欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (4): 808-819.doi: 10.3724/SP.J.1006.2024.34106

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆类病变皱叶突变体NT301遗传分析和2对基因定位

王亚琪1(), 徐海风1, 李曙光1, 傅蒙蒙1, 余希文1, 赵志鑫1, 杨加银1,*(), 赵团结2,*()   

  1. 1江苏徐淮地区淮阴农业科学研究所 / 淮安市农业生物技术重点实验室 / 农业农村部淮河下游种质创制重点实验室, 江苏淮安 223001
    2南京农业大学大豆研究所 / 国家大豆改良中心(南京) / 农业农村部大豆生物学与遗传育种重点实验室(综合) / 作物遗传与种质创新国家重点实验室, 江苏南京 210095
  • 收稿日期:2023-06-27 接受日期:2023-10-23 出版日期:2024-04-12 网络出版日期:2023-11-14
  • 通讯作者: * 赵团结, E-mail: tjzhao@njau.edu.cn;杨加银, E-mail: hynksyjy@163.com
  • 作者简介:E-mail: yqwang_01@126.com
  • 基金资助:
    国家自然科学基金项目(32201729);淮安市自然科学研究计划项目(联合专项, HABL202120)(HABL202120);淮安市农业科学研究院高层次引进人才科研启动发展基金(0112023014B);淮安市农业科学研究院科研发展基金(HNY202221);江苏省种业振兴揭榜挂帅项目(JBGS[2021]057);江苏省现代作物生产协同创新中心项目(JCIC-MCP)

Genetic analysis and two pairs of genes mapping in soybean mutant NT301 with disease-like rugose leaf

WANG Ya-Qi1(), XU Hai-Feng1, LI Shu-Guang1, FU Meng-Meng1, YU Xi-Wen1, ZHAO Zhi-Xin1, YANG Jia-Yin1,*(), ZHAO Tuan-Jie2,*()   

  1. 1Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu / Huai’an Key Laboratory for Agricultural Biotechnology / Key Laboratory of Germplasm Innovation in Lower Reaches of the Huaihe River, Ministry of Agriculture and Rural Affairs, Huai’an 223001, Jiangsu, China
    2Soybean Research Institute, Nanjing Agricultural University / National Center for Soybean Improvement (Nanjing) / Key Laboratory for Biology and Genetic Improvement of Soybean (General), Ministry of Agriculture and Rural Affairs / National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing 210095, Jiangsu, China
  • Received:2023-06-27 Accepted:2023-10-23 Published:2024-04-12 Published online:2023-11-14
  • Contact: * E-mail: tjzhao@njau.edu.cn; E-mail: hynksyjy@163.com
  • Supported by:
    National Natural Science Foundation of China(32201729);Natural Science Research Program of Huai’an (Joint Special Project, HABL202120)(HABL202120);Scientific Research Fund of Startup and Development for Introduced High-level Talents, Huai’an Academy of Agricultural Sciences(0112023014B);Research and Development Fund Project of Huai’an Academy of Agricultural Sciences(HNY202221);Core Technology Development for Breeding Program of Jiangsu Province(JBGS[2021]057);Jiangsu Collaborative Innovation Center for Modern Crop Production(JCIC-MCP)

摘要:

通过研究类病变突变体, 挖掘抗病基因, 利用分子设计育种的方法快速培育优良抗病大豆新品种, 可减轻化学农药对环境的污染, 降低病害的抗药性。本研究以60Coγ诱变获得的类病变皱叶突变体NT301为父本, 分别与W82、KF1和KF35进行杂交, 构建了F2和F2:3分离群体, 通过SSR标记和SNP分析, 将目标基因1 (rl1)缩小到18号染色体937 kb区间内, 包含66个候选基因, 将目标基因2 (rl2)缩小到8号染色体130 kb区间内, 包含15个候选基因。接着, 本研究利用基因芯片技术对近等基因系进行了基因表达谱研究, 得到了差异表达基因参与的KEGG调控通路。另外对8号染色体的15个候选基因进行半定量与荧光定量RT-PCR表达分析发现, 只有基因Glyma. 08G332500在突变体NT301与野生型中的差异达到了4倍, 推测Glyma.08G332500基因是突变体NT301的候选基因。

关键词: 大豆, 类病变突变体, 皱叶, 基因表达谱

Abstract:

Research on lesion mimic mutant, mining resistance genes, and developing superior disease-resistant new soybean varieties by molecular design breeding methods can contribute to the alleviating the environmental pollution caused by chemical pesticides and drug resistance to disease. In this study, the disease-like rugose leaf mutant NT301 obtained by 60Coγ mutagenesis as the male parent was crossed with W82, KF1, and KF35, respectively, to construct F2 and F2:3 segregating populations. Using SSR and SNP markers, target gene 1 (rl1) was narrowed to 937 kb on chromosome 18 with 66 genes and target gene 2 (rl2) was narrowed to 130 kb on chromosome 8 with 15 genes. The gene expression patterns of the wild type and NT301 were compared using gene chip technology, and the KEGG pathways of the differentially expressed genes were assessed. Moreover, semi quantitative and quantitative RT-PCR methods were used to analyze the relative expression levels of candidate genes on chromosome 8. The results showed that the relative expression level of Glyma.08G332500 in NT301 was four times higher than the wild type. In contrast, the expression levels of other genes showed no more than double difference. Therefore, we suggest that Glyma.08G332500 may be a candidate gene for NT301.

Key words: soybean, disease-like mutant, rugose leaf, gene expression profiles

附表1

本研究所用到的引物"

引物名称
Primer name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
BARCSOYSSR_18_0415 GCTTGGCGAATTCCATCTAA ATTCATTTCACATCCCAGGC
BARCSOYSSR_18_0419 TTTATTATGGGGATCAAATTAAAACT TCGGAGTTAGCCAAATCAAAT
BARCSOYSSR_18_0485 AAGGATTGGCAAAGCGATTA AAAAACAGGGTTTGGTGGGT
BARCSOYSSR_18_0444 TTGACGGCCTTATTTTGGAC GGTGGCTGAATCCAAGACAT
BARCSOYSSR_18_0481 ATCTCAAGGATCTGGCAAGC AATATTCTTTGGCGGTGGTG
BARCSOYSSR_08_1700 CCTTTAATCAACTCTGTGAGATCG GCATAATGCTATTCTCCGCA
BARCSOYSSR_08_1800 ACAAGGAGATTTGGCTTTGC CCGGAGATCGATAAGTTGCT
BARCSOYSSR_08_1724 CATTGGAGCTTGGTAAGGGA GGGAGCAGAGAACTTGAGCA
BARCSOYSSR_08_1736 TCCTTTTTGAAAACGAAATTCA GAGTACATTGGAATAACTGTGCAA
BARCSOYSSR_08_1724 CATTGGAGCTTGGTAAGGGA GGGAGCAGAGAACTTGAGCA
BARCSOYSSR_08_1738 TGTTAGGGACACACTCAACCC CCACGAGATAAGACGAGCAA
BARCSOYSSR_08_1753 CCAGCCACTTCACAGACTGA TTGGGTTATCTGTTTGCTTTGTT
SSR18 GGCTTGACTCTCTGAATCTGTT TAAACAACTTTGAGCCAACGGC
SSR40 ACAAACCTGGTTCGGCTATGT TTACCAAAGCAGTGGGAGCC
Satt409 CCTTAGACCATGAATGTCTCGAAGATA CTTAAGGACACGTGGAAGATGACTAC
SNP1 TTCGAAGGAACTTACTCATTA CCAACATTCTCAAGCCCAAGG
SNP2 AGCACGATTCTACCTCCGAAT GGTAGGCAATCTGAACTCATCA
SNP3 AGGGATATGGTTCATCTTTCATCT ATGATGTGTTATGTGCATAT
Glyma.08g332000QRT GGCGTCCAGGATTTACAAAGT TGATATTGCACCAGGCTTTGA
Glyma.08g332100QRT CATGGCTGGCTTTAAGAGGA AGTATCAAAGAAGGAGCCGTT
Glyma.08g332200QRT ACTACGGTGCATCAGAGATTC TCAGTGCAATCATAACTGTGGTA
Glyma.08g332300QRT GGCCGCTACCATCAACTTCA AGCTCTAGTGAACTACGGCATT
Glyma.08g332400QRT TGCCTTCACACATTATAAACAGG TATGGTTTCCACTTCCGACCC
Glyma.08g332500QRT AATGAGAGAACAAAGGGAAGAGG GAGTCACAAAGCAACCCACAG
Glyma.08g332600QRT GATGTGGTGCAGAGCAAACC CACCATCGTCAAGTTGTGGC
Glyma.08g332700QRT TGGTGATGAAGAACAACAGC ACAAGAAGTCCTGGCCTAGC
Glyma.08g332800QRT TGCTGAATCTGGCATGAACC GACGGATGGCGCAAAACAAG
Glyma.08g332900QRT TTGTTGACAGTGGTATTGGCA AACCCCACACCAAACTGTCC
Glyma.08g333000QRT CGGTTTGTCTATATTGTTGAAGG TTTCTCCACTGAACTGGTCCAC
Glyma.08g333100QRT CCGCCCAAACCTCTGAAGAT CAGACTGGAAGTTGCCAGGTA
Glyma.08g333200QRT CAAGAACTGCAACTGAAAATGGTTG CATGCCAAAACTGTACACATCAC
Glyma.08g333300QRT CGCCAGAACTTTGCAAGGAA ACCCGAACCATTCACGACTT
Glyma.08g333400QRT TGAAGCATGGCGAAGCAGTA CGAACACGTGGGTCATGGAA
GmActin GGTGGTTCTATCTTGGCATC CTTCGCTTCAATAACCCTA

图1

突变体NT301的形态特征 A: 苗期野生型植株; B: 苗期NT301植株; C: 开花期野生型植株; D: 开花期NT301植株; E: 野生型叶片横切面; F: NT301叶片横切面。标尺: 1 cm (A, B); 5 cm (C, D); 200 μm (E, F)。p: 栅栏组织; s: 海绵组织; vb: 维管束。"

表1

杂交组合F2和 F2:3群体野生型和突变体植株分离率适合性检验"

杂交组合
Cross
世代Generation 单株或株系数目No. of plants or lines 卡方测验Chi-square tests
总计
Total
野生型
Wild type
分离
Segregation
突变体
Mutant
期望比
Expected ratio
卡方值
χ2
P
P-value
KF1×NT301 F1 2 2 0 0
F2 451 430 0 21 15:1 0.50 0.48
F2:3 lines 182 88 94 7:8 0.15 0.70
KF35×NT301
F1 2 2 0 0
F2 362 342 0 20 15:1 0.06 0.80
F2:3 lines 176 87 89 7:8 0.44 0.51

图2

突变体NT301 2对候选基因定位 A: 18号染色体rl1定位; B: 8号染色体rl2精细定位。"

表2

芯片试验质控情况"

样品名称
Sample name
背景值
Background value
BioB检出情况
BioB detection status
Beta-actin
3°/5°*
GAPDH
3°/5°*
检出率
Detection rate (%)*
1-1 32.67 + 53.18
1-2 32.57 + 53.01
1-3 35.58 + 51.37
2-1 32.49 + 49.75
2-2 33.40 + 50.43
2-3 31.90 + 50.23

图3

突变体NT301与野生型差异表达基因的聚类图 横坐标代表样品名称及样品的聚类结果, 纵坐标代表差异基因及基因的聚类结果。S1为突变体, S2为野生型, 各3个重复, 不同的行代表不同的基因。颜色代表了基因在样品中的表达量水平。"

图4

差异表达基因KEGG富集图 A: 上调基因富集的KEGG通路; B: 下调基因富集的KEGG通路。图中-log10 P越大, 表示该通路越显著。横坐标表示富集值, 纵坐标表示富集的通路。圆圈大小表示基因数量。"

表3

rl2位点候选基因功能注释"

序号
No.
基因名称
Gene name
起始-终止位置Start-Stop (bp) 注释信息
Annotation
1 Glyma.08G332000 44937110-44943950 S-腺苷-L-蛋氨酸依赖性甲基转移酶超家族蛋白S-adenosyl-L-methionine-dependent
2 Glyma.08G332100 44947629-44951967 ABC-2 型转运蛋白家族ABC-2 type transporter family protein
3 Glyma.08G332200 44955377-44958957
4 Glyma.08G332300 44964341-44968328 RING/U-box超家族蛋白RING/U-box superfamily protein
5 Glyma.08G332400 44969692-44971581 丝氨酸蛋白相关Serine-rich protein-related
6 Glyma.08G332500 44972649-44974052 UDP 糖基转移酶超家族蛋白UDP-glycosyltransferase superfamily protein
7 Glyma.08G332600 44975232-44979003 胚胎缺陷1303 Embryo defective 1303
8 Glyma.08G332700 44980398-44987729 WW 结构域蛋白WW domain-containing protein
9 Glyma.08G332800 44992809-44997458 钙调神经磷酸酶B Calcineurin B-like 3
10 Glyma.08G332900 44997823-45000952 热激蛋白81.4 Heat Shock Protein 81.4
11 Glyma.08G333000 45003016-45005379 类FKBP肽基脯氨酰顺反异构酶FKBP-like peptidyl-prolyl cis-trans isomerase
12 Glyma.08G333100 45006829-45012886 类Got1/Sft2维管转运蛋白家族Got1/Sft2-like vescicle transport protein family
13 Glyma.08G333200 45024206-45028194 富亮氨酸类受体蛋白激酶家族Leucine-rich receptor-like protein kinase family
14 Glyma.08G333300 45033130-45043479 类驱动蛋白1 Kinesin-like protein 1
15 Glyma.08G333400 45064017-45071298 类尿苷激酶4 Uridine kinase-like 4

图5

8号染色体定位区间内基因的表达分析 A: 8号染色体定位区间内基因半定量PCR分析; B: 8号染色体定位区间内基因荧光定量PCR分析。红色方框表示野生型和突变体表达量差异最大的基因, 采用学生t测验进行显著性检验(**: P ≤ 0.01), 误差线表示标准差(n = 3)。"

附图1

突变体NT301 18号和8号染色体定位区间内候选基因氨基酸序列聚类分析 红色方框表示8号染色体表达量差异最大的基因Glyma.08G332500和18号染色体的同源基因Glyma.18G085800。"

[1] 吕慧颖, 王道文, 葛毅强, 魏珣, 邓向东, 杨维才, 田志喜. 大豆育种行业创新动态. 植物遗传资源学报, 2018, 19: 464-467.
doi: 10.13430/j.cnki.jpgr.2018.03.011
Lyu H Y, Wang D W, Ge Y Q, Wei X, Deng X D, Yang W C, Tian Z X. Innovation of soybean breeding industry. J Plant Genet Resour, 2018, 19: 464-467. (in Chinese with English abstract)
[2] 田志喜, 刘宝辉, 杨艳萍, 李明, 姚远, 任小波, 薛勇彪. 我国大豆分子设计育种成果与展望. 中国科学院院刊, 2018, 33: 915-922.
Tian Z X, Liu B H, Yang Y P, Li M, Yao Y, Ren X B, Xue Y B. Update and prospect of soybean molecular module-based designer breeding in China. Bull Chin Acad Sci, 2018, 33: 915-922. (in Chinese with English abstract)
[3] Huang Q N, Yang Y, Shi Y F, Chen J, Wu J L. Spotted-leaf mutants of rice (Oryza sativa). Rice Sci, 2010, 17: 247-256.
doi: 10.1016/S1672-6308(09)60024-X
[4] Wu C J, Bordeos A, Madamba M R S, Baraoidan M, Ramos M, Wang G L, Leach J E, Leung H. Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Genomics, 2008, 279: 605-619.
doi: 10.1007/s00438-008-0337-2 pmid: 18357468
[5] Gray J, Close P S, Briggs S P, Johal G S. A novel suppressor of cell death in plants encoded by the Lls1 gene of maize. Cell, 1997, 89: 25-31.
doi: 10.1016/s0092-8674(00)80179-8 pmid: 9094711
[6] Dietrich R A, Richberg M H, Schmidt R, Gean C, Dangl J L. A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell, 1997, 88: 685-694.
pmid: 9054508
[7] Tang X, Xie M, Kim Y J, Zhou J, Klessig D F, Martin G B. Overexpression of Pto activates defense responses and confers broad resistance. Plant Cell, 1999, 11: 15-29.
doi: 10.1105/tpc.11.1.15 pmid: 9878629
[8] Yamanouchi U, Yano M, Lin H, Yamada K. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA, 2002, 99: 7530-7535.
doi: 10.1073/pnas.112209199 pmid: 12032317
[9] Wang Y, Liu M, Ge D, Bhat J A, Li Y, Kong J, Liu K, Zhao T. Hydroperoxide lyase modulates defense response and confers lesion-mimic leaf phenotype in soybean (Glycine max (L.) Merr.). Plant J, 2020, 104: 1315-1333.
doi: 10.1111/tpj.v104.5
[10] Ma J, Yang S, Wang D, Tang K, Feng X. Genetic mapping of a light-dependent lesion mimic mutant reveals the function of coproporphyrinogen iii oxidase homolog in soybean. Front Plant Sci, 2020, 11: e557.
[11] Stephens P A, Barwale U B, Nickell C D, Widholm J M. A cytoplasmically inherited, wrinkled-leaf mutant in soybean. J Hered, 1991, 82: 71-73.
doi: 10.1093/jhered/82.1.71
[12] Wilcox J R, Abney T S. Inheritance of a narrow, rugose-leaf mutant in Glycine max. J Hered, 1991, 82: 421-423.
doi: 10.1093/oxfordjournals.jhered.a111116
[13] 聂智星, 代金英, 吉家正, 陈薇, 赵团结. 大豆叶突变体 abl-CT 的发掘与特性分析. 江苏农业科学, 2013, 41(1): 86-88.
Nie Z X, Dai J Y, Ji J Z, Chen W, Zhao T J. Identification and characterization of soybean leaf mutant abl-CT. Jiangsu Agric Sci, 2013, 41(1): 86-88. (in Chinese)
[14] Singh S P, Molina A. Inheritance of crippled trifoliolate leaves occurring in interracial crosses of common bean and its relationship with hybrid dwarfism. J Hered, 1996, 87: 464-469.
doi: 10.1093/oxfordjournals.jhered.a023039
[15] Song X, Wei H, Cheng W, Yang S, Zhao Y, Li X, Luo D, Zhang H, Feng X. Development of INDEL markers for genetic mapping based on whole genome resequencing in soybean. G3: Genes Genom Genet, 2015, 5: 2793-2799.
[16] Ochar K, Bo-Hong S U, Zhou M M, Liu Z X, Gao H W, Flamlom S, Qiu L J. Identification of the genetic locus associated with the crinkled leaf phenotype in a soybean (Glycine max L.) mutant by BSA-Seq technology. J Integr Agric, 2022, 21: 3524-3539.
doi: 10.1016/j.jia.2022.08.095
[17] 孙红正, 葛颂. 重复基因的进化: 回顾与进展. 植物学报, 2010, 45: 13-22.
doi: 10.3969/j.issn.1674-3466.2010.01.002
Sun H Z, Ge S. Review the evolution of duplicate genes. Chin Bull Bot, 2010, 45: 13-22. (in Chinese with English abstract)
[18] Schmutz J, Cannon S B, Schlueter J, Ma J, Jackson S A. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463: 178-183.
doi: 10.1038/nature08670
[19] Wang Y, Chen W, Zhang Y, Liu M, Kong J, Yu Z, Jaffer A M, Gai J, Zhao T. Identification of two duplicated loci controlling a disease-like rugose leaf phenotype in soybean. Crop Sci, 2016, 56: 1611-1618.
doi: 10.2135/cropsci2015.09.0580
[20] Song Q J, Jia G F, Zhu Y L, Grant D, Nelson R T, Hwang E Y, Hyten D L, Cregan P B. Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_ 1.0) in soybean. Crop Sci, 2010, 50: 1950-1960.
doi: 10.2135/cropsci2009.10.0607
[21] 李强, 万建民. SSRHunter, 一个本地化的SSR位点搜索软件的开发. 遗传, 2005, 27: 808-810.
Li Q, Wan J M. SSRHunter, development of a local searching software for SSR sites. Hereditas, 2005, 27: 808-810. (in Chinese with English abstract)
[22] Lazar G, Goodman H M. MAX1, a regulator of the flavonoid pathway, controls vegetative axillary bud outgrowth in Arabidopsis. Proc Natl Acad Sci USA, 2006, 103: 472-476.
doi: 10.1073/pnas.0509463102
[23] Du J, Tian Z, Sui Y, Zhao M, Song Q, Cannon S B, Cregan P, Ma J. Pericentromeric effects shape the patterns of divergence, retention, and expression of duplicated genes in the paleopolyploid soybean. Plant Cell, 2012, 24: 21-32.
doi: 10.1105/tpc.111.092759
[24] Lohnes D G, Specht J E, Cregan P B. Evidence for homoeologous linkage groups in the soybean. Crop Sci, 1997, 37: 254-257.
doi: 10.2135/cropsci1997.0011183X003700010045x
[25] Chao W S, Liu V, Thomson W W, Platt K, Walling L L. The impact of chlorophyll-retention mutations, d1d2and cyt-G1, during embryogeny in soybean. Plant Physiol, 1995, 107: 253-262.
pmid: 12228359
[26] Fang C, Li C, Li W, Wang Z, Zhou Z, Shen Y, Tian Z. Concerted evolution of D1 and D2 to regulate chlorophyll degradation in soybean. Plant J, 2014, 77: 700-712.
doi: 10.1111/tpj.2014.77.issue-5
[27] Innan H, Kondrashov F. The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet, 2010, 11: 97-108.
doi: 10.1038/nrg2689 pmid: 20051986
[28] Ji Q, Zhang L S, Wang Y F, Wang J. Genome-wide analysis of basic leucine zipper transcription factor families in Arabidopsis thaliana, Oryza sativa and Populus trichocarpa. J Shanghai Univ, 2009, 13: 174-182.
doi: 10.1007/s11741-009-0216-3
[29] Wang Y P, Wang X Y, Paterson A H. Genome and gene duplications and gene expression divergence: a view from plants. Ann NY Acad Sci, 2012, 1256: 1-14.
doi: 10.1111/j.1749-6632.2011.06384.x pmid: 22257007
[30] Tian Z X, Wang X, Lee R, Li Y, Specht J E, Nelson R L, McClean P E, Qiu L, Ma J. Artificial selection for determinate growth habitin soybean. Proc Natl Acad Sci USA, 2010, 107: 8563-8568.
doi: 10.1073/pnas.1000088107
[31] Chen K, Yang H, Peng Y, Liu D, Zhang J, Zhao Z, Wu L, Lin T, Bai L. Genomic analyses provide insights into the polyploidization-driven herbicide adaptation in Leptochloa weeds. Plant Biotechnol J, 2023, 21: 1642-1658.
doi: 10.1111/pbi.14065 pmid: 37154437
[32] Schommer C, Palatnik J F, Aggarwal P, Chetelat A, Cubas A, Farmer E E, Nath U, Weigel D. Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol, 2008, 6: e230.
doi: 10.1371/journal.pbio.0060230
[33] Quesada V, Sarmiento-Mañús R, González-Bayón R, Hricová A, Ponce M R, Micol J L. PORPHOBILINOGEN DEAMINASE deficiency alters vegetative and reproductive development and causes lesions in Arabidopsis. PLoS One, 2013, 8: e53378.
doi: 10.1371/journal.pone.0053378
[34] Carland F M, McHale N A. LOP1: a gene involved in auxin transport and vascular patterning in Arabidopsis. Development, 1996, 122: 1811-1819.
doi: 10.1242/dev.122.6.1811 pmid: 8674420
[35] Cnops G, Neyt P, Raes J, Petrarulo M, Nelissen H, Malenica N, Luschnig C, Tietz O, Ditengou F, Palme K, Azmi A, Prinsen E, Lijsebettensa M V. The TORNADO1 and TORNADO2 genes function in several patterning processes during early leaf development in Arabidopsis thaliana. Plant Cell, 2006, 18: 852-866.
doi: 10.1105/tpc.105.040568
[1] 张红梅, 张威, 王琼, 贾倩茹, 孟珊, 熊雅文, 刘晓庆, 陈新, 陈华涛. 大豆籽粒Ve含量的全基因组关联分析[J]. 作物学报, 2024, 50(5): 1223-1235.
[2] 苗龙, 舒阔, 李娟, 黄茹, 王业杏, Soltani Muhammad yousof, 许竞好, 吴传磊, 李佳佳, 王晓波, 邱丽娟. 大豆根茎过渡区弯曲突变体Mrstz的鉴定与基因定位[J]. 作物学报, 2024, 50(5): 1091-1103.
[3] 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632.
[4] 刘薇, 王玉斌, 李伟, 张礼凤, 徐冉, 王彩洁, 张彦威. 过量表达大豆异丙基苹果酸脱氢酶基因GmIPMDH促进植株开花和生长[J]. 作物学报, 2024, 50(3): 613-622.
[5] 宋健, 熊亚俊, 陈伊洁, 徐瑞新, 刘康林, 郭庆元, 洪慧龙, 高华伟, 谷勇哲, 张丽娟, 郭勇, 阎哲, 刘章雄, 关荣霞, 李英慧, 王晓波, 郭兵福, 孙如建, 闫龙, 王好让, 姬月梅, 常汝镇, 王俊, 邱丽娟. 大豆巢式关联作图(NAM)群体构建及花色和种皮色遗传分析[J]. 作物学报, 2024, 50(3): 556-575.
[6] 李世宽, 洪慧龙, 付佳祺, 谷勇哲, 孙如建, 邱丽娟. BSA-Seq结合RNA-Seq技术挖掘大豆叶片提前黄化衰老基因[J]. 作物学报, 2024, 50(2): 294-309.
[7] 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264.
[8] 石宇欣, 刘欣玥, 孙建强, 李晓菲, 郭潇阳, 周雅, 邱丽娟. 利用CRISPR/Cas9技术编辑GmBADH1基因改变大豆耐盐性[J]. 作物学报, 2024, 50(1): 100-109.
[9] 袁晓婷, 王甜, 罗凯, 刘姗姗, 彭新月, 杨立达, 蒲甜, 王小春, 杨文钰, 雍太文. 带宽和株距对带状间作大豆物质积累分配及产量形成的影响[J]. 作物学报, 2024, 50(1): 161-171.
[10] 李刚, 周彦辰, 熊亚俊, 陈伊洁, 郭庆元, 高杰, 宋健, 王俊, 李英慧, 邱丽娟. 大豆叶型调控基因Ln及其同源基因单倍型分析[J]. 作物学报, 2023, 49(8): 2051-2063.
[11] 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541.
[12] 李慧, 路依萍, 汪小凯, 王璐瑶, 邱婷婷, 张雪婷, 黄海燕, 崔晓玉. CBL互作蛋白激酶GmCIPK10增强大豆耐盐性[J]. 作物学报, 2023, 49(5): 1272-1281.
[13] 吴宗声, 徐彩龙, 李瑞东, 徐一帆, 孙石, 韩天富, 宋雯雯, 吴存祥. 麦秸覆盖还田对大豆耕层物理性状及产量形成的影响[J]. 作物学报, 2023, 49(4): 1052-1064.
[14] 舒泽兵, 罗万宇, 蒲甜, 陈国鹏, 梁冰, 杨文钰, 王小春. 基于高产与高效条件下鲜食玉米鲜食大豆带状间作田间配置技术优化[J]. 作物学报, 2023, 49(4): 1140-1150.
[15] 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .