Zhou X J, Chen Y N, Wu M Y, Jiang H F. Quantitative trait locus analysis for main quality traits in cultivated peanut (Arachis hypogaea L.). Chin J Oil Crop Sci, 2016, 38: 415-422 (in Chinese with English abstract).
[38] Shasidhar Y, Vishwakarma M K, Pandey M K, Pasupuleti J, Murali T V, Surendra S M, Shyam N N, Guo B Z, Rajeev K V, Rajeev K V. Molecular mapping of oil content and fatty acids using dense genetic maps in groundnut (Arachis hypogaea L.). Front Plant Sci, 2017, 8: 794.
doi: 10.3389/fpls.2017.00794 pmid: 28588591
[39] Jeffrey N W, Ratan C, Michael R B, Michael G S, Charles E S, Jennifer C, Mark D B. Advanced backcross quantitative trait loci (QTL) analysis of oil concentration and oil quality traits in peanut (Arachis hypogaea L.). Trop Plant Biol, 2017, 10: 1-17.
doi: 10.1007/s12042-016-9180-5
[40] 曲艺伟. 花生脂肪酸QTL初步定位. 吉林农业大学硕士学位论文, 吉林长春, 2019.
Qu Y W. QTL Preliminary Mapping of Fatty Acid in Peanut. MS Thesis of Jilin Agricultural University, Changchun, Jilin, China, 2019 (in Chinese with English abstract).
[41] Liu N, Guo J B, Zhou X J, Wu B, Huang L, Luo H Y, Chen Y N, Chen W G, Lei Y, Huang Y, Liao B S, Jiang H F. High-resolution mapping of a major and consensus quantitative trait locus for oil content to a -0.8-Mb region on chromosome A 08 in peanut (Arachis hypogaea L.). Theor Appl Genet, 2020, 133: 37-49.
doi: 10.1007/s00122-019-03438-6
[42] 李玉颖, 于海洋, 吕玉英, 杨会, 张秀荣, 张昆, 刘风珍, 万勇善. 基于 BSA 重测序定位花生含油量相关基因位点. 山东农业科学, 2021, 53(1): 1-6.
Li Y Y, Yu H Y, Lyu Y Y, Yang H, Zhang X R, Zhang K, Liu F Z, Wan S Y. Gene mapping for oil content in peanut (Arachis hypogaea L.) using BSA re-sequencing analysis. Shandong Agric Sci, 2021, 53: 1-6 (in Chinese with English abstract).
[43] Guo J B, Liu N, Li W T, Wu B, Chen H W, Huang L, Chen W G, Luo H Y, Zhou X J, Jiang H F. Identification of two major loci and linked marker for oil content in peanut (Arachis hypogaea L.). Euphytica, 2021, 217: 29.
doi: 10.1007/s10681-021-02765-4
[44] Jadhav M P, Gangurde S S, Hake A A, Yadawad A, Mahadevaiah S S, Pattanashetti S K, Gowda M V C, Shirasawa K, Varshney R K, Pandey M K, Bhat R S. Genotyping-by-Sequencing based genetic mapping identified major and consistent genomic regions for productivity and quality traits in peanut. Front Plant Sci, 2021, 12: 668020.
doi: 10.3389/fpls.2021.668020
[45] Sun Z Q, Qi F Y, Liu H, Qin L, Xu J, Shi L, Zhang Z X, Miao L J, Huang B Y, Dong W Z, Wang X, Tian M D, Feng J J, Zhao R F, Zhang X Y, Zheng Z. QTL mapping of quality traits in peanut using whole-genome resequencing. Crop J, 2022, 10: 177-184.
doi: 10.1016/j.cj.2021.04.008
[46] 张胜忠, 胡晓辉, 苗华荣, 杨伟强, 崔凤高, 邱俊兰, 陈四龙, 张建成, 陈静. 栽培种花生含油量QTL定位与上位性互作分析. 华北农学报, 2021, 36(1): 27-35.
doi: 10.7668/hbnxb.20191533
Zhang S Z, Hu X H, Miao H R, Yang W Q, Cui F G, Qiu J L, Chen S L, Zhang J C, Chen J. QTL Mapping and epistatic interaction analysis for oil content in cultivated peanut. Acta Agric Boreali-Sin, 2021, 36(1): 27-35 (in Chinese with English abstract).
doi: 10.7668/hbnxb.20191533
[47] Cui Y P, Liu Z J, Zhao Y P, Wang Y M, Huang Y, Li L, Wu H, Xu S X, Hua J P. Overexpression of heteromeric GhACCase subunits enhanced oil accumulation in upland cotton. Plant Mol Biol Rep, 2017, 35: 287-297.
doi: 10.1007/s11105-016-1022-y
[48] Wang F L, Wu G T, Lang C X, Liu R H. Influence on Brassica seed oil content by transformation with heteromeric Acetyl-CoA Carboxylase (ACCase) gene. Mol Plant Breed, 2017, 15: 920-927.
[49] Jung S H, Kim R J, Kim K J, Lee D H, Suh M C. Plastidial and mitochondrial malonyl CoA-ACP malonyltransferase is essential for cell division and its overexpression increases storage oil content. Plant Cell Physiol, 2019, 60: 1239-1249.
doi: 10.1093/pcp/pcz032 pmid: 30796840
[50] Wu G Z, Xue H W. Arabidopsis beta-Ketoacyl-[Acyl Carrier Protein] synthase I is crucial for fatty acid synthesis and plays a role in chloroplast division and embryo development. Plant Cell, 2010, 22: 3726-3744.
doi: 10.1105/tpc.110.075564
[51] Liu Q, Wu M, Zhang B, Shrestha P, Petrie J, Green A G, Singh S P. Genetic enhancement of palmitic acid accumulation in cotton seed oil through RNAi down-regulation of ghKAS2encoding β-ketoacyl-ACP synthase II (KASII). Plant Biotechnol J, 2017, 15: 132-143.
doi: 10.1111/pbi.2017.15.issue-1
[52] 刘祾悦, 阮成江, 王莉, 张莞晨, 王海明, 吴波, 闫蕊. 文冠果种仁油脂脂肪酸形成的多基因协同调控. 分子植物育种, 2019, 17: 1834-1842.
Liu L Y, Ruan C J, Wang L, Zhang W C, Wang H M, Wu B, Yan R. Coordinated regulation of multigenes formed by fatty acids in kernel of Xanthoceras sorbifolium. Mol Plant Breed, 2019, 17: 1834-1842 (in Chinese with English abstract).
[53] Liu Z W, Wang Z Y, Gu H, You J, Hu M M, Zhang Y J, Zhu Z, Wang Y H, Liu S J, Chen L M, Liu X, Tian Y L, Zhou S R, Jiang L, Liu L L, Wan J M. Identification and phenotypic characterization of ZEBRA LEAF16 encoding a β-hydroxyacyl-ACP dehydratase in rice. Front Plant Sci, 2018, 9: 782.
doi: 10.3389/fpls.2018.00782
[54] 刘丽, 王玉美, 赵彦朋, 王丹, 赵鹏, 刘正杰, 华金平. 棉花脂肪酸合成酶基因GhKARGhENR表达载体构建及其功能初探. 棉花学报, 2016, 28: 527-537.
doi: 10.11963/issn.1002-7807.201606002
Liu L, Wang Y M, Zhao Y P, Wang D, Zhao P, Liu Z J, Hua J P. Construction of expression vectors and a preliminarily functional analyse fatty acid synthetase genes of GhKAR and GhENR in upland cotton. Cotton Sci, 2016, 28: 527-537 (in Chinese with English abstract).
doi: 10.11963/issn.1002-7807.201606002
[55] 熊腾, 陈张彬, 张振乾, 陈浩, 袁勇, 熊兴华, 邬贤梦, 官春云, 肖钢. 甘蓝型油菜中5个脂酰-ACP硫酯酶基因的克隆与功能初步分析. 中国油料作物学报, 2021, 43: 212-218.
Xiong T, Chen Z B, Zhang Z Q, Chen H, Yuan Y, Xiong X H, Wu X M, Guan C Y, Xiao G. Gene isolation and characterization of 5 fatty acyl-ACP thioesterase in Brassica napus. Chin J Oil Crop Sci, 2021, 43: 212-218 (in Chinese with English abstract).
[56] Ding L N, Gu S L, Zhu F G, Ma Z Y, Li J, Li M, Wang Z, Tan X L. Long-chain acyl-CoA synthetase 2 is involved in seed oil production in Brassica napus. BioMed Cent, 2020, 20: 21.
[57] Liu Z J, Yang X H, Fu Y, Zhang Y R, Yan J B, Song T M, Rocheford T, Li J S. Proteomic analysis of early germs with high-oil and normal inbred lines in maize. Mol Biol Rep, 2009, 36: 813-821.
doi: 10.1007/s11033-008-9250-3 pmid: 18523866
[58] Xu C C, Shanklin J. Triacylglycerol metabolism, function, and accumulation in plant vegetative tissues. Annu Rev Plant Biol, 2016, 67: 179-206.
doi: 10.1146/annurev-arplant-043015-111641 pmid: 26845499
[59] Muthulakshmi C, Sivaranjani R, Selvi S. Modification of sesame (Sesamum indicum L.) for Triacylglycerol accumulation in plant biomass for biofuel applications. Biotechnol Rep, 2021, 32: e00668.
[60] 郝静芳. 拟南芥甘油-3-磷酸酰基转移酶的三个基因(GPAT6, 7, 9)在种子油脂合成及幼苗耐盐中的作用. 南京农业大学硕士学位论文, 江苏南京, 2013.
Hao J F. The Functions of Three Genes of Glycerol-3-Phosphate Acyltransferase (GPAT6, 7, 9) in Regulation of Seed-Oil Content and Salt Tolerance in Arabidopsis. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2013 (in Chinese with English abstract).
[61] Woodfield H K, Fenyk S, Wallington E, Bates R E, Brown A, Guschina I A, Marillia E F, Taylor D C, Fell D, Harwood J L, Fawcett T. Increase in lysophosphatidate acyltransferase activity in oilseed rape (Brassica napus) increases seed triacylglycerol content despite its low intrinsic flux control coefficient. New Phytol, 2019, 224: 700-711.
doi: 10.1111/nph.16100 pmid: 31400160
[62] Nakamura Y, Koizumi R, Shui G H, Shimojima M, Wenk M R, Ito T, Ohta H. Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation. Proc Natl Acad Sci USA, 2009, 106: 20978-20983.
doi: 10.1073/pnas.0907173106 pmid: 19923426
[63] Eastmond P J, Quettier A L, Kroon J T M, Craddock C, Adams N, Slabas A R. Phosphatidic acid phosphohydrolase 1 and 2 regulate phospholipid synthesis at the endoplasmic reticulum in Arabidopsis. Plant Cell, 2010, 22: 2796-2811.
doi: 10.1105/tpc.109.071423
[64] 刘铭宇. 过表达与三酰甘油有关的几个基因提高拟南芥种子的含油量. 华中农业大学硕士学位论文, 湖北武汉, 2020.
Liu M Y. Enhanced Arabidopsis Seed Oil Content by Overexpressing Several Genes Related to Triacylglyceride Synthesis. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2020 (in Chinese with English abstract).
[65] Kim H U, Lee K R, Go Y S, Jung J H, Suh M C, Kim J B. Endoplasmic reticulum-located PDAT1-2from castor bean enhances hydroxy fatty acid accumulation in transgenic plants. Plant Cell Physiol, 2011, 52: 983-993.
doi: 10.1093/pcp/pcr051
[66] Jin F, Zhou Y, Zhang P, Huang R M, Fan W, Li B X, Li G Z, Song X B, Pei D. Identification of key lipogenesis stages and proteins involved in walnut kernel development. J Agric Food Chem, 2023, 71: 4306-4308.
doi: 10.1021/acs.jafc.2c08680
[67] Chen K, Yin Y T, Liu S, Guo Z Y, Zhang K, Liang Y, Zhang L N, Zhao W G, Chao H B, Li M T. Genome-wide identification and functional analysis of oleosin genes in Brassica napus L. BMC Plant Biol, 2019, 19: 294.
doi: 10.1186/s12870-019-1891-y
[68] Liu X L, Yang Z, Wang Y, Shen Y, Jia Q L, Zhao C Z, Zhang M. Multiple caleosins have overlapping functions in oil accumulation and embryo development. J Exp Bot, 2022, 73: 3946-3962.
doi: 10.1093/jxb/erac153 pmid: 35419601
[69] Manan S, Zhao J. Role of Glycine max abscisic acid insensitive 3 (GmABI3) in lipid biosynthesis and stress tolerance in soybean. Funct Plant Biol, 2021, 48: 171-179.
doi: 10.1071/FP19260
[70] Shen B, Allen W B, Zheng P Z, Li C J, Glassman K, Ranch J, Nubel D, Tarczynski M C. Expression of ZmLEC1 and ZmWRI1increases seed oil production in maize. Plant Physiol, 2010, 153: 980-987.
doi: 10.1104/pp.110.157537 pmid: 20488892
[71] Thomas V, Anna E T, Pushkar S, Zhou X R, Surinder P S, James R P. Synergistic effect of WRI1 and DGAT1 coexpression on triacylglycerol biosynthesis in plants. FEBS Lett, 2013, 587: 364-369.
doi: 10.1016/j.febslet.2012.12.018 pmid: 23313251
[72] 李鑫, 王正明, 薛伟, 初光明. 棉花中一个新型转录因子GhWRI1的表达特征与功能分析. 生物技术通报, 2013, (6): 80-92.
Li X, Wang Z M, Xue W, Chu G M. Identification and characterization of a novel gene, GhWRI1, encoding an AP2-type transcription factor in Gossypium hirsutum. Biotechnol Bull, 2013, (6): 80-92 (in Chinese with English abstract).
[73] Tan H L, Yang X H, Zhang F C, Zheng X, Qu C M, Mu J Y, Fu F Y, Li J N, Guan R Z, Zhang H S, Wang G D, Zuo J R. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiol, 2011, 156: 1577-1588.
doi: 10.1104/pp.111.175000
[74] Baud S, Mendoza M S, Alexandra T, Harscoët E, Lepiniec L, Dubreucq B. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J, 2007, 50: 825-838.
doi: 10.1111/tpj.2007.50.issue-5
[75] 韦云婷, 彭烨, 吴宁柔, 冯韬, 官春云. 甘蓝型油菜转录因子FUS3的克隆、表达分析及其与脂肪酸组分的关系. 中国油料作物学报, 2018, 40: 1-9.
doi: 10.7505/j.issn.1007-9084.2018.01.001
Wei Y T, Peng Y, Wu N R, Feng T, Guan C Y. Transcription factor FUS3 and its relation to fatty acid in Brassica napus. Chin J Oil Crop Sci, 2018, 40: 1-9 (in Chinese with English abstract).
[76] Ibáñez-Salazar A, Sergio R M, Alejandro R U, Jocelín I R A, Ignacio L H, Araceli H T, Luz M T P, Ana S S R, Bernardo B H, José L M S, Elena R G. Over-expression of Dof-type transcription factor increases lipid production in Chlamydomonas reinhardtii. J Biotechnol, 2014, 184: 27-38.
doi: 10.1016/j.jbiotec.2014.05.003 pmid: 24844864
[77] 尹明智, 官梅, 肖钢, 李栒, 官春云. DOF 转录因子AtDof1.7 RNA干扰载体的构建及拟南芥的遗传转化. 作物学报, 2011, 37: 1196-1204.
doi: 10.3724/SP.J.1006.2011.01196
Yin M Z, Guan M, Xiao G, Li X, Guan C Y. RNAi vector construction of AtDof1.7 transcription factors and genetic transformation into Arabidopsis thaliana. Acta Agron Sin, 2011, 37: 1196-1204 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2011.01196
[78] 马文华. 过量表达AtLEC1AtMYB118 基因改良花生籽粒含油量的研究. 山东大学硕士学位论文, 山东济南, 2015.
Ma W H, Study on Genetic Improvement of Seed Oil Content in Peanut (Arachis hypogaea L.) by Overexpression of AtLECI and AtMYB118Gene. MS Thesis of Shandong University, Jinan, Shandong, China, 2015 (in Chinese with English abstract).
[79] 张占琴, 王金梅, 王学军, 汪凯华, 袁春新, 麻浩. 油菜籽粒发育过程中PEPCase活性与油脂, 蛋白及亚基积累的特点. 中国油料作物学报, 2009, 31: 14-18.
Zhang Z Q, Wang J M, Wang X J, Wang K H, Yuan C X, Ma H. The characteristics of PEPCase activity and accumulation of oil, protein and major protein subunits during seed development of rape (Brassica napus). Chin J Oil Crop Sci, 2009, 31: 14-18 (in Chinese with English abstract).
[80] Zhao Y P, Huang Y, Wang Y M, Cui Y P, Liu Z J, Hua J P. RNA interference of GhPEPC2enhanced seed oil accumulation and salt tolerance in upland cotton. Plant Sci, 2018, 271: 52-61.
doi: 10.1016/j.plantsci.2018.03.015
[81] 张运达, 王凤琴, 姚一萍. 海拔、纬度、温度对向日葵脂肪及脂肪酸、蛋白质及氨基酸含量的影响. 中国油料, 1993, (1): 65-66.
Zhang Y D, Wang F Q, Yao Y P. Effects of altitude, latitude and temperature on contents of fat, fatty acid, protein and amino acid in sunflower. Chin J Oil Crop Sci, 1993, (1): 65-66 (in Chinese).
[82] 杜维, 丁健, 阮成江. 沙棘果实发育过程中内源激素水平的动态变化. 植物学报, 2018, 53: 219-226.
doi: 10.11983/CBB17048
Du W, Ding J, Ruan C J. Dynamic changes of hormones contents in different fruit development alstages of sea buckthorn. Chin Bull Bot, 2018, 53: 219-226 (in Chinese with English abstract).
[83] 李丽. 利用连锁和全基因组关联分析鉴定花生株型相关性状的QTLs. 河北农业大学博士学位论文, 河北保定, 2019.
Li L. Quantitative Trait Loci Identification for Growth Habit-Related Traits Using the Linkage and Genome-wide Association Analysis in Peanut (Arachis hypogaea L.). PhD Dissertation of Graduate School of Hebei Agricultural University, Baoding, Hebei, China, 2019 (in Chinese with English abstract).
[84] 蒋艺飞. 花生黄曲霉侵染抗性和产毒抗性的QTL分析. 中国农业科学院硕士学位论文, 北京, 2021.
Jiang Y F. QTL Analysis of Resistance to Aspergillus flavus Infection and Aflatoxin Production in Peanut. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2021 (in Chinese with English abstract).
[85] Wang Z H, Yan L Y, Chen Y N, Huai D X, Kang Y P, Jiang H F, Liu K D, Lei Y, Liao B S. Detection of a major QTL and development of KASP markers for seed weight by combining QTL-seq, QTL-mapping and RNA-seq in peanut. Theo Appl Genet, 2022, 135: 1779-1795.
doi: 10.1007/s00122-022-04069-0
[86] Wang X, Liu Y, Ou-Yang L, Yao R N, He D L, Han Z K, Li W T, Ding Y B, Wang Z H, Kang Y P, Yan L Y, Chen Y N, Huai D X, Jiang H F, Lei Y, Liao B S. Metabolomics combined with transcriptomics analyses of mechanism regulating testa pigmentation in peanut. Front Plant Sci, 2022, 13: 1065049.
doi: 10.3389/fpls.2022.1065049
[87] Wang X, Liu Y, Han Z K, Chen Y N, Huai D X, Kang Y P, Wang Z H, Yan L Y, Jiang H F, Lei Y. Integrated transcriptomics and metabolomics analysis reveal key metabolism pathways contributing to cold tolerance in peanut. Front Plant Sci, 2021, 12: 752474.
doi: 10.3389/fpls.2021.752474
[88] Li J W, Ma Y C, Hu M D, Zhao Y L, Liu B, Wang C M, Zhang M, Zhang L P, Yang X L, Mu G J. Multi-omics and miRNA interaction joint analysis highlight new insights into anthocyanin biosynthesis in peanuts (Arachis hypogaea L.). Front Plant Sci, 2022, 13: 818345.
doi: 10.3389/fpls.2022.818345
[89] Li L, Tian Z, Chen J, Tan Z, Zhang Y, Zhao H, Wu X, Yao X, Wen W, Chen W, Guo L. Characterization of novel loci controlling seed oil content in Brassica napus by marker metabolite-based multi-omics analysis. Genome Biol, 2023, 24: 141.
doi: 10.1186/s13059-023-02984-z
[90] 魏丽娟, 刘瑞影, 张莉, 陈志友, 杨鸿, 霍强, 李加纳. 甘蓝型油菜茎高 QTL 定位及株高相关位点整合. 作物学报, 2019, 45: 818-828.
doi: 10.3724/SP.J.1006.2019.84133
Wei L J, Liu R Y, Zhang L, Chen Z Y, Yang H, Huo Q, Li J N. Detection of stem height QTL and integration of the loci for plant height-related traits in Brassica napus. Acta Agron Sin, 2019, 45: 818-828 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2019.84133
[91] 胡雅君, 栗孟飞, 杨德龙, 刘媛, 程洪波, 常磊, 柴守玺. 小麦籽粒WSC含量QTL的整合与元分析. 麦类作物学报, 2016, 36: 989-995.
Hu Y J, Li M F, Yang D L, Liu Y, Cheng H B, Chang L, Chai S X. Integration and meta-analysis of quantitative trait loci for water- soluble carbohydrate content in wheat grain. J Triticeae Crops, 2016, 36: 989-995 (in Chinese with English abstract).
[1] 张力岚, 杨军, 王让剑. 茶树橙花叔醇和芳樟醇樱草糖苷含量全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(4): 871-886.
[2] 岳海旺, 魏建伟, 刘朋程, 陈淑萍, 卜俊周. 基于GYT双标图分析对黄淮海生态区玉米品种综合评价[J]. 作物学报, 2024, 50(4): 836-856.
[3] 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835.
[4] 李海芬, 鲁清, 刘浩, 温世杰, 王润风, 黄璐, 陈小平, 洪彦彬. 花生赤霉素3-β-双加氧酶(AhGA3ox)基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(4): 932-943.
[5] 余瑶, 王紫瑶, 周思睿, 刘鹏程, 叶亚峰, 马伯军, 刘斌美, 陈析丰. 水稻类病变突变体lms1的表型鉴定与抗病分子机制分析[J]. 作物学报, 2024, 50(4): 857-870.
[6] 鲁清, 刘浩, 李海芬, 王润风, 黄璐, 梁炫强, 陈小平, 洪彦彬, 刘海燕, 李少雄. 花生含油量全基因组选择及近红外光谱筛选的育种技术探究[J]. 作物学报, 2024, 50(4): 969-980.
[7] 王亚琪, 徐海风, 李曙光, 傅蒙蒙, 余希文, 赵志鑫, 杨加银, 赵团结. 大豆类病变皱叶突变体NT301遗传分析和2对基因定位[J]. 作物学报, 2024, 50(4): 808-819.
[8] 琚吉浩, 马超, 王添宁, 吴毅, 董钟, 方美娥, 陈钰姝, 张均, 付国占. 小麦TaPOD家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(3): 779-792.
[9] 代洪苇, 刘洁强, 张丽, 童华荣, 袁连玉. 茶树CsMCC1CsMCC2基因的克隆及表达特征性分析[J]. 作物学报, 2024, 50(3): 656-668.
[10] 张丽洁, 周海宇, MUHAMMAD Zeshan, MUNSIF Ali Shad, 杨明冲, 李波, 韩世健, 张翠翠, 胡利华, 王令强. 水稻花粉小肽锌指蛋白基因OsFLZ13功能研究[J]. 作物学报, 2024, 50(3): 543-555.
[11] 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602.
[12] 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632.
[13] 王瑞, 张福耀, 詹鹏杰, 楚建强, 晋敏姗, 赵威军, 程庆军. 基于RNA-Seq筛选高粱低氮胁迫相关候选基因[J]. 作物学报, 2024, 50(3): 669-685.
[14] 聂晓玉, 李真, 王天尧, 周元委, 徐正华, 王晶, 汪波, 蒯婕, 周广生. 种植密度对角果期弱光胁迫油菜籽粒油脂积累的影响[J]. 作物学报, 2024, 50(2): 493-505.
[15] 李艳, 方宇辉, 王永霞, 彭超军, 华夏, 齐学礼, 胡琳, 许为钢. 不同磷胁迫处理转OsPHR2小麦的转录组学分析[J]. 作物学报, 2024, 50(2): 340-353.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .