欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (1): 251-264.doi: 10.3724/SP.J.1006.2024.33018

• 研究简报 • 上一篇    

施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响

杨立达(), 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文*(), 杨文钰   

  1. 四川农业大学农学院 / 农业农村部西南作物生理生态与耕作重点实验室 / 四川省作物带状复合种植工程技术研究中心, 四川成都611130
  • 收稿日期:2023-03-23 接受日期:2023-09-13 出版日期:2024-01-12 网络出版日期:2023-09-20
  • 通讯作者: *雍太文, E-mail: yongtaiwen@sicau.edu.cn
  • 作者简介:E-mail: 1250526375@qq.com
  • 基金资助:
    国家重点研发计划项目(2021YFF1000500);国家自然科学基金项目(31872856);财政部和农业农村部国家现代农业产业技术体系建设专项(大豆, CARS-04-PS20)

Crop growth characteristics and its effects on yield formation through nitrogen application and interspecific distance in soybean/maize strip relay intercropping

YANG Li-Da(), REN Jun-Bo, PENG Xin-Yue, YANG Xue-Li, LUO Kai, CHEN Ping, YUAN Xiao-Ting, PU Tian, YONG Tai-Wen*(), YANG Wen-Yu   

  1. College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs / Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130, Sichuan, China
  • Received:2023-03-23 Accepted:2023-09-13 Published:2024-01-12 Published online:2023-09-20
  • Contact: *E-mail: yongtaiwen@sicau.edu.cn
  • Supported by:
    National Key Research and Development Program(2021YFF1000500);National Natural Science Foundation of China(31872856);China Agriculture Research System of MOF and MARA(大豆, CARS-04-PS20)

摘要:

为明确施氮和种间距离下套作作物生长特性及其对产量形成的影响。本文以大豆/玉米带状套作系统为研究主体, 探究不同氮水平(施氮与不施氮)与种间距离(玉豆间距30、45、60和75 cm、单作100 cm)下作物生长率、干物质积累与分配及产量差异, 并对作物干物质积累过程进行拟合, 综合分析作物生长规律和产量效益。结果表明: 玉米生长率在抽雄期至乳熟期达最大, 不施氮下以间距30 cm (MS30)最高, 较玉米单作(MM100)高出34.99%。套作大豆生长率在初花期前显著低于单作(SS100), 而初花期后高于SS100, 以间距60 cm (MS60)最高, 盛花期—盛荚期在不施氮下较SS100高出78.91%。Logistic方程可较好的拟合玉米、大豆的干物质积累过程, 且R2均在0.95以上。与不施氮相比, 施氮推迟了玉米干物质积累高峰, 提高了干物质积累量; 套作大豆生育前期干物质积累慢于单作, 而生育后期间距45 cm (MS45)、MS60干物质积累逐渐与单作持平甚至超过单作。施氮提高了玉米籽粒干物质分配率而显著提高产量, 2年间玉米产量分别提高10.05%、40.90%。随种间距离增加套作大豆产量呈先增后减趋势, 以MS60最高, MS30最低, MS60两年间在不施氮与施氮下较MS30分别平均高出23.88%、31.77%。套作下土地当量比均在1.35以上, 其中以施氮下MS60最大(1.89)。适宜的种间距离(间距60 cm)可实现套作下玉米和大豆协同生长, 提高作物生长率、促进干物质积累与分配、提高系统产量和土地当量比。

关键词: 大豆/玉米带状套作, 种间距离, 作物生长特性, 干物质积累与分配, 产量

Abstract:

The objective of this study is to clarify relay intercropping crop growth characteristics and its effects on yield formation under nitrogen application and interspecific distance. In this study, the soybean/maize strip relay intercropping system was used as the main body, to explore the crop growth rate, dry mater accumulation, and distribution, and yield differences under different nitrogen levels (nitrogen application and no nitrogen application) and interspecific distance (the spacing of soybean 30, 45, 60, 75, and 100 cm mono-cropping), to fit the process of crop dry mater accumulation, and comprehensively analyze the crop growth law and yield benefit. The results showed that the maximum growth rate of maize was reached from male stage to milking stage, and the maximum growth rate was 30 cm (MS30) without nitrogen application, which was 34.99% higher than that of monoculture maize (MM100). The growth rate of relay intercropping was significantly lower than that of monoculture soybean (SS100) before the first flowering stage, but higher than that of SS100 after the first flowering stage, with the highest spacing of 60 cm (MS60), and 78.91% higher than that of SS100 from full flowering stage to full pod stage without nitrogen application. The logistic equation could fit well the matter accumulation process of maize and soybean, and the R2 were all above 0.95. Compared with no nitrogen application, nitrogen application delayed the accumulation peak and increased the biomass of maize. The matter accumulation of intercropping soybean was slower than monoculture at the early growth stage, but MS45 and MS60 were gradually equal to or even exceeded monoculture soybean at later growth stage. Nitrogen application increased the dry matter allocation rate to the grain, and maize yield increased by 10.05% and 40.90% in two years, respectively. With the increase of interspecific distance, soybean yield increased first and then decreased, with the highest value in MS60 and the lowest value in MS30. In the two years, soybean yield in MS60 was 23.88% and 31.77% higher than MS30 under no nitrogen application and nitrogen application, respectively. The land equivalent ratio under relay intercropping was all above 1.35, among which MS60 under nitrogen application was the largest (1.89). The suitable interspecific distance (interspecific distance 60 cm) under relay intercropping can realize the cooperative growth of maize and soybean, increase crop growth rate, promote the accumulation and distribution of matter, and improve the system yield and land equivalent ratio.

Key words: soybean/maize strip relay intercropping, interspecific distance, crop growth characteristics, dry matter accumulation and distribution, yield

图1

试验地2020-2021年的日照时数和平均温度"

图2

大豆/玉米带状套作及单作种植模式图 MS30、MS45、MS60、MS75 分别表示套作玉米大豆种间距离30、45、60和75 cm; MM100、SS100分别表示单作玉米、大豆行距100 cm。"

表1

施氮水平及施氮方式明细表"

种植模式
Planting pattern
施氮处理
Nitrogen application
施氮水平
Nitrogen level
底肥
Base fertilizer
追肥
Top dressing
玉米单作
Monoculture maize
不施氮NN 0 0 0
常量施氮CN 180 72 108
大豆单作
Monoculture soybean
不施氮NN 0 0 0
常量施氮CN 60 60 0
大豆/玉米带状套作
Soybean/maize strip intercropping
不施氮NN 0 0 0
常量施氮CN 240 132 108

图3

施氮量和种间距离下玉米群体生长速率变化(2021年) 施氮处理同表1, 种间距离处理同图2。"

图4

施氮量和种间距离下大豆群体生长速率变化 施氮处理同表1, 种间距离处理同图2。"

图5

施氮量和种间距离下玉米生长率变化(2021年) 施氮处理同表1, 种间距离处理同图2。V6: 六叶期; VT: 抽雄期; R1: 吐丝期; R3: 乳熟期; R4: 蜡熟期; R6: 成熟期。不同小写字母表示在0.05概率水平差异显著。"

图6

施氮量和种间距离下大豆生长率变化 施氮处理同表1, 种间距离处理同图2。V5: 分枝期; R1: 初花期; R2: 盛花期; R4: 盛荚期; R5: 始粒期; R8: 完熟期。不同小写字母表示在0.05概率水平差异显著。"

图7

施氮量和种间距离下玉米干物质积累变化(2021年) 施氮处理同表1, 种间距离处理同图2。"

图8

施氮量和种间距离下大豆干物质积累变化 施氮处理同表1, 种间距离处理同图2。"

表2

2021年施氮量和种间距离下玉米干物质积累的特征参数"

处理
Treatment
最大干物质
积累速率时间
Tmax (d)
干物质积累速率
最大时生长量
Wmax (g)
最大干物质
积累速率
Vmax (g plant-1 d-1)
平均干物质
积累速率
Vmean (g plant-1 d-1)
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
MS30 66.78 a 76.69 a 75.69 ab 144.27 b 4.09 b 5.72 b 1.37 c 2.12 b
MS45 62.36 a 76.71 a 66.80 b 156.01 b 4.30 b 6.44 a 1.41 bc 2.33 a
MS60 69.53 a 76.34 a 91.11 a 161.65 ab 4.61 ab 6.54 a 1.57 ab 2.40 a
MS75 64.80 a 78.31 a 85.57 ab 161.84 ab 4.85 a 6.63 a 1.61 a 2.38 a
MM100 64.49 a 80.81 a 79.55 ab 173.12 a 4.55 ab 6.48 a 1.50 abc 2.41 a
施氮量N application (N) 2.09 ns 71.93** 180.46** 314.67**
种间距离Interspecific distance (I) 0.47 ns 1.86 ns 7.30** 8.08**
种间距离×施氮量N×I 1.03 ns 0.52 ns 1.55 ns 0.60 ns

表3

施氮量和种间距离下大豆干物质积累的特征参数"

年份
Year
处理
Treatment
最大干物质
积累速率时间
Tmax (d)
干物质积累速率
最大时生长量
Wmax (g)
最大干物质
积累速率
Vmax (g plant-1 d-1)
平均干物质
积累速率
Vmean (g plant-1 d-1)
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
2020 MS30 91.08 ab 85.28 a 33.19 c 25.43 c 1.26 b 1.05 b 0.43 a 0.36 b
MS45 94.24 a 80.63 a 41.99 ab 34.01 bc 1.25 b 1.32 ab 0.49 a 0.48 a
MS60 85.99 ab 84.90 a 43.57 a 42.59 a 1.52 a 1.46 a 0.57 a 0.55 a
MS75 81.21 ab 83.17 a 35.53 bc 35.17 b 1.52 a 1.18 b 0.52 a 0.46 a
SS100 76.27 b 75.95 a 38.22 ab 35.21 ab 1.40 a 1.34 ab 0.55 a 0.51 a
施氮量N application (N) 1.72 ns 6.31* 1.02 ns 0.04 ns
种间距离Interspecific distance (I) 2.17 ns 10.21** 6.28* 3.24*
种间距离×施氮量N×I 1.37 ns 0.78 ns 1.02 ns 1.24 ns
2021 MS30 107.05 a 102.71 ab 34.21 b 23.98 b 1.01 a 0.69 b 0.37 a 0.26 b
MS45 99.24 b 110.82 a 32.51 b 40.28 a 1.05 a 1.11 a 0.38 a 0.41 a
MS60 108.16 a 100.56 ab 42.05 a 38.37 a 1.19 a 1.17 a 0.44 a 0.43 a
MS75 92.32 b 78.77 b 29.32 b 17.44 c 1.00 a 0.69 b 0.36 a 0.25 b
SS100 73.12 c 76.06 b 27.49 b 26.81 b 1.14 a 0.91 ab 0.42 a 0.37 ab
施氮量N application (N) 0.30 ns 0.11 ns 0.06 ns 0.03 ns
种间距离Interspecific distance (I) 9.58** 8.45** 5.45* 1.63 ns
种间距离×施氮量N×I 0.81 ns 1.98 ns 1.53 ns 1.75 ns

表4

施氮量和种间距离对玉米各器官干物质分配率的影响"

年份
Year
处理
Treatment
茎 Stem 叶 Leaf 籽粒 Grain 穗轴 Spike-stalk
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
2020 MS30 19.99 b 20.51 b 9.95 a 10.97 a 62.75 ab 60.67 a 7.31 a 7.85 a
MS45 21.04 a 20.52 b 9.93 a 10.45 b 61.34 c 61.62 a 7.69 a 7.41 a
MS60 20.02 b 20.40 b 9.75 a 10.32 b 62.84 ab 61.88 a 7.39 a 7.41 a
MS75 20.61 ab 20.39 b 9.20 b 10.90 a 63.13 a 61.11 a 7.06 a 7.6 a
SS100 21.00 a 21.68 a 9.92 a 10.94 a 61.65 bc 59.25 b 7.42 a 8.13 a
施氮量N application (N) 0.77 ns 122.19** 25.69** 2.47 ns
种间距离Interspecific distance (I) 4.71* 4.45* 5.43* 0.62 ns
施氮量×种间距离N×I 1.41 ns 5.83* 2.99 ns 0.93 ns
2021 MS30 28.97 b 25.55 a 15.13 a 13.11 a 46.34 cd 52.46 b 9.57 ab 8.88 a
MS45 30.91 a 25.34 a 14.03 b 12.32 ab 45.08 d 53.28 b 9.98 ab 9.06 a
MS60 26.86 c 24.04 b 12.76 c 12.23 ab 50.67 a 55.06 a 9.71 ab 8.66 a
MS75 29.14 b 25.09 a 13.56 bc 12.78 a 47.82 b 53.57 b 9.47 b 8.56 a
SS100 28.54 b 24.14 b 13.74 bc 11.66 b 47.50 bc 55.30 a 10.22 a 8.91 a
施氮量Nitrogen application (N) 446.16** 29.50** 554.30** 39.63**
种间距离Interspecific distance (I) 22.15** 6.13* 24.47** 1.80 ns
施氮量×种间距离N×I 5.94* 2.04 ns 6.49* 0.44 ns

表5

施氮量和种间距离对大豆各器官干物质分配率的影响"

年份
Year
处理
Treatment
茎 Stem 叶 Leaf 籽粒 Grain 荚 Pod
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
2020 MS30 33.75 bc 34.84 a 21.58 a 22.68 a 25.58 b 23.35 c 19.08 a 19.12 ab
MS45 31.31 c 35.66 a 21.14 a 22.18 ab 26.72 b 24.40 bc 20.83 a 17.76 bc
MS60 34.91 b 34.11 a 16.28 b 14.21 c 30.17 a 31.20 a 18.64 a 20.47 a
MS75 35.00 b 37.28 a 17.68 b 19.35 b 28.08 ab 26.69 b 19.24 a 16.68 c
SS100 39.08 a 35.22 a 16.91 b 20.61 ab 28.27 ab 25.81 bc 15.74 b 16.68 c
施氮量Nitrogen application (N) 0.64 ns 3.15 ns 4.39* 1.38 ns
种间距离Interspecific distance (I) 3.07* 16.26** 8.97** 6.66*
施氮量×种间距离N×I 3.36* 2.25 ns 0.86 ns 4.08*
2021 MS30 26.08 b 27.16 c 20.18 a 19.16 a 31.68 c 30.82 b 22.06 a 22.86 ab
MS45 25.18 b 25.63 cd 15.30 bc 19.26 a 37.32 ab 31.37 b 22.20 a 23.74 a
MS60 22.59 c 23.62 d 15.91 bc 16.34 ab 39.35 a 37.29 a 22.16 a 22.75 ab
MS75 25.66 b 30.40 b 19.17 ab 16.81 ab 34.17 bc 30.49 b 21.01 ab 22.30 ab
SS100 33.85 a 34.97 a 14.03 c 13.45 b 32.88 bc 31.45 b 19.23 b 20.13 b
施氮量Nitrogen application (N) 9.53** 0.01 ns 7.80* 3.02 ns
种间距离Interspecific distance (I) 48.83** 5.09* 6.37* 3.86*
施氮量×种间距离N×I 2.01 ns 1.48 ns 0.84 ns 0.08 ns

表6

施氮量和种间距离对玉米产量构成因素的影响"

年份
Year
处理
Treatment
有效株数
Effective plants
(Ten thousand plants hm-2)
单穗粒数
Number of grains per panicle
千粒重
1000-seed weight (g)
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
2020 MS30 5.52 a 5.37 a 388.20 b 401.22 b 323.41 b 342.21 a
MS45 5.50 ab 5.27 a 363.80 bc 384.84 bc 322.44 b 361.96 a
MS60 5.37 ab 5.33 a 359.76 bc 388.98 bc 337.57 ab 351.86 a
MS75 5.20 b 5.40 a 348.09 c 360.42 c 328.81 b 355.34 a
MM100 5.40 ab 5.60 a 445.61 a 467.31 a 349.47 a 357.63 a
施氮量Nitrogen application (N) 0.20 ns 8.48** 23.84**
种间距离Interspecific distance (I) 1.26 ns 27.78** 2.27 ns
施氮量×种间距离N×I 1.93 ns 1.05 ns 1.52 ns
2021 MS30 5.39 a 5.40 a 378.85 a 527.31 a 279.23 b 316.78 a
MS45 5.07 c 5.27 a 376.71 a 546.11 a 281.22 b 309.81 a
MS60 5.46 ab 5.37 a 292.2 a 541.49 a 299.63 a 323.60 a
MS75 5.17 bc 5.37 a 353.59 ab 506.28 a 282.78 a 317.69 a
MM100 5.43 abc 5.30 a 355.69 ab 520.47 a 286.79 ab 313.74 a
施氮量Nitrogen application (N) 1.80 ns 166.47** 101.63**
种间距离Interspecific distance (I) 0.32 ns 1.35 ns 3.36*
施氮量×种间距离N×I 1.07 ns 1.82 ns 0.70 ns

表7

施氮量和种间距离对大豆产量构成因素的影响"

年份
Year
处理
Treatment
有效株数
Effective plants
(Ten thousand plants hm-2)
单株粒数
Number of plants per panicle
百粒重
100-seed weight
(g)
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
2020 MS30 8.87 ab 9.03 a 104.57 c 83.27 c 16.30 b 14.64 c
MS45 9.33 a 8.53 a 108.10 c 102.90 b 15.87 b 16.21 b
MS60 8.47 b 8.30 ab 131.03 b 128.93 ab 16.50 b 15.72 bc
MS75 8.53 b 8.53 a 118.63 bc 128.47 ab 15.61 b 15.20 bc
SS100 7.00 c 7.57 b 159.10 a 142.86 a 18.89 a 18.06 a
施氮量N application (N) 0.60 ns 3.07 ns 7.06*
种间距离Interspecific distance (I) 12.88** 24.53** 20.17**
施氮量×种间距离N×I 2.40 ns 1.88 ns 1.67 ns
2021 MS30 8.13 b 7.13 b 101.20 b 104.63 bc 17.21 b 18.34 a
MS45 8.93 a 8.27 a 105.56 b 107.53 bc 17.68 b 19.28 a
MS60 8.40 ab 8.50 a 134.33 a 121.70 ab 18.15 ab 18.67 a
MS75 9.10 a 8.10 a 111.18 b 95.40 c 17.94 ab 18.58 a
SS100 8.20 b 7.93 a 148.03 a 140.30 a 19.05 a 18.95 a
施氮量N application (N) 4.20 ns 2.23 ns 8.53**
种间距离Interspecific distance (I) 6.16* 15.95** 2.28 ns
施氮量×种间距离N×I 2.03 ns 0.87 ns 1.24 ns

表8

施氮量和种间距离对玉米、大豆产量(t hm-2)及LER的影响"

年份
Year
处理
Treatment
玉米 Maize 大豆 Soybean 土地当量比 LER
不施氮NN 施氮CN 不施氮NN 施氮CN 不施氮NN 施氮CN
2020 MS30 7.10 b 7.37 b 1.51 c 1.10 d 1.56 1.35
MS45 6.45 bc 7.34 b 1.60 bc 1.42 c 1.53 1.51
MS60 6.52 bc 7.29 b 1.82 b 1.68 b 1.64 1.64
MS75 5.95 c 6.93 b 1.58 bc 1.66 bc 1.46 1.59
MM/SS100 8.43 a 9.37 a 2.10 a 1.95 a
施氮量N application (N) 13.06** 8.88**
种间距离Interspecific distance (I) 15.92** 19.68**
施氮量×种间距离N×I 1.02 ns 2.08 ns
2021 MS30 5.99 a 9.03 a 1.42 d 1.37 d 1.69 1.58
MS45 5.37 ab 8.91 a 1.66 cd 1.71 bc 1.68 1.73
MS60 4.89 b 9.42 a 2.05 ab 1.93 ab 1.77 1.89
MS75 5.17 ab 8.63 a 1.81 bc 1.42 cd 1.71 1.57
MM/SS100 5.56 ab 9.66 a 2.31 a 2.11 a
施氮量Nitrogen application (N) 274.22** 4.75*
种间距离Interspecific distance (I) 1.32 ns 19.69**
施氮量×种间距离N×I 1.33 ns 1.30 ns
[1] 卞靖. 玉米产业发展现状及供需趋势分析. 中国物价, 2022, (8): 117-120.
Bian J. Corn industry development status and supply and demand trend analysis. China Price, 2022, (8): 117-120. (in Chinese)
[2] 孔明忠, 王溧彬. 支持大豆和油料产能提升的思考. 农业发展与金融, 2022, (11): 68-74.
Kong M Z, Wang L B. Support the thinking of increasing soybean and oil production capacity. Agric Dev Financ, 2022, (11): 68-74. (in Chinese)
[3] 杨文钰, 杨峰. 发展玉豆带状复合种植,保障国家粮食安全. 中国农业科学, 2019, 52: 3748-3750.
doi: 10.3864/j.issn.0578-1752.2019.21.003
Yang W Y, Yang F. Developing maize-soybean strip intercropping for demand security of national food. Sci Agric Sin, 2019, 52: 3748-3750. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2019.21.003
[4] Chen P, Song C, Liu X M, Zhou L, Yang H, Zhang X N, Zhou Y, Du Q, Pang T, Fu Z D, Wang X C, Liu W G, Yang F, Shu K, Du J B, Liu J, Yang W Y, Yong T W. Yield advantage and nitrogen fate in an additive maize-soybean relay intercropping system. Sci Total Environ, 2019, 657: 987-999.
doi: 10.1016/j.scitotenv.2018.11.376
[5] Aamed S, Raza M A, Zhou T, Hussain S, Khailid M H B, Feng L Y, Wasaya A, Iqbal N, Hamed A, Liu W G, Yang W Y. Responses of soybean dry matter production, phosphorus accumulation, and seed yield to sowing time under relay intercropping with maize. Agron J, 2018, 8: 282.
[6] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响. 作物学报, 2022, 48: 1476-1487.
doi: 10.3724/SP.J.1006.2022.13017
Yang H, Zhou Y, Chen P, Du Q, Zheng B C, Pu T, Wen J, Yang W Y, Yong T W. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system. Acta Agron Sin, 2022, 48: 1476-1487. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.13017
[7] 王贝贝, 廖敦平, 范元芳, 王仲林, 张佳伟, 雍太文, 王小春, 刘卫国, 杨文钰, 杨峰. 玉米大豆套作窄行距对作物竞争效应及物质分配的影响. 中国油料作物学报, 2020, 42: 734-742.
Wang B B, Liao D P, Fan Y F, Wang Z L, Zhang J W, Yong T W, Wang X C, Liu W G, Yang W Y, Yang F. Effects of narrow row spacing on crop competition and substance distribution under maize-soybean relay strip intercropping. Chin J Oil Crop Sci, 2020, 42: 734-742. (in Chinese with English abstract)
doi: 10.19802/j.issn.1007-9084.2019203
[8] Wu Y S, Gong W Z, Yang W Y. Shade inhibits leaf size by controlling cell proliferation and enlargement in soybean. Sci Rep, 2017, 7: 9259.
doi: 10.1038/s41598-017-10026-5 pmid: 28835715
[9] Xiao Y B, Li L, Zhang F S. Effect of root contact on interspecific competition and N transfer between wheat and faba bean using direct and indirect 15N techniques. Plant Soil, 2004, 262: 45-54.
doi: 10.1023/B:PLSO.0000037019.34719.0d
[10] 杨峰, 娄莹, 廖敦平, 高仁才, 雍太文, 王小春, 刘卫国, 杨文钰. 玉米-大豆带状套作行距配置对作物生物量、根系形态及产量的影响. 作物学报, 2015, 41: 642-650.
doi: 10.3724/SP.J.1006.2015.00642
Yang F, Lou Y, Liao D P, Gao R C, Yong T W, Wang X C, Liu W G, Yang W Y. Effects of row spacing on crop biomass, root morphology and yield in maize-soybean relay strip intercropping system. Acta Agron Sin, 2015, 41: 642-650. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.00642
[11] 刘姗姗, 庞婷, 袁晓婷, 罗凯, 陈平, 付智丹, 王小春, 杨峰, 雍太文, 杨文钰. 种间距对不同结瘤特性套作大豆根瘤生长及固氮潜力的影响. 作物学报, 2023, 49: 833-844.
doi: 10.3724/SP.J.1006.2023.24027
Liu S S, Pang T, Yuan X T, Luo K, Chen P, Fu Z D, Wang X C, Yang F, Yong T W, Yang W Y. Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping. Acta Agron Sin, 2023, 49: 833-844. (in Chinese with English abstract)
[12] 陈平, 杜青, 庞婷, 付智丹, 杨燕竹, 刘佳, 帅鹏, 孙丽霞, 张瑞娣, 杨文钰, 雍太文. 根系互作强度对玉米/大豆套作系统下作物根系分布及地上部生长的影响. 四川农业大学学报, 2018, 36: 28-37.
Chen P, Du Q, Pang T, Fu Z D, Yang Y Z, Liu J, Shuai P, Sun L X, Zhang R D, Yang W Y, Yong T W. Effects of root interaction intensity on crop roots distribution above-ground growth in a maize/soybean relay intercropping system. J Sichuan Agric Univ, 2018, 36: 28-37. (in Chinese with English abstract)
[13] 庞婷, 陈平, 袁晓婷, 雷鹿, 杜青, 付智丹, 张晓娜, 周颖, 任建锐, 王甜, 汪锦, 杨文钰, 雍太文. 种间距对不同结瘤特性套作大豆物质积累、鼓粒及产量形成的影响. 中国农业科学, 2019, 52: 3751-3762.
doi: 10.3864/j.issn.0578-1752.2019.21.004
Pang T, Chen P, Yuan X T, Lei L, Du Q, Fu Z D, Zhang X N, Zhou Y, Ren J R, Wang T, Wang J, Yang W Y, Yong T W. Effects of row spacing on dry matter accumulation, grain filling and yield formation of different nodulation characteristic soybeans in intercropping. Sci Agric Sin, 2019, 52: 3751-3762. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2019.21.004
[14] 吴雨珊, 龚万灼, 杨文钰, 雍太文, 杨峰, 刘卫国, 武晓玲. 带状套作复光后不同大豆品种干物质积累模型与特征分析. 中国生态农业学报, 2017, 25: 572-580.
Wu Y S, Gong W Z, Yang W Y, Yong T W, Yang F, Liu W G, Wu X L. Dynamic model and characteristics analysis of dry matter production after light recovery of different soybean varieties in relay strip intercropping systems. Chin J Eco-Agric, 2017, 25: 572-580. (in Chinese with English abstract)
[15] 徐婷, 雍太文, 刘文钰, 刘小明, 董茜, 宋春, 杨峰, 王小春, 杨文钰. 播期和密度对玉米-大豆套作模式下大豆植株、干物质积累及产量的影响. 中国油料作物学报, 2014, 36: 593-601.
doi: 10.7505/j.issn.1007-9084.2014.05.006
Xu T, Yong T W, Liu W Y, Liu X M, Dong Q, Song C, Yang F, Wang X C, Yang W Y. Effects of sowing time and density on soybean agronomic traits, dry matter accumulation and yield in maize-soybean relay intercropping system. Chin J Oil Crop Sci, 2014, 36: 593-601. (in Chinese with English abstract)
[16] Liu Y X, Sun J H, Zhang F F, Li L. The plasticity of root distribution and nitrogen uptake contributes to recovery of maize growth at late growth stages in wheat/maize intercropping. Plant Soil, 2020, 447: 39-53.
doi: 10.1007/s11104-019-04034-9
[17] Li L, Sun J H, Zhang F S, Li X L, Rengel Z, Yang S C. Wheat/maize or wheat/soybean strip intercropping: II. Recovery or compensation of maize and soybean after wheat harvesting. Field Crops Res, 2001, 71: 173-181.
doi: 10.1016/S0378-4290(01)00157-5
[18] 尹晓童, 杨浩, 于瑞鹏, 李隆. 根系分泌物在作物多样性体系中对种间地下部互作的介导作用. 中国生态农业学报, 2022, 30: 1215-1227.
Yin H T, Yang H, Yu P R, Li L. Interspecific below-ground interactions driven by root exudates in agroecosystems with diverse crops. Chin J Eco-Agric, 2022, 30: 1215-1227. (in Chinese with English abstract)
[19] Fan F L, Zhang F S, Song Y N, Sun J H, Bao Y G, Guo T W, Li L. Nitrogen fixation of faba bean (Vicia faba L.) interacting with a non-legume in two contrasting intercropping systems. Plant Soil, 2006, 283: 275-286.
doi: 10.1007/s11104-006-0019-y
[20] Zhou H L, Yao X D, Zhao Q, Zhang W, Zhang B, Xie F T. Rapid effect of nitrogen supply for soybean at the beginning flowering stage on biomass and sucrose metabolism. Sci Rep, 2019, 9: 15530.
doi: 10.1038/s41598-019-52043-6 pmid: 31664126
[21] Mu X H, Chen Q W, Wu X Y, Chen F J, Yuan L X, Mi G H. Gibberellins synthesis is involved in the reduction of cell flux and elemental growth rate in maize leaf under low nitrogen supply. Environ Exp Bot, 2018, 150: 198-208.
doi: 10.1016/j.envexpbot.2018.03.012
[22] 崔亮, 杨文钰, 黄妮, 刘江, 王艳玲, 王晓慧, 刘洋, 颜寿. 玉米-大豆带状套作下玉米株型对大豆干物质积累和产量形成的影响. 应用生态学报, 2015, 26: 2414-2420.
Cui L, Yang W Y, Huang N, Liu J, Wang Y L, Wang X H, Liu Y, Yan S. Effects of maize plant types on dry matter accumulation characteristics and yield of soybean in maize-soybean intercropping systems. Chin J Appl Ecol, 2015, 26: 2414-2420. (in Chinese with English abstract)
[23] 吴雨珊, 龚万灼, 廖敦平, 武晓玲, 杨峰, 刘卫国, 雍太文, 杨文钰. 带状套作荫蔽及复光对不同大豆品种(系)生长及产量的影响. 作物学报, 2015, 41: 1740-1747.
doi: 10.3724/SP.J.1006.2015.01740
Wu Y S, Gong W Z, Liao D P, Wu X L, Yang F, Liu W G, Yong T W, Yang W Y. Effects of shade and light recovery on soybean cultivars (lines) and its relationship with yield in relay strip intercropping system. Acta Agron Sin, 2015, 41: 1740-1747. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.01740
[24] Zhu J Q, Van D W W, Anten N P R, Vos J, Evers J B. The contribution of phenotypic plasticity to complementary light capture in plant mixtures. New Phytol, 2015, 207: 1213-1222.
doi: 10.1111/nph.13416 pmid: 25898768
[25] 李易玲, 彭西红, 陈平, 杜青, 任俊波, 杨雪丽, 雷鹿, 雍太文, 杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响. 中国农业科学, 2022, 55: 1749-1762.
doi: 10.3864/j.issn.0578-1752.2022.09.005
Li Y L, Peng X H, Chen P, Du Q, Ren J B, Yang X L, Lei L, Yong T W, Yang W Y. Effects of reducing nitrogen application on leaf stay-green, photosynthetic characteristics and system yield in maize-soybean relay strip intercropping. Sci Agric Sin, 2022, 55: 1749-1762. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2022.09.005
[26] 殷文, 冯福学, 赵财, 于爱忠, 柴强, 胡发龙, 郭瑶. 小麦秸秆还田方式对轮作玉米干物质累积分配及产量的影响. 作物学报, 2016, 42: 751-757.
doi: 10.3724/SP.J.1006.2016.00751
Yin W, Feng F X, Zhao C, Yu A Z, Chai Q, Hu F L, Guo Y. Effects of wheat straw returning patterns on characteristics of dry matter accumulation, distribution and yield of rotation maize. Acta Agron Sin, 2016, 42: 751-757 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.00751
[27] 王小春, 杨文钰, 邓小燕, 张群, 雍太文, 刘卫国, 杨峰, 毛树明. 玉米/大豆和玉米/甘薯模式下玉米干物质积累与分配差异及氮肥的调控效应. 植物营养与肥料学报, 2015, 21: 46-57.
Wang X C, Yang W Y, Deng X Y, Zhang Q, Yong T W, Liu W G, Yang F, Mao S M. Differences of dry matter accumulation and distribution of maize and their responses to nitrogen fertilization in maize/soybean and maize/sweet potato relay intercropping systems. Plant Nutr Fert Sci, 2015, 21: 46-57. (in Chinese with English abstract)
[28] He J N, Shi Y, Zhao J Y, Yu Z W. Strip rotary tillage with subsoiling increases winter wheat yield by alleviating leaf senescence and increasing grain filling. Crop J, 2019, 8: 327-340.
doi: 10.1016/j.cj.2019.08.007
[29] Yu Y, Qian C R, Gu W R, Li C F. Responses of root characteristic parameters and plant dry matter accumulation, distribution and transportation to nitrogen levels for spring maize in Northeast China. Agriculture, 2021, 11: 308.
doi: 10.3390/agriculture11040308
[30] Luo K, Yuan X T, Xie C, Liu S S, Chen P, Du Q, Zheng B C, Wu Y S, Wang X C, Yong T W, Yang W Y. Diethyl aminoethyl hexanoate increase relay strip intercropping soybean grain by optimizing photosynthesis aera and delaying leaf senescence. Front Plant Sci, 2021, 12: 818327.
doi: 10.3389/fpls.2021.818327
[31] 高阳, 傅积海, 章建新, 王聪, 马天乐, 周芳芝. 施氮量对滴灌高产春大豆干物质积累及转运特性的影响. 中国农业大学学报, 2018, 23(12): 21-30.
Gao Y, Fu J H, Zhang J X, Wang C, Ma T L, Zhou F Z. Effect of nitrogen application on the dry matter accumulation and transport characteristics of high yield spring soybean under drip irrigation. J China Agric Univ, 2018, 23(12): 21-30. (in Chinese with English abstract)
[32] Fageria N K, Baligar V C. Enhancing nitrogen use efficiency in crop plants. Adv Agron, 2005, 88: 97-185.
[33] Xu H Y, Li Y J, Zhang K F, Li M J, Fu S Y, Tian Y Z, Qin T F, Li X X, Zhang Y J, Liao H. miR169c-NFYA-C-ENOD40 modulates nitrogen inhibitory effects in soybean nodulation. New Phytol, 2021, 229: 3377-3392.
doi: 10.1111/nph.17115 pmid: 33245793
[34] 张含彬, 伍晓燕, 杨文钰. 氮肥对套作大豆干物质积累与分配的影响. 大豆科学, 2006, 25: 404-409.
Zhang H B, Wu X Y, Yang W Y. Effect of nitrogen fertilizer on the accumulation and distribution of dry matter in relay-planting soybean. Soybean Sci, 2006, 25: 404-409. (in Chinese with English abstract)
[35] Yang F, Wang X C, Liao D P, Lu F Z, Gao R C, Liu W G, Yong T W, Wu X L, Du J B, Liu J, Yang W Y. Yield response to different planting geometries in maize-soybean relay strip intercropping systems. Agron J, 2015, 107: 296-304.
doi: 10.2134/agronj14.0263
[1] 吴昊, 张瑛, 王琛, 顾汉柱, 周天阳, 张伟杨, 顾骏飞, 刘立军, 杨建昌, 张耗. 栽培优化对长江下游水稻灌浆期根系特征和稻米淀粉特性的影响[J]. 作物学报, 2024, 50(2): 478-492.
[2] 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293.
[3] 李志坤, 贾文华, 朱伟, 刘伟, 马宗斌. 氮肥和缩节胺对棉花纤维产量及品质时间分布的影响[J]. 作物学报, 2024, 50(2): 514-528.
[4] 徐冉, 杨文叶, 朱均林, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英, 褚光. 不同灌溉模式对籼粳杂交稻甬优1540产量与水分利用效率的影响[J]. 作物学报, 2024, 50(2): 425-439.
[5] 谢炜, 贺鹏, 马宏亮, 雷芳, 黄秀兰, 樊高琼, 杨洪坤. 秋闲期秸秆覆盖与施磷对冬小麦氮素吸收利用的影响[J]. 作物学报, 2024, 50(2): 440-450.
[6] 袁晓婷, 王甜, 罗凯, 刘姗姗, 彭新月, 杨立达, 蒲甜, 王小春, 杨文钰, 雍太文. 带宽和株距对带状间作大豆物质积累分配及产量形成的影响[J]. 作物学报, 2024, 50(1): 161-171.
[7] 邵扬, 郭延平, 周丙月, 张峰, 张兴民, 王玉萍. 蚕豆产量组分的基因型与环境互作及稳定性分析[J]. 作物学报, 2024, 50(1): 149-160.
[8] 杨毅, 何志强, 林佳慧, 李洋, 陈飞, 吕长文, 唐道彬, 周全卢, 王季春. 椰糠施用量对土壤理化性状和甘薯产量的影响[J]. 作物学报, 2023, 49(9): 2517-2527.
[9] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[10] 房孟颖, 任粱, 卢霖, 董学瑞, 武志海, 闫鹏, 董志强. 乙矮合剂对粒用高粱根系建构和产量的影响[J]. 作物学报, 2023, 49(9): 2528-2538.
[11] 李亦扬, 李远, 赵子胥, 张鼎顺, 杜嘉宁, 吴淑娟, 孙思琦, 陈媛, 张祥, 陈德华, 刘震宇. 土壤增氮对棉铃对位叶Bt杀虫蛋白含量影响及氮代谢机制[J]. 作物学报, 2023, 49(9): 2505-2516.
[12] 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551.
[13] 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581.
[14] 曹玉军, 刘志铭, 兰天娇, 刘小丹, 魏雯雯, 姚凡云, 吕艳杰, 王立春, 王永军. 吉林省不同年代玉米品种光合生理特性对施氮量的响应[J]. 作物学报, 2023, 49(8): 2183-2195.
[15] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .