欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (4): 820-835.doi: 10.3724/SP.J.1006.2024.34144

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因

李阳阳1,2,3(), 吴丹2,3, 许军红2,3, 陈倬永1,2,3, 徐昕媛1,2,3, 徐金盼1,2,3, 唐钟林1,2,3, 张娅茹1,2,3, 朱丽1,2,3, 严卓立1,2,3, 周清元1,2,3, 李加纳1,2,3, 刘列钊1,2,3, 唐章林1,2,3,*()   

  1. 1西部(重庆)科学城种质创制大科学中心, 重庆 401329
    2西南大学农学与生物科技学院, 重庆 400715
    3西南大学农业科学研究院, 重庆 400715
  • 收稿日期:2023-08-24 接受日期:2023-10-23 出版日期:2024-04-12 网络出版日期:2023-11-13
  • 通讯作者: * 唐章林, E-mail: tangzhlin@swu.edu.cn
  • 作者简介:E-mail: yyli1993swu@163.com
  • 基金资助:
    国家重点研发计划项目(2022YFD1201600);重庆市技术创新与应用发展专项重点项目(cstc2021jscx-cylhX0003)

Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L.

LI Yang-Yang1,2,3(), WU Dan2,3, XU Jun-Hong2,3, CHEN Zhuo-Yong1,2,3, XU Xin-Yuan1,2,3, XU Jin-Pan1,2,3, TANG Zhong-Lin1,2,3, ZHANG Ya-Ru1,2,3, ZHU Li1,2,3, YAN Zhuo-Li1,2,3, ZHOU Qing-Yuan1,2,3, LI Jia-Na1,2,3, LIU Lie-Zhao1,2,3, TANG Zhang-Lin1,2,3,*()   

  1. 1Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing 401329, China
    2College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
    3Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
  • Received:2023-08-24 Accepted:2023-10-23 Published:2024-04-12 Published online:2023-11-13
  • Contact: * E-mail: tangzhlin@swu.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2022YFD1201600);Chongqing Technology Innovation and Application Development Key Project(cstc2021jscx-cylhX0003)

摘要:

干旱胁迫严重限制了甘蓝型油菜种植面积的扩大和产量的提升。耐旱性是由多基因控制的复杂数量性状, 将QTL定位与转录组测序相结合, 是鉴定甘蓝型油菜耐旱候选基因的有效手段。本研究对甘蓝型油菜干旱敏感品系三六矮和耐旱品系科里纳-2构建的F2:6和F2:8重组自交系群体幼苗进行正常灌溉和干旱胁迫处理, 测定地上部鲜重、地上部干重、叶片相对含水量、丙二醛和可溶性糖含量, 利用SSR和SNP多态性分子标记构建遗传连锁图谱, 鉴定耐旱相关QTL和候选区间, 结合耐旱材料No11和干旱敏感材料No28的转录组测序, 筛选耐旱相关候选基因。研究结果表明: 干旱胁迫使甘蓝型油菜幼苗地上部鲜重、地上部干重和叶片相对含水量下降, 使叶片丙二醛和可溶性糖含量上升; 耐旱相关QTL和候选区间分布于A01、A02、A06、A08、A09、A10、C02、C03、C04、C06和C09染色体; 对耐旱材料和干旱敏感材料正常灌溉、干旱24 h、36 h和48 h进行转录组分析, 主要差异表达基因显著富集到光合作用、脂肪酸代谢、氨基酸代谢、植物激素信号转导、核糖体、昼夜节律及角质、木栓素和蜡质的生物合成等相关途径; 将QTL与转录组测序相结合, 鉴定到28个耐旱相关候选基因, 主要编码FLC、bHLH105、TGA4、TEM1、ERF003、ACO3、CHLI1、LHCB6和PORC等, 具有转录因子活性、乙烯产生和信号传导、叶绿素生物合成与结合、叶绿素氧化还原酶以及编码核糖体相关蛋白等功能。这些结果可为揭示甘蓝型油菜耐旱机理及分子标记辅助选育耐旱新品种奠定基础。

关键词: 甘蓝型油菜, 耐旱, QTL, 转录组, 候选基因

Abstract:

Drought stress severely limits planting promotion and yield increase in Brassica napus L. Drought tolerance is a complex quantitative trait controlled by multiple genes. Combining QTL and transcriptome is an effective method for identifying candidate genes associated with drought tolerance in B. napus. In this study, the seedlings of F2:6 and F2:8 recombinant inbred lines, constructed by Sanliu’ai (drought sensitivity line) and Kelina-2 (drought tolerance line), were treated with drought stress and well watering at seedling stage. Shoot fresh weight, shoot dry weight, leaf relative water content, malondialdehyde content, and soluble sugar content were measured. The QTL and candidate intervals were identified based on genetic linkage maps, which were constructed using SSR and SNP markers with polymorphism. Subsequently, candidate genes associated with drought tolerance were screened by combining transcriptome sequencing of No11 (drought tolerance material) and No28 (drought sensitivity material). Drought stress decreased shoot fresh weight, shoot dry weight, and leaf relative water content, and increased the contents of malondialdehyde and soluble sugar. QTL and candidate intervals related to drought tolerance were distributed on chromosome A01, A02, A06, A08, A09, A10, C02, C03, C04, C06, and C09. By transcriptome analysis of drought tolerance and sensitivity materials under well water, drought stress for 24, 36, and 48 h, the major different expression genes were enriched in the pathways associated with photosynthesis, fatty acid metabolism, amino acid metabolism, plant hormone signal transduction, ribosome, circadian rhythm and biosynthesis of keratin, cork and wax. A total of 28 candidate genes related to drought tolerance were identified by combining QTL and transcriptome. They coded FLC, bHLH105, TGA4, TEM1, ERF003, ACO3, CHLI1, LHCB6, PORC, etc., which had transcription factor activity, ethylene production and signal transduction, chlorophyll biosynthesis and binding, chlorophyll oxidoreductase and encoding ribosome proteins. These results could provide a basis for revealing drought tolerance mechanism and molecular breeding of drought tolerance variety in B. napus.

Key words: Brassica napus L., drought tolerance, QTL, transcriptome, candidate genes

表1

甘蓝型油菜F2:6和F2:8重组自交系群体耐旱相关性状的方差分析"

群体
Population
变异来源
Source of variation
RWC SFW SDW SUG MDA
DF F-value DF F-value DF F-value DF F-value DF F-value
F2:6 水分间Water 1 11.18** 1 850.03** 1 214.32** 1 30.86** 1 91.75**
家系间Line 103 4.64** 104 14.41** 104 14.96** 104 15.29** 104 552.39**
水分×家系
Water×Line
103
3.10**
104
10.55**
104
5.98**
104
9.96**
104
392.10**
误差Error 208 210 210 210 210
F2:8 水分间Water 1 3175.43** 1 2237.27** 1 389.89** 1 1490.35** 1 1139.48**
家系间Line 125 2.36** 125 6.25** 125 6.21** 125 15.72** 125 21.62**
水分×家系
Water×Line
125
2.30**
124
3.65**
124
1.76**
124
13.32**
123
11.86**
误差Error 446 426 414 462 471

表2

甘蓝型油菜亲本及F2:6和F2:8重组自交系群体耐旱相关性状描述统计分析"

性状
Trait
群体
Population
处理
Treatment
亲本Parent 群体Population
三六矮
Sanliu’ai
科里纳-2
Kelina-2
平均值
Average
标准误差
SE
变幅
Range
峰度
Kurtosis
偏度
Skewness
RWC (%) F2:6 CK 91.72 93.35 86.51 0.54 68.96-96.55 0.95 -0.76
DS 83.98 86.24 85.16 0.58 61.78-96.87 2.27 -1.19
F2:8 CK 88.00 86.84 89.74 0.28 72.10-95.14 7.26 -1.64
DS 65.46 76.11 71.27 0.42 60.83-82.91 -0.55 -0.06
SFW (g) F2:6 CK 20.18 10.78 16.55 0.46 4.79-30.27 0.01 0.21
DS 15.67 9.00 11.71 0.36 4.79-23.90 0.15 0.71
F2:8 CK 44.78 27.06 36.79 1.02 11.84-75.42 1.57 1.04
DS 19.22 22.70 14.36 0.38 6.58-25.85 -0.03 0.62
SDW (g) F2:6 CK 1.27 0.72 1.18 0.04 0.41-2.34 0.06 0.64
DS 0.95 0.61 0.95 0.03 0.37-1.92 0.47 0.87
F2:8 CK 3.80 2.65 2.72 0.08 0.89-5.90 0.85 0.74
DS 2.30 2.10 1.81 0.05 0.59-3.48 0.90 0.59
SUG (μg g-1) F2:6 CK 1496.20 542.03 2744.17 226.85 186.82-16219.47 12.23 2.83
DS 6485.20 1081.01 3271.71 249.66 222.49-12447.88 3.50 1.69
F2:8 CK 3888.00 4581.34 5349.75 131.73 2144.61-10444.09 0.82 0.75
DS 6265.26 7643.01 7278.97 131.53 3370.63-10742.93 0.17 0.15
MDA (μmol g-1) F2:6 CK 7.49 13.97 9.80 0.44 3.43-34.67 8.58 2.26
DS 12.77 17.70 10.04 0.34 5.28-23.09 1.81 1.31
F2:8 CK 41.18 20.43 29.26 0.97 9.34-64.77 0.54 0.83
DS 50.15 50.63 41.03 1.04 23.76-71.73 -0.63 0.51

图1

甘蓝型油菜F2:6和F2:8重组自交系群体耐旱相关性状的频数分布图 缩写同表1和表2。"

图2

甘蓝型油菜耐旱和干旱敏感材料耐旱相关性状 **: P < 0.01。缩写同表1。"

图3

SSR标记遗传连锁图谱及QTL分布 DRI: 耐旱系数。其他缩写同表1和表2。"

图4

SNP标记遗传连锁图谱及QTL分布"

表3

甘蓝型油菜耐旱相关性状QTL及候选区间"

群体
Population
QTL 置信区间
Confidence interval (cM)
邻近标记
Marker
物理位置
Physical position
(bp)
阈值
LOD
染色体
Chr.
候选区间
Candidate range
(bp)
F2:6 qSFWCK-A01 78.85-86.82 AX-95683221 4227188 3.04 A01 4047188-4407188
AX-179306831 4399498 2.89 A01 4219498-4579498
F2:8 qRWCDRI-A02 17.64-31.87 AX-177910459 262823 3.07 A02 82823-442823
F2:8 qRWCDS-A02 16.64-33.30 AX-177910459 262823 2.99 A02 82823-442823
F2:8 qSFWCK-A02 43.41-47.22 AX-177829332 4692035 2.53 A02 4512035-4872035
F2:8 qSUGCK-A02 0.00-8.00 AX-177834286 20489037 3.20 A02 20309037-20669037
F2:6 qSDWCK-A02 0.00-11.74 SWUA02_198 893419-893684 3.14 A02 713419-1073684
A02_2 893423-893813 3.47 A02 713423-1073813
F2:8 qSFWDRI-A06 136.38-140.39 AX-95506320 20609909 2.50 A06 20429909-20789909
F2:8 qMDACK-A08 28.40-30.85 AX-95638560 11831251 2.58 A08 11331251-12331251
F2:8 qSFWDRI-A08 89.56-109.10 AX-95637797 16969405 3.04 A08 16469405-17469405
F2:6 qSDWCK-A09 37.27-44.43 AX-179306992 2292222 2.59 A09 1912222-2672222
F2:6 qSFWCK-A09 37.27-44.43 AX-179306992 2292222 2.70 A09 1912222-2672222
F2:8 qMDADRI-A09 163.36-165.01 AX-177830392 26135201 4.09 A09 25755201-26515201
F2:6 qMDACK-A09 0.00-2.00 nia_m046 21769576-21769946 2.91 A09 21389576-22149946
F2:6 qRWCDS-A09 0.00-2.00 nia_m046 21769576-21769946 2.87 A09 21389576-22149946
F2:8 qRWCCK-A10 12.22-14.56 AX-182144456 885133 3.06 A10 675133-1095133
F2:6 qSFWDRI-A10 134.63-148.54 AX-177911667 16025485 3.04 A10 15815485-16235485
AX-95637504 16164216 3.08 A10 15954216-16374216
AX-182169619 16167478 3.04 A10 15957478-16377478
F2:8 qSUGCK-C02 7.00-45.13 AX-182158861 16526368 2.58 C02 15326368-17726368
AX-95636960 16803922 3.01 C02 15603922-18003922
AX-182136799 24120437 2.99 C02 22920437-25320437
AX-182139036 28872169 3.49 C02 27672169-30072169
AX-182125192 33288173 2.98 C02 32088173-34488173
AX-105306912 34988363 2.58 C02 33788363-36188363
AX-95505280 41712868 2.96 C02 40512868-42912868
F2:6 qRWCDRI-C02 29.49-31.89 SWUC316 33799496-33799694 3.36 C02 32599496-34999694
F2:6 qRWCDS-C02 29.49-30.89 SWUC316 33799496-33799694 2.77 C02 32599496-34999694
F2:6 qMDADS-C02 29.89-37.57 SWUC316 33799496-33799694 3.35 C02 32599496-34999694
SWUC344 40102848-40103191 2.53 C02 38902848-41303191
SWUC284 43919221-43919418 2.54 C02 42719221-45119418
SWUC293 36909045-36909237
19357230-19357429
3.00 C02
A02
35709045-38109237
19177230-19537429
F2:8 qSFWDRI-C03 153.23-157.21 AX-95636893 9150013 2.71 C03 8750013-9550013
F2:6 qSUGDRI-C04 103.69-108.02 AX-95506064 7272757 7.10 C04 6682757-7862757
F2:8 qSUGDS-C06 74.57-101.32 AX-105336545 29172287 3.04 C06 28772287-29572287
AX-95665032 29186383 2.66 C06 28786383-29586383
AX-86230901 29308911 3.04 C06 28908911-29708911
AX-95665273 29401522 3.04 C06 29001522-29801522
AX-95664947 29433854 3.04 C06 29033854-29833854
AX-105310203 29489446 3.04 C06 29089446-29889446
AX-105308711 29627549 3.04 C06 29227549-30027549
AX-86230806 29710301 3.04 C06 29310301-30110301
AX-182145054 29797943 3.04 C06 29397943-30197943
AX-86215830 30202409 3.04 C06 29802409-30602409
AX-86230835 30204371 2.92 C06 29804371-30604371
AX-105308457 30304436 3.04 C06 29904436-30704436
AX-95665820 30314052 3.04 C06 29914052-30714052
AX-105310125 30791904 3.04 C06 30391904-31191904
AX-182087795 31059928 3.04 C06 30659928-31459928
AX-95635741 31183285 3.04 C06 30783285-31583285
AX-86230832 31264725 3.11 C06 30864725-31664725
AX-177912717 31340640 2.95 C06 30940640-31740640
F2:8 qSDWDRI-C09 19.55-37.10 AX-95509234 35782323 2.70 C09 35072323-36492323
AX-86236963 37494562 2.68 C09 36784562-38204562
AX-182158558 46574561 2.68 C09 45864561-47284561

图5

正常灌溉与干旱胁迫处理下甘蓝型油菜耐旱和干旱敏感材料差异表达基因分析 A和D: 两材料各个干旱处理时期与对照间的差异基因数目和韦恩图; B和C: 各处理时期2个材料间的差异基因数目和韦恩图; E: 核心差异表达基因KEGG富集分析; F: 耐旱相关候选基因表达水平热图; No11: 耐旱材料; No28: 干旱敏感材料; CK: 正常灌溉; DS24h: 干旱处理24 h; DS36h: 干旱处理36 h; DS48h: 干旱处理48 h。"

图6

WGCNA模块聚类树状图和各模块与性状的相关性 缩写同表1。"

图7

各性状显著相关模块的KEGG富集分析和耐旱相关候选基因表达量热图 A: MEdeeppink1模块; B: MEfirebrick2模块; C: MEindianred4模块; D: MEplum模块; E: 热图。缩写同图5。"

表4

甘蓝型油菜耐旱相关候选基因"

QTL 候选基因Candidate gene QTL 候选基因Candidate gene
qSFWCK-A01 BnaA01g08750D (MYC4)
BnaA01g09270D (CHLI1)
qMDADRI-A09 BnaA09g36380D (RR9)
qRWCDRI-A02 BnaA02g00310D (TGA4) qMDACK-A09 BnaA09g28670D (TEM1)
BnaA09g29410D (PRE6)
qRWCDS-A02 BnaA02g00310D (TGA4) qRWCDS-A09 BnaA09g28670D (TEM1)
BnaA09g29410D (PRE6)
qSFWCK-A02 BnaA02g09540D (RPL24) qRWCCK-A10 BnaA10g01420D (EL22Z)
BnaA10g02050D (PORC)
qSUGCK-A02 BnaA02g27860D (CYP71B22)
BnaA02g27940D (bHLH105)
qSFWDRI-A10 BnaA10g25310D (SUVH1)
qSDWCK-A02 BnaA02g01690D (RPL10) qSUGCK-C02 BnaC02g20870D (HPA1)
qMDACK-A08 BnaA08g13440D (RPL28C)
BnaA08g14220D (ACO3)
qMDADS-C02 BnaC02g40790D (KNAT3)
BnaC02g40810D (ERF003)
qSFWDRI-A08 BnaA08g23760D (LHCB6)
BnaA08g25090D (E2-OGDH)
BnaA08g25130D (ADT1)
qSFWDRI-C03 BnaC03g17470D (PRK1)
BnaC03g17780D (AIP1)
BnaC03g18600D (PXG3)
qSDWCK-A09 BnaA09g04650D (ERF003)
BnaA09g05170D (RUP2)
qSDWDRI-C09 BnaC09g45770D (RPL37B)
BnaC09g46500D (FLC)
qSFWCK-A09 BnaA09g04650D (ERF003)
BnaA09g05170D (RUP2)
[1] Batool M, El-Badri A M, Wang Z K, Mohamed I A A, Yang H Y, Ai X Y, Salah A, Hassan M U, Sami R, Kuai J, Wang B, Zhou G S. Rapeseed morpho-physio-biochemical responses to drought stress induced by PEG-6000. Agronomy, 2022, 12: 579.
doi: 10.3390/agronomy12030579
[2] 周广生, 王晶, 蒯婕, 汪波. 专辑导读: 加强大田经济作物栽培措施与环境/资源配置的互作研究、推动产业高效优质发展. 作物学报, 2021, 47: 1633-1638.
doi: 10.3724/SP.J.1006.2021.04633
Zhou G S, Wang J, Kuai J, Wang B. Editorial: strengthening the research on the interaction between cultivated measures and environment/resource allocation of field economic crops to promote the development of industry with high efficiency and high quality. Acta Agron Sin, 2021, 47: 1633-1638. (in Chinese with English abstract)
[3] 宁宁, 莫娇, 胡冰, 李大双, 娄洪祥, 王春云, 白晨阳, 蒯婕, 汪波, 王晶, 徐正华, 李晓华, 贾才华, 周广生. 长江流域不同生态区油菜籽关键品质比较研究. 作物学报, 2023, 49: 3315-3327.
doi: 10.3724/SP.J.1006.2023.34017
Ning N, Mo J, Hu B, Li D S, Lou H X, Wang C Y, Xiang C Y, Kuai J, Wang B, Wang J, Xu Z H, Li X H, Jia C H, Zhou G S. Comparative study on the processing quality of winter rape in different ecological zones of the Yangtze River valley. Acta Agron Sin, 2023, 49: 3315-3327. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2023.34017
[4] 张佳运, 马淑梅, 余常兵, 王淑彬, 魏亚凤, 杨文钰, 王小春. 长江流域旱地多熟模式水分供需平衡特征与水分生产效益. 作物学报, 2022, 48: 2891-2907.
doi: 10.3724/SP.J.1006.2022.14206
Zhang J Y, Ma S M, Yu C B, Wang S B, Wei Y F, Yang W Y, Wang X C. Characteristics of water supply-demand equilibrium and water production benefits of the dryland multiple cropping patterns in the Yangtze Rive basin. Acta Agron Sin, 2022, 48: 2891-2907. (in Chinese with English abstract)
[5] 万林, 李张开, 李素, 刘丽欣, 马霓, 张春雷. 外源独脚金内酯对油菜苗期干旱胁迫的缓解效应. 中国油料作物学报, 2020, 42: 461-471.
Wan L, Li Z K, Li S, Liu L X, Ma N, Zhang C L. Alleviation effects of exogenous strigolactone on growth of Brassica napus L. seedling under drought stress. Chin J Oil Crop Sci, 2020, 42: 461-471. (in Chinese with English abstract)
[6] 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析. 作物学报, 2021, 47: 462-471.
doi: 10.3724/SP.J.1006.2021.04034
Meng J Y, Liang G W, He Y J, Qian W. QTL mapping of salt and drought tolerance related traits in Brassica napus L. Acta Agron Sin, 2021, 47: 462-471. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04034
[7] 李真. 甘蓝型油菜苗期耐湿性和抗旱性相关QTL分析. 华中农业大学硕士学位论文, 湖北武汉, 2008. pp 46-48.
Li Z. Study on QTL Associated with Waterlogging Tolerance and Drought Resistance during Seedling Stage in Brassica napus L. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2008. pp 46-48. (in Chinese with English abstract)
[8] 王丹丹. 甘蓝型油菜遗传图谱构建及苗期耐旱相关性状的QTL定位. 西南大学硕士学位论文, 重庆, 2013. pp 32-33.
Wang D D. Mapping and QTL Analysis of Genes to Drought Tolerance in Brassica napus L. MS Thesis of Southwest University, Chongqing, China, 2013. pp 32-33. (in Chinese with English abstract)
[9] Mahmoud G, Chao H B, Li H X, Zhao W G, Lu G Y, Li M T. QTL mapping for seed germination response to drought stress in Brassica napus. Front Plant Sci, 2021, 11: 629970.
doi: 10.3389/fpls.2020.629970
[10] Shahzad A, Qian M C, Sun B Y, Mahmood U, Li S T, Fan Y H, Chang W, Dai L S, Zhu H, Li J N, Qu C M, Lu K. Genome-wide association study identifies novel loci and candidate genes for drought stress tolerance in rapeseed. Oil Crop Sci, 2021, 6: 12-22.
doi: 10.1016/j.ocsci.2021.01.002
[11] Khanzada H, Wassan G M, He H H, Mason A S, Keerio A A, Khanzada S, Faheem M, Solangi A M, Zhou Q H, Fu D H, Huang Y J, Rasheed A. Differentially evolved drought stress indices determine the genetic variation of Brassica napus at seedling traits by genome-wide association mapping. J Adv Res, 2020, 24: 447-461.
doi: 10.1016/j.jare.2020.05.019 pmid: 32577311
[12] Tan M, Liao F, Hou L T, Wang J, Wei L J, Jian H J, Xu X F, Li J N, Liu L Z. Genome-wide association analysis of seed germination percentage and germination index in Brassica napus L. under salt and drought stresses. Euphytica, 2017, 213: 40.
doi: 10.1007/s10681-016-1832-x
[13] 王浩. 基于GWAS和转录组测序鉴定谷子硒响应相关候选基因. 山西农业大学硕士学位论文, 山西太原, 2022. p 9.
Wang H. Identification of Selenium-Responsive Candidate Genes in Foxtail Millet Based on GWAS and Transcriptome Sequencing. MS Thesis of Shanxi Agricultural University, Taiyuan, Shanxi, China, 2022. p 9. (in Chinese with English abstract)
[14] Liu C Q, Zhang X K, Zhang K, An H, Hu K N, Wen J, Shen J X, Ma C Z, Yi B, Tu J X, Fu T D. Comparative analysis of the Brassica napus root and leaf transcript profiling in response to drought stress. Int J Mol Sci, 2015, 16: 18752-18777.
doi: 10.3390/ijms160818752
[15] Wang P, Yang C L, Chen H, Song C P, Zhang X, Wang D J. Transcriptomic basis for drought-resistance in Brassica napus L. Sci Rep, 2017, 7: 40532.
doi: 10.1038/srep40532 pmid: 28091614
[16] Zhou H W, Xiao X J, Asjad A, Han D P, Zheng W, Xiao G B, Huang Y J, Zhou Q H. Integration of GWAS and transcriptome analyses to identify SNPs and candidate genes for aluminum tolerance in rapeseed (Brassica napus L.). BMC Plant Biol, 2022, 22: 130.
doi: 10.1186/s12870-022-03508-w
[17] Jian H J, Zhang A X, Ma J Q, Wang T Y, Yang B, Shuang L S, Liu M, Li J N, Xu X F, Paterson A H, Liu L Z. Joint QTL mapping and transcriptome sequencing analysis reveal candidate flowering time genes in Brassica napus L. BMC Genomics, 2019, 20: 21.
doi: 10.1186/s12864-018-5356-8
[18] Guo J, Li C H, Zhang X Q, Li Y X, Zhang D F, Shi Y S, Song Y C, Li Y, Yang D G, Wang T Y. Transcriptome and GWAS analyses reveal candidate gene for seminal root length of maize seedlings under drought stress. Plant Sci, 2020, 292: 110380.
doi: 10.1016/j.plantsci.2019.110380
[19] Sevanthi A M, Sinha S K, Sureshkumar V, Rani M, Saini M R, Kumari S, Kaushik M, Prakash C, Venkatesh K, Singh G P, Mohapatra T, Mandal P K. Integration of dual stress transcriptomes and major QTL from a pair of genotypes contrasting for drought and chronic nitrogen starvation identifies key stress responsive genes in rice. Rice, 2021, 14: 49.
doi: 10.1186/s12284-021-00487-8 pmid: 34089405
[20] 荆蓉蓉. 甘蓝型油菜苗期耐湿相关性状的全基因组关联分析. 西南大学硕士学位论文, 重庆, 2017. p 16.
Jing R R. Genome-wide Assocaiton Mapping of Water Logging Traits in Brassica napus L. MS Thesis of Southwest University, Chongqing, China, 2017. p 16. (in Chinese with English abstract)
[21] Van Ooijen J W. JoinMap 4: Software for the Calculation of Genetic Linkage Maps in Experimental Populations, 2006. Wageningen: Kyazma B V. pp 1-63.
[22] Van Ooijen J W. MapQTL 6: Software for the Mapping of Quantitative Trait Loci in Experimental Populations of Diploid Species, 2009. Wageningen: Kyazma B V. pp 1-64.
[23] Voorrips R E, MapChart: software for the graphical presentation of linkage maps and QTL. J Hered, 2002, 93: 77-78.
doi: 10.1093/jhered/93.1.77 pmid: 12011185
[24] 李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析. 作物学报, 2023, 49: 2160-2170.
doi: 10.3724/SP.J.1006.2023.24190
Li X, Yang H, Luo L, Li H D, Zhang K, Zhang X R, Li Y Y, Yu H Y, Wang T Y, Liu J Q, Wang Y, Liu F Z, Wan Y S. QTL mapping for single-seed weight of cultivated peanut. Acta Agron Sin, 2023, 49: 2160-2170. (in Chinese with English abstract)
[25] 李阳阳, 荆蓉蓉, 吕蓉蓉, 石鹏程, 李欣, 王芹, 吴丹, 周清元, 李加纳, 唐章林. 甘蓝型油菜湿害胁迫响应性状的全基因组关联分析及候选基因预测. 作物学报, 2019, 45: 1806-1821.
doi: 10.3724/SP.J.1006.2019.94027
Li Y Y, Jing R R, Lyu R R, Shi P C, Li X, Wang Q, Wu D, Zhou Q Y, Li J N, Tang Z L. Genome-wide association analysis and candidate genes prediction of waterlogging-responding traits in Brassica napus. Acta Agron Sin, 2019, 45: 1806-1821. (in Chinese with English abstract)
[26] 王瑞霞, 杜海平, 田宏先. 干旱胁迫对不同生育期芥菜型春油菜幼苗生长的影响. 南方农业, 2019, 13(26): 140-143.
Wang R X, Du H P, Tian H X. Effects of drought stress on the growth of seedlings at different growth stages in spring Brassica juncea. South China Agric, 2019, 13(26): 140-143. (in Chinese)
[27] 石鹏程. 甘蓝型油菜苗期干旱及旱后复水相关性状的全基因组关联分析. 西南大学硕士学位论文, 重庆, 2019. p 15.
Shi P C. Genome-wide Association Mapping for Drought and Rewatering Related Traits at Seedling Stage in Brassica napus L. MS Thesis of Southwest University, Chongqing, China, 2019. p 15. (in Chinese with English abstract)
[28] 谢小玉, 张霞, 张兵. 油菜苗期抗旱性评价及抗旱相关指标变化分析. 中国农业科学, 2013, 46: 476-485.
doi: 10.3864/j.issn.0578-1752.2013.03.004
Xie X Y, Zhang X, Zhang B. Evalution of drought resistance and analysis of variation of relevant parameters at seedling stage of rapeseed (Brassica napus L.). Sci Agric Sin, 2013, 46: 476-485. (in Chinese with English abstract)
[29] 洪双. 全基因组关联分析挖掘甘蓝型油菜耐旱候选基因. 中国农业科学院硕士学位论文, 北京, 2018. pp 31-32.
Hong S. Genome-wide Association Study Identifies Candidate Genes for Drought Tolerance in Brassica napus. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2018. pp 31-32. (in Chinese with English abstract)
[30] 吴金锋. 甘蓝型油菜SNP与SSR分析及耐旱性状的全基因组关联分析. 中国农业科学院博士学位论文, 北京, 2014. pp 27-28.
Wu J F. SNP and SSR Analysis and Genome-wide Association Mapping of Drought Tolerance Trait in Brassica napus. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2014. pp 27-28. (in Chinese with English abstract)
[31] Zhu B, Xu H X, Guo X, Lu J X, Liu X Y, Zhang T. Comparative analysis of drought responsive transcriptome in Brassica napus genotypes with contrasting drought tolerance under different potassium levels. Euphytica, 2023, 219: 25.
doi: 10.1007/s10681-023-03156-7
[32] Fang S, Zhao P M, Tan Z D, Peng Y, Xu L T, Jin Y T, Wei F, Guo L, Yao X. Combining physio-biochemical characterization and transcriptome analysis reveal the responses to varying degrees of drought stress in Brassica napus L. Int J Mol Sci, 2022, 23: 8555.
doi: 10.3390/ijms23158555
[33] Xiong J L, Dai L L, Ma N, Zhang C L. Transcriptome and physiological analyses reveal that AM1 as an ABA-mimicking ligand improves drought resistance in Brassica napus. Plant Growth Regul, 2018, 85: 73-90.
doi: 10.1007/s10725-018-0374-8
[34] Chen Q, Zheng Y, Luo L D, Yang Y P, Hu X Y, Kong X X. Functional FRIGIDA allele enhances drought tolerance by regulating the P5CS1 pathway in Arabidopsis thaliana. Biochem Biophys Res Commun, 2018, 495: 1102-1107.
doi: 10.1016/j.bbrc.2017.11.149
[35] Sun K L, Wang H Y, Xia Z L. The maize bHLH transcription factor bHLH105 confers manganese tolerance in transgenic tobacco. Plant Sci, 2019, 280: 97-109.
doi: S0168-9452(18)31005-7 pmid: 30824033
[36] Zhong L, Chen D D, Min D H, Li W W, Xu Z S, Zhou Y B, Li L C, Chen M, Ma Y Z. AtTGA4, a bZIP transcription factor, confers drought resistance by enhancing nitrate transport and assimilation in Arabidopsis thaliana. Biochem Biophys Res Commun, 2015, 457: 433-439.
doi: 10.1016/j.bbrc.2015.01.009
[37] Luo G Y, Liu A L, Zhou X Y, Zhang X W, Peng Y, Chen X B. Arabidopsis TEMPRANILLO1 transcription factor AtTEM1 negatively regulates drought tolerance. Plant Growth Regul, 2017, 83: 119-127.
doi: 10.1007/s10725-017-0288-x
[38] Naing A H, Campol J R, Kang H, Xu J P, Chung M Y, Kim C K. Role of ethylene biosynthesis genes in the regulation of salt stress and drought stress tolerance in Petunia. Front Plant Sci, 2022, 13: 844449.
doi: 10.3389/fpls.2022.844449
[39] Liu W J, Wang Y C, Gao C Q. The ethylene response factor (ERF) genes from Tamarix hispida respond to salt, drought and ABA treatment. Trees, 2013, 28: 317-327.
doi: 10.1007/s00468-013-0950-5
[40] Rong W, Qi L, Wang A Y, Ye X G, Du L P, Liang H X, Xin Z Y, Zhang Z Y. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J, 2014, 12: 468-479.
doi: 10.1111/pbi.12153 pmid: 24393105
[41] Xu Y H, Liu R, Yan L, Liu Z Q, Jiang S C, Shen Y Y, Wang X F, Zhang D P. Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis. J Exp Bot, 2012, 63: 1095-1106.
doi: 10.1093/jxb/err315 pmid: 22143917
[42] Pattanayak G K, Tripathy B C. Overexpression of protochlorophyllide oxidoreductase C regulates oxidative stress in Arabidopsis. PLoS One, 2011, 6: e26532.
doi: 10.1371/journal.pone.0026532
[43] Tomiyama M, Inoue S I, Tsuzuki T, Soda M, Morimoto S, Okigaki Y, Ohishi T, Mochizuki N, Takahashi K, Kinoshita T. Mg-chelatase I subunit 1 and Mg-protoporphyrin IX methyltransferase affect the stomatal aperture in Arabidopsis thaliana. J Plant Res, 2014, 127: 553-563.
doi: 10.1007/s10265-014-0636-0
[44] Condori-Apfata J A, Batista-Silva W, Medeiros D B, Vargas J R, Valente L M L, Pérez-Díaz J L, Fernie A R, Araújo W L, Nunes- Nesi A. Downregulation of the E2 subunit of 2-Oxoglutarate dehydrogenase modulates plant growth by impacting carbon- nitrogen metabolism in Arabidopsis thaliana. Plant Cell Physiol, 2021, 62: 798-814.
doi: 10.1093/pcp/pcab036 pmid: 33693904
[45] Niu C D, Jiang L J, Cao F G, Liu C, Guo J X, Zhang Z T, Yue Q Y, Hou N, Liu Z Y, Li X W, Tahir M M, He J Q, Li Z X, Li C, Ma F W, Guan Q M. Methylation of a MITE insertion in the MdRFNR1-1 promoter is positively associated with its allelic expression in apple in response to drought stress. Plant Cell, 2022, 34: 3983-4006.
doi: 10.1093/plcell/koac220
[46] Seraj R G M, Tohidfar M, Irani M A, Esmaeilzadeh-Salestani K, Moradian T, Ahmadikhah A, Behnamian M. Metabolomics analysis of milk thistle lipids to identify drought-tolerant genes. Sci Rep, 2022, 12: 12827.
doi: 10.1038/s41598-022-16887-9 pmid: 35896570
[47] Pandian B A, Sathishraj R, Djanaguiraman M, Prasad P V V, Jugulam M. Role of cytochrome P450 enzymes in plant stress response. Antioxidants, 2020, 9: 454.
doi: 10.3390/antiox9050454
[48] Pal G, Bakade R, Deshpande S, Sureshkumar V, Patil S S, Dawane A, Agarwal S, Niranjan V, PrasannaKumar M K, Vemanna R S. Transcriptomic responses under combined bacterial blight and drought stress in rice reveal potential genes to improve multi-stress tolerance. BMC Plant Biol, 2022, 22: 349.
doi: 10.1186/s12870-022-03725-3 pmid: 35850621
[1] 钟元, 朱天宇, 戴成, 马朝芝 . 耐亚磷酸盐除草剂转基因油菜的创建和抗性评价[J]. 作物学报, 2024, 50(5): 1158-1171.
[2] 张红梅, 张威, 王琼, 贾倩茹, 孟珊, 熊雅文, 刘晓庆, 陈新, 陈华涛. 大豆籽粒Ve含量的全基因组关联分析[J]. 作物学报, 2024, 50(5): 1223-1235.
[3] 苗龙, 舒阔, 李娟, 黄茹, 王业杏, Soltani Muhammad yousof, 许竞好, 吴传磊, 李佳佳, 王晓波, 邱丽娟. 大豆根茎过渡区弯曲突变体Mrstz的鉴定与基因定位[J]. 作物学报, 2024, 50(5): 1091-1103.
[4] 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146.
[5] 齐学礼, 李莹, 李春盈, 韩留鹏, 赵明忠, 张建周. 基于转录组探究外源水杨酸对条锈菌侵染小麦幼苗的缓解效应及差异表达基因分析[J]. 作物学报, 2024, 50(4): 1080-1090.
[6] 张力岚, 杨军, 王让剑. 茶树橙花叔醇和芳樟醇樱草糖苷含量全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(4): 871-886.
[7] 周香玉, 徐劲松, 谢伶俐, 许本波, 张学昆. 甘蓝型油菜苗期响应渍害胁迫的生理调控机制[J]. 作物学报, 2024, 50(4): 1015-1029.
[8] 张慧, 张欣雨, 袁旭, 陈伟达, 杨婷. 烟草叶片响应镉胁迫的差异表达基因鉴定及分析[J]. 作物学报, 2024, 50(4): 944-956.
[9] 宋梦媛, 郭中校, 苏禹霏, 邓昆鹏, 兰天娇, 程钰鑫, 包淑英, 王桂芳, 窦金光, 姜泽锴, 王明海, 徐宁. 一种绿豆柱头外露突变体的转录组分析[J]. 作物学报, 2024, 50(4): 957-968.
[10] 王瑞, 张福耀, 詹鹏杰, 楚建强, 晋敏姗, 赵威军, 程庆军. 基于RNA-Seq筛选高粱低氮胁迫相关候选基因[J]. 作物学报, 2024, 50(3): 669-685.
[11] 张月, 王志慧, 淮东欣, 刘念, 姜慧芳, 廖伯寿, 雷永. 花生含油量的遗传基础与QTL定位研究进展[J]. 作物学报, 2024, 50(3): 529-542.
[12] 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602.
[13] 陈天, 李昱樱, 荣二花, 吴玉香. 棉属人工异源四倍体后代性状鉴定及花器转录组学分析[J]. 作物学报, 2024, 50(2): 325-339.
[14] 朱晓亚, 张强强, 赵鹏, 刘明, 王静, 靳容, 于永超, 唐忠厚. 叶面喷施丹参碳点缓解甘薯低磷胁迫的转录组与代谢组学分析[J]. 作物学报, 2024, 50(2): 383-393.
[15] 李艳, 方宇辉, 王永霞, 彭超军, 华夏, 齐学礼, 胡琳, 许为钢. 不同磷胁迫处理转OsPHR2小麦的转录组学分析[J]. 作物学报, 2024, 50(2): 340-353.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .