欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (1): 237-250.doi: 10.3724/SP.J.1006.2024.34076

• 研究简报 • 上一篇    下一篇

甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建

杨闯(), 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝*()   

  1. 华中农业大学作物遗传改良全国重点实验室 / 国家油菜工程技术研究中心 / 洪山实验室, 湖北武汉 430070
  • 收稿日期:2023-04-27 接受日期:2023-09-13 出版日期:2024-01-12 网络出版日期:2023-09-20
  • 通讯作者: *马朝芝, E-mail: yuanbeauty@mail.hzau.edu.cn
  • 作者简介:E-mail: 908311956@qq.com
  • 基金资助:
    国家重点研发计划项目(2021YFD160014101-02);湖北省重点研发计划项目(2020BBB061)

Relative expression profiles of genes response to salt stress and constructions of gene co-expression networks in Brassica napus L.

YANG Chuang(), WANG Ling, QUAN Cheng-Tao, YU Liang-Qian, DAI Cheng, GUO Liang, FU Ting-Dong, MA Chao-Zhi*()   

  1. National Key Lab oratory of Crop Genetic Improvement, Huazhong Agricultural University / National Engineering Research Center of Rapeseed / Hongshan Laboratory, Wuhan 430070, Hubei, China
  • Received:2023-04-27 Accepted:2023-09-13 Published:2024-01-12 Published online:2023-09-20
  • Contact: *E-mail: yuanbeauty@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2021YFD160014101-02);National Key Research and Development Program of Hubei Province(2020BBB061)

摘要:

甘蓝型油菜是重要的油料作物, 而盐胁迫是影响油菜生长发育的主要环境条件之一, 可能会造成油菜减产、品质下降甚至死亡。本研究利用半冬性油菜ZS11作为试验材料, 对盐胁迫处理0、0.25、0.5、1、3、6、12和24 h的叶片和根系组织进行转录组测序, 通过测得的90份RNA-seq数据, 获得了油菜响应盐胁迫的高分辨率时间动态转录表达谱。相关性分析发现, 样本在盐胁迫处理1 h前后具有明显的早期响应与后期响应的聚类差异。利用DESeq2进行差异基因分析, 鉴定出根系以及叶片组织响应差异基因分别为20,462个和29,334个, 表明油菜叶片组织的响应程度整体上比根系更剧烈。进一步利用WGCNA分别构建根系以及叶片组织响应盐胁迫的基因共表达网络, 从中筛选出与盐胁迫早期响应阶段显著相关的tan和yellow模块, 以及与盐胁迫后期响应阶段显著相关的green和red模块, 对其进行GO富集分析, 并从中分别筛选出早期以及后期响应盐胁迫的核心转录因子41个和26个。功能注释显示4个模块中均存在已知的拟南芥同源基因参与不同阶段的盐胁迫响应, 还发现BnWRKY46BnWRKY57等核心基因在505份盐胁迫处理的油菜群体变异数据中具有丰富的SNPs变异和单倍体类型, 表明这些核心转录因子可能是油菜响应盐胁迫的关键候选基因。本研究可为甘蓝型油菜耐盐性改良提供可靠的数据参考和候选基因资源。

关键词: 甘蓝型油菜, RNA-seq, 盐胁迫, WGCNA, 基因共表达网络

Abstract:

Brassica napus L. is an important oil crop. Salt stress is one of the major environmental conditions affecting the growth and development of B. napus, which may lead to yield reduction, quality deterioration, and even the death of B. napus. In this study, the B. napus semi-winter cultivar ZS11 was used as the experimental material to perform transcriptome sequencing on the leaf and root tissues with salt stress treatment (0, 0.25, 0.5, 1, 3, 6, 12, and 24 h). The measured 90 RNA-seq data provided the high-resolution time dynamic transcriptional expression spectrum of rapeseed tissues responding to salt stress was obtained. Correlation analysis showed that the samples exhibited significant clustering differences in early response and late response before and after 1 h salt stress treatment. Using DESeq2 for differential gene analysis, we identified 20,462 and 29,334 differential genes for the response of root and leaf tissues, respectively, indicating that the overall response of leaf tissue in rapeseed was more severe than the root. Furthermore, WGCNA was used to construct gene co-expression networks for the salt stress response in root and leaf tissues, respectively, and tan and yellow modules were significantly related to the early response to salt stress, and green and red modules were significantly related to the late response to salt stress. GO enrichment analysis was then performed, and 41 and 26 core transcription factors responding to salt stress at the early and late stages, respectively, were selected from these networks. Functional annotation showed that the known Arabidopsis homologous genes involved in salt stress responses at different stages existed in all four modules, and core genes, such as BnWRKY46 and BnWRKY57, had abundant SNPs variation and haplotypes in 505 salt stress-treated rape population variation data, suggesting that these core transcription factors might be key candidate genes for rape salt stress response. This study provides a reliable data reference and candidate gene resources for improving salt tolerance in B. napus.

Key words: Brassica napus L., RNA-seq, salt stress, WGCNA, gene co-expression networks

图1

盐胁迫样品处理条件"

图2

盐胁迫响应marker基因的表达模式"

图3

盐胁迫的相关性分析 A: 主坐标分析; B: 层次聚类分析。主坐标分析时使用对照组, 为了直观看到聚类情况, 层次聚类时未加对照组。"

图4

盐胁迫处理24 h内的差异基因数目及变化趋势 A: 差异基因数目随处理时间的变化趋势; B: 各时间点上下调基因数目统计。"

图5

最佳软阈值的选择 A, B: 不同软阈值的网络拓扑分析。图A代表叶片组织, 图B代表根系组织, 左侧面板显示了无尺度拟合指数(Y轴)作为软阈值(X轴)的函数, 右侧面板显示了平均连通度(Y轴)作为软阈值(X轴)的函数。"

附表1

叶片组织响应盐胁迫的基因共表达网络模块信息"

模块
Module
基因数目(转录因子数目)
Gene_number (TF_number)
模块
Module
基因数目(转录因子数目)
Gene_number (TF_number)
cyan 198 (18) blue 4945 (209)
salmon 242 (36) pink 775 (22)
green 1654 (138) purple 466 (59)
red 1148 (73) tan 260 (75)
turquoise 8651 (559) black 801 (27)
greenyellow 405 (33) magenta 556 (45)
brown 3510 (291) yellow 3101 (184)

附表2

根系组织响应盐胁迫的基因共表达网络模块信息"

模块
Module
基因数目(转录因子数目)
Gene_number (TF_number)
模块
Module
基因数目(转录因子数目)
Gene_numbe (TF_number)
greenyellow 234 (27) yellow 2322 (276)
pink 824 (85) purple 365 (12)
brown 2515 (134) red 1238 (99)
green 2077 (195) black 1066 (89)
magenta 651 (41) turquoise 4058 (393)
blue 3590 (426)

图6

基因模块与样本时间点的相关性热图 A: 叶片组织的相关性热图; B: 根系组织的相关性热图。颜色越深表明相关性越大。"

图7

早期及后期响应模块的基因表达谱 A: 叶片组织早期响应阶段的tan模块; B: 根系组织早期响应阶段的yellow模块; C: 叶片组织后期响应阶段的green模块; D: 根系组织后期响应阶段的red模块。热图显示了模块中所有共表达基因的表达谱。条形图显示了模块特征基因的表达模式。"

图8

早期及后期响应模块的GO富集分析 A: 叶片组织早期响应阶段的tan模块; B: 根系组织早期响应阶段的yellow模块; C: 叶片组织后期响应阶段的green模块; D: 根系组织后期响应阶段的red模块。"

图9

早期及后期响应模块的基因共表达网络可视化 A: 叶片组织早期响应阶段的tan模块; B: 根系组织早期响应阶段的yellow模块; C: 叶片组织后期响应阶段的green模块; D: 根系组织后期响应阶段的red模块。转录因子用红色三角形表示, 非转录因子用蓝绿色圆形表示, 图形越大表明基因连通度越高。"

附表3

关键模块的核心转录因子功能注释"

关键模块
Hub modules
核心转录因子
Core transcription factors
基因别名
Gene aliases
基因名字
Gene names
基因注释
Gene annotation
tan BnaA03G0475900ZS WRKY53 AT4G23810 WRKY转录因子家族成员,是叶绿素合成/降解、衰老和气孔导度的拮抗调节因子。
A member of WRKY transcription factor family which is antagonistic regulators of chlorophyll synthesis/degradation, senescence, and stomatal conductance.
tan BnaC07G0058300ZS NAC036 AT2G17040 NAC转录因子家族成员,参与叶和花序茎的形态建成。
A member of the NAC transcription factor family involved in leaf and inflorescence stem morphogenesis.
tan BnaC03G0795800ZS ERF4 AT3G15210 作为JA应答防御基因和对坏死性真菌病原体尖孢镰刀菌抗性的负调节因子,可拮抗JA对根伸长的抑制作用。
Acts as a negative regulator of JA-responsive defense gene expression and resistance to the necrotrophic fungal pathogen Fusarium oxysporum and antagonizes JA inhibition of root elongation.
tan BnaA01G0133900ZS WRKY53 AT4G23810 WRKY转录因子家族成员,是叶绿素合成/降解、衰老和气孔导度的拮抗调节因子。
A member of WRKY transcription factor family which is antagonistic regulators of chlorophyll synthesis/degradation, senescence, and stomatal conductance.
tan BnaC01G0172400ZS WRKY53 AT4G23810 WRKY转录因子家族成员,是叶绿素合成/降解、衰老和气孔导度的拮抗调节因子。
A member of WRKY transcription factor family which is antagonistic regulators of chlorophyll synthesis/degradation, senescence, and stomatal conductance.
tan BnaC07G0454200ZS WRKY53 AT4G23810 WRKY转录因子家族成员,是叶绿素合成/降解、衰老和气孔导度的拮抗调节因子。
A member of WRKY transcription factor family。
tan BnaA09G0423300ZS ERF11 AT1G28370 ERF/AP2转录因子家族中ERF亚家族B-1的一员,该蛋白含有一个AP2结构域。
A member of the ERF subfamily B-1 of ERF/AP2 transcription factor family which contains one AP2 domain.
tan BnaC03G0651000ZS ERF11 AT1G28370 ERF/AP2转录因子家族中ERF亚家族B-1的一员,该蛋白含有一个AP2结构域。
A member of the ERF subfamily B-1 of ERF/AP2 transcription factor family which contains one AP2 domain.
tan BnaC03G0042100ZS NAC081 AT5G08790 具有NAC结构域的假定转录激活因子的大家族成员,可由创伤诱导表达。
A large family member of putative transcriptional activators with NAC domain, which can be Induced by wounding.
tan BnaA04G0247200ZS WRKY33 AT2G38470 WRKY转录因子家族成员,参与对各种非生物胁迫尤其是盐胁迫的反应。能控制根中凋亡屏障的形成,从而赋予耐盐性。
A member of WRKY transcription factor family. Involved in response to various abiotic stresses especially salt stress.Control apoplastic barrier formation in roots to confer salt tolerance.
tan BnaC03G0217300ZS WRKY33 AT2G38470 参与对各种非生物胁迫尤其是盐胁迫的反应。
Involved in response to various abiotic stresses especially salt stress.
tan BnaA06G0417500ZS ERF5 AT5G47230 ERF/AP2转录因子家族(ATERF-5)的ERF亚家族B-3的成员。
A member of the ERF subfamily B-3 of ERF/AP2 transcription factor family (ATERF-5).
tan BnaA03G0185200ZS WRKY33 AT2G38470 WRKY转录因子家族成员,参与对各种非生物胁迫尤其是盐胁迫的反应。
A member of the plant WRKY transcription factor family. Involved in response to various abiotic stresses - especially salt stress.
tan BnaA08G0213700ZS ERF11 AT1G28370 ERF/AP2转录因子家族中ERF亚家族B-1的一员。
A member of the ERF subfamily B-1 of ERF/AP2 transcription factor family.
tan BnaC04G0562300ZS WRKY33 AT2G38470 参与对各种非生物胁迫尤其是盐胁迫的反应。
Involved in response to various abiotic stresses especially salt stress.
yellow BnaC09G0432800ZS ZAT12 AT5G59820 锌指蛋白,参与高光和冷适应。
A zinc finger protein involved in high light and cold acclimation.
yellow BnaC08G0297500ZS NAC062 AT3G49530 作为冷信号和病原体抗性反应之间分子链接的转录因子。
Transcription factor that serves as a molecular link between cold signals and pathogen resistance responses.
yellow BnaC02G0323100ZS WRKY40 AT1G80840 病原体诱导转录因子,与WRKY18或WRKY60共表达会使植物对丁香假单胞菌和灰霉病菌更敏感。
Pathogen-induced transcription factor. Coexpression with WRKY18 or WRKY60 made plants more susceptible to both P. syringae and B. cinerea.
yellow BnaA03G0475900ZS WRKY53 AT4G23810 WRKY转录因子家族成员,是叶绿素合成/降解、衰老和气孔导度的拮抗调节因子。
A member of WRKY transcription factor family which is antagonistic regulators of chlorophyll synthesis/degradation, senescence, and stomatal conductance.
yellow BnaA08G0015900ZS ERF8 AT1G53170 ERF/AP2转录因子家族(ATERF-8)ERF亚家族B-1的一个成员,这种蛋白质含有一个AP2结构域。
A member of the ERF subfamily B-1 of ERF/AP2 transcription factor family (ATERF-8). The protein contains one AP2 domain.
yellow BnaC05G0100700ZS DDF1 AT1G12610 ERF/AP2转录因子家族(DD f1)DREB亚家族A-1的一个成员。这种蛋白质含有一个AP2结构域。该亚家族有6个成员,包括CBF1、CBF2和CBF3。该基因的过表达导致延迟开花和矮化,赤霉酸生物合成减少,以及对高水平盐的耐受性增加。
A member of the DREB subfamily A-1 of ERF/AP2 transcription factor family (DDF1). The protein contains one AP2 domain. There are six members in this subfamily, including CBF1, CBF2, and CBF3. Overexpression of this gene results in delayed flowering and dwarfism, reduction of gibberellic acid biosynthesis, and increased tolerance to high levels of salt.
yellow BnaC07G0454200ZS WRKY53 AT4G23810 WRKY转录因子家族成员,是叶绿素合成/降解、衰老和气孔导度的拮抗调节因子
A member of WRKY transcription factor family which is antagonistic regulators of chlorophyll synthesis/degradation, senescence, and stomatal conductance.
yellow BnaA01G0133900ZS WRKY53 AT4G23810 WRKY转录因子家族成员,是叶绿素合成/降解、衰老和气孔导度的拮抗调节因子
A member of WRKY transcription factor family which is antagonistic regulators of chlorophyll synthesis/degradation, senescence, and stomatal conductance.
yellow BnaC03G0795800ZS ERF4 AT3G15210 作为JA反应性防御应答基因和对坏死性真菌病原体尖孢镰刀菌抗性的负调节因子,能拮抗JA对根伸长的抑制作用。
Acts as a negative regulator of JA-responsive defense gene expression and resistance to the necrotrophic fungal pathogen Fusarium oxysporum and antagonizes JA inhibition of root elongation.
yellow BnaA06G0329700ZS NAC091 AT5G24590 NAC转录因子家族成员,参与调节拟南芥对TCV病毒的防御反应。
A member of NAC transcription factor family involved in regulating the defense response of Arabidopsis to turnip crinkle virus (TCV).
yellow BnaC04G0080600ZS WRKY33 AT2G38470 参与应对各种非生物胁迫,尤其是盐胁迫。
Involved in response to various abiotic stresses especially salt stress.
yellow BnaA06G0356400ZS WRKY48 AT5G49520 一种胁迫和病原体诱导的转录激活因子,会抑制植物的基础防御。
A stress- and pathogen-induced transcriptional activator that represses plant basal defense.
yellow BnaC05G0398500ZS AZF2 AT3G19580 锌指蛋白家族成员,其mRNA水平在响应ABA、高盐和轻度脱水时会上调表达。
A member of zinc finger protein family whose mRNA levels are upregulated in response to ABA, high salt, and mild desiccation.
yellow BnaA09G0110600ZS NAC036 AT2G17040 NAC转录因子家族成员,参与叶和花序茎的形态发生。
A member of the NAC transcription factor family that involved in leaf and inflorescence stem morphogenesis.
yellow BnaC09G0112900ZS NAC036 AT2G17040 NAC转录因子家族成员,参与叶和花序茎的形态发生。
A member of the NAC transcription factor family involved in leaf and inflorescence stem morphogenesis.
yellow BnaC07G0433500ZS LSD1 AT4G20380 锌指蛋白家族成员,负调节基础防御途径,监控超氧化物依赖性信号并负调节植物细胞死亡途径。
A member of zinc finger family protein that negatively regulates a basal defense pathway, monitors a superoxide-dependent signal and negatively regulates a plant cell death pathway.
yellow BnaC03G0563400ZS NAC062 AT3G49530 NAC转录因子家族成员,作为冷信号和病原体抗性反应之间分子链接。
A member of the NAC transcription factor family that serves as a molecular link between cold signals and pathogen resistance responses.
yellow BnaC05G0161100ZS ERF017 AT1G19210 ERF/AP2转录因子家族的DREB亚家族A-5的一个成员,这种蛋白质含有一个AP2结构域。
A member of the DREB subfamily A-5 of ERF/AP2 transcription factor family. The protein contains one AP2 domain.
yellow BnaC04G0512500ZS POSF21 AT2G31370 碱性亮氨酸拉链(bZIP)转录因子家族蛋白。
Basic-leucine zipper (bZIP) transcription factor family protein.
yellow BnaA07G0269000ZS MYBD AT1G70000 MYB样结构域转录因子,在响应光和细胞分裂素的花青素积累中发挥正调控作用。
A MYB-like Domain transcription factor that plays a positive role in anthocyanin accumulation in response to light and cytokinin.
yellow BnaA03G0321600ZS DREB2B AT3G11020 ERF/AP2转录因子家族(DREB2B)的DREB亚家族A-2的成员。这种蛋白质含有一个AP2结构域。
A member of the DREB subfamily A-2 of ERF/AP2 transcription factor family (DREB2B). The protein contains one AP2 domain.
yellow BnaC03G0264000ZS WRKY46 AT2G46400 WRKY转录因子,通过调节ABA信号和生长素体内平衡对渗透/盐胁迫依赖性LR抑制进行前馈抑制。
A WRKY transcription factor that contributes to the feedforward inhibition of osmotic/salt stress-dependent LR inhibition via regulation of ABA signaling and auxin homeostasis.
yellow BnaA02G0116700ZS MYB36 AT5G57620 MYB转录因子家族成员,在根发育过程中促进内皮层的分化。
A member of MYB transcriptional factor family that acts to promote differentiation of the endodermis during root development.
yellow BnaA04G0034100ZS BHLH107 AT3G56770 碱性螺旋-环-螺旋(bHLH) DNA结合超家族蛋白质。
basic helix-loop-helix (bHLH) DNA-binding superfamily protein.
yellow BnaA06G0158600ZS NAC062 AT3G49530 NAC转录因子家族成员,作为冷信号和病原体抗性反应之间分子链接。
A member of the NAC transcription factor family that serves as a molecular link between cold signals and pathogen resistance responses.
yellow BnaA06G0081500ZS DDF1 AT1G12610 ERF/AP2转录因子家族(DD f1)DREB亚家族A-1的一个成员,该基因的过表达导致延迟开花和矮化,对高水平盐的耐受性增加。
A member of the DREB subfamily A-1 of ERF/AP2 transcription factor family (DDF1). Overexpression of this gene results in delayed flowering and dwarfism, and increased tolerance to high levels of salt.
green BnaA05G0016800ZS GBF3 AT2G46270 一种bZIP G盒结合蛋白,其表达受ABA、寒冷和缺水诱导。
A bZIP G-box binding protein, induced by ABA, cold and water deprivation.
green BnaC03G0260300ZS SOC1 AT2G45660 控制开花,是一氧化碳促进开花所必需的。
Controls flowering and is required for CO to promote flowering.
green BnaC05G0560000ZS ATHB-1 AT3G01470 一个参与叶和下胚轴发育的同源结构域亮氨酸拉链I类(HD-Zip I)转录激活因子。
A homeodomain leucine zipper class I (HD-Zip I) transcriptional activator involved in leaf and hypocotyl development.
green BnaA07G0347200ZS ATY13 AT1G74650 R2R3因子基因家族成员;与生殖发育有关的蜡调节因子。
A member of the R2R3 factor gene family; wax regulator associated with reproductive development.
green BnaC01G0510700ZS NAC047 AT3G04070 含NAC结构域的蛋白47。
NAC domain containing protein 47.
green BnaA09G0409000ZS NFYA7 AT1G30500 核因子Y,亚单位A7。
nuclear factor Y, subunit A7.
green BnaA01G0191600ZS ARR1 AT3G16857 一种拟南芥反应调节蛋白(ARR ),在细胞分裂素信号途径中与其他B型ARR协同作用。还参与细胞分裂素依赖的下胚轴伸长抑制和细胞分裂素依赖的组织培养中的绿化和抽芽。ARR1、ARR10和ARR12是干旱反应的冗余调节因子,其中ARR1最为关键。
An Arabidopsis response regulator (ARR) protein that acts in concert with other type-B ARRs in the cytokinin signaling pathway. Also involved in cytokinin-dependent inhibition of hypocotyl elongation and cytokinin-dependent greening and shooting in tissue culture. ARR1, ARR10, and ARR12 are redundant regulators of drought response, with ARR1 being the most critical.
green BnaC04G0017100ZS GBF3 AT2G46270 一种bZIP G盒结合蛋白,受ABA、寒冷和缺水诱导。
A bZIP G-box binding protein induced by ABA, cold and water deprivation.
green BnaC06G0084400ZS NFYA5 AT1G54160 CBF-B/NF-YA转录因子家族的成员。响应ABA和干旱,功能丧失突变对干旱高度敏感。
A member of the CBF-B/NF-YA transcription factor family. Expression is upregulated in response to ABA and drought. Loss of function mutations are hypersensitive to drought.
green BnaA01G0036700ZS ATB2 AT4G34590 碱性结构域亮氨酸拉链(bZIP)转录因子bZIP11。蔗糖抑制翻译,导致uORF2中的核糖体停滞。直接调节参与氨基酸代谢的酶编码基因ASN1和ProDH2的基因表达。
A basic domain leucine zipper (bZIP) transcription factor bZIP11. Translation is repressed by sucrose that results in ribosome stalling in the uORF2. Directly regulates gene expression of ASN1 and ProDH2, which are enzyme-coding genes involved in amino acid metabolism.
green BnaC05G0008500ZS —— AT1G01250 ERF/AP2转录因子家族的DREB亚家族A-4的成员。这种蛋白质含有一个AP2结构域。
A member of the DREB subfamily A-4 of ERF/AP2 transcription factor family. The protein contains one AP2 domain.
green BnaA09G0663800ZS NFYC9 AT1G08970 核因子Y C (NF-YC)同系物NF-YC9,调节GA和ABA介导的种子萌发。
A NUCLEAR FACTOR-Y C (NF-YC) homologue NF-YC9 that modulate GA- and ABA-mediated seed germination.
green BnaC09G0556700ZS FLC AT5G10140 由开花基因座C转录因子编码的MADS-box蛋白,作为花转变的阻遏物并有助于昼夜节律钟的温度补偿。冷处理过程中表达下调。春化、FRI和自主途径都会影响FLC染色质的状态。在体内与SOC1和FT染色质相互作用。
MADS-box protein encoded by FLOWERING LOCUS C - transcription factor that functions as a repressor of floral transition and contributes to temperature compensation of the circadian clock. Expression is downregulated during cold treatment. The small RNAs are most likely derived from an antisense transcript of FLC. Interacts with SOC1 in vivo.
green BnaC07G0522500ZS GATA3 AT4G34680 锌指转录因子GATA因子家族成员。
A member of the GATA factor family of zinc finger transcription factors.
red BnaA02G0180600ZS WRKY57 AT1G69310 WRKY转录因子成员。WRKY57的激活赋予了耐旱性。
A member of the WRKY Transcription Factor. Activation of WRKY57 confers drought tolerance.
red BnaC02G0139100ZS LRL3 AT5G58010 调节根毛发育的碱性螺旋-环-螺旋(bHLH)蛋白。
A basic helix-loop-helix (bHLH) protein that regulates root hair development.
red BnaA03G0557900ZS ATHB40 AT4G36740 同源结构域亮氨酸拉链I类(HD-Zip I)蛋白。
A homeodomain leucine zipper class I (HD-Zip I) protein.
red BnaA09G0422600ZS NAC010 AT1G28470 含NAC结构域的蛋白10。
NAC domain containing protein 10.
red BnaC07G0322500ZS MYB121 AT3G30210 R2R3因子基因家族成员。
A member of the R2R3 factor gene family.
red BnaA05G0156300ZS NFYA5 AT1G54160 CCAAT结合转录因子(CBF-B/NF-YA)家族的成员。响应ABA和干旱。
A member of the CCAAT-binding transcription factor (CBF-B/NF-YA) family. Expression is upregulated in response to ABA and drought.
red BnaA07G0311300ZS ZFHD1 AT1G69600 锌指同源结构域转录因子家族成员ZFHD1。干旱、高盐和脱落酸诱导ZFHD1的表达。
A member of the zinc finger homeodomain transcriptional factor family. Expression of ZFHD1 is induced by drought, high salinity and abscisic acid.
red BnaA08G0184300ZS ATHB40 AT4G36740 同源结构域亮氨酸拉链I类(HD-Zip I)蛋白。
A homeodomain leucine zipper class I (HD-Zip I) protein.
red BnaC06G0308100ZS WRKY57 AT1G69310 WRKY转录因子成员。WRKY57的激活赋予了耐旱性。
A member of the WRKY Transcription Factor. Activation of WRKY57 confers drought tolerance.
red BnaC08G0452900ZS SRS3 AT2G21400 SHI基因家族成员,能促进拟南芥中雌蕊、雄蕊和叶的发育。
A member of SHI gene family that promote gynoecium, stamen and leaf development in Arabidopsis.
red BnaA07G0271900ZS WRKY57 AT1G69310 WRKY转录因子成员。WRKY57的激活赋予了耐旱性。
A member of the WRKY Transcription Factor. Activation of WRKY57 confers drought tolerance.
red BnaC09G0556700ZS FLC AT5G10140 冷处理过程中表达下调。
Expression is downregulated during cold treatment.

图10

核心基因BnWRKY46和BnWRKY57在505份群体数据中的SNPs及单倍型分析 A: BnWRKY46的连锁不平衡图。B: BnWRKY46在505份群体数据中的单倍型箱线图, 纵坐标是油菜幼苗期盐胁迫处理组与对照组的根长比值, 不同字母表示使用双向方差分析的P ≤ 0.05的显著性差异。C: BnWRKY57的连锁不平衡图。D: BnWRKY57在505份群体数据中的单倍型箱线图, 纵坐标是油菜幼苗期盐胁迫处理组与对照组的根长比值, 不同字母表示使用双向方差分析的P ≤ 0.05的显著性差异。"

[1] Hazell P, Wood S. Drivers of change in global agriculture. Philosoph Trans Royal Soc B Biol Sci, 2008, 363: 495-515.
[2] Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas R J, Drechsel P, Noble A D. Economics of salt-induced land degradation and restoration. Nat Resour Forum, 2014, 38: 282-295.
doi: 10.1111/narf.2014.38.issue-4
[3] Park H J, Kim W Y, Yun D J. A new insight of salt stress signaling in plant. Mol Cells, 2016, 39: 447-459.
doi: 10.14348/molcells.2016.0083 pmid: 27239814
[4] Munns R. Comparative physiology of salt and water stress. Plant Cell Environ, 2002, 25: 239-250.
doi: 10.1046/j.0016-8025.2001.00808.x
[5] Tyerman S D, Munns R, Fricke W, Arsova B, Barkla B J, Bose J, Bramley H, Byrt C, Chen Z, Colmer T D, Cuin T, Day D A, Foster K J, Gilliham M, Henderson S W, Horie T, Jenkins C L D, Kaiser B N, Katsuhara M, Plett D, Miklavcic S J, Roy S J, Rubio F, Shabala S, Shelden M, Soole K, Taylor N L, Tester M, Watt M, Wege S, Wegner L H, Wen Z. Energy costs of salinity tolerance in crop plants. New Phytol, 2019, 221: 25-29.
doi: 10.1111/nph.15555 pmid: 30488600
[6] 杨劲松, 姚荣江, 王相平, 谢文萍, 张新, 朱伟, 张璐, 孙瑞娟. 中国盐渍土研究: 历程、现状与展望. 土壤学报, 2022, 59: 10-27.
Yang J S, Yao R J, Wang X P, Xie W P, Zhang X, Zhu W, Zhang L, Sun R J. Research on salt-affected soils in China: history, status quo and prospect. Acta Pedol Sin, 2022, 59: 10-27. (in Chinese with English abstract)
[7] 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019, 41: 485-489.
doi: 10.7505/j.issn.1007-9084.2019.04.001
Liu C, Feng Z C, Xiao T H, Ma X M, Zhou G S, Huang F H, Li J N, Wang H Z. Development, potential and adaptation of Chinese rapeseed industry. Chin J Oil Crop Sci, 2019, 41: 485-489. (in Chinese with English abstract)
doi: 10.7505/j.issn.1007-9084.2019.04.001
[8] 何微, 李俊, 王晓梅, 林巧, 杨小薇. 全球油菜产业现状与我国油菜产业问题、对策. 中国油脂, 2022, 47(2): 1-7.
He W, Li J, Wang X M, Lin Q, Yang X W. Current status of global rapeseed industry and problems, countermeasures of rapeseed industry in China. Chin Oils Fats, 2022, 47(2): 1-7. (in Chinese with English abstract)
[9] Kumar K, Kumar M, Kim S R, Ryu H, Cho Y G. Insights into genomics of salt stress response in rice. Rice, 2013, 6: 27-39.
doi: 10.1186/1939-8433-6-27 pmid: 24280112
[10] Zhang H, Jiang C, Lei J, Dong J, Ren J, Shi X, Zhong C, Wang X, Zhao X, Yu H. Comparative physiological and transcriptomic analyses reveal key regulatory networks and potential hub genes controlling peanut chilling tolerance. Genomics, 2022, 114: 110285.
doi: 10.1016/j.ygeno.2022.110285
[11] Yuan F, Yang H, Xue Y, Kong D, Ye R, Li C, Zhang J, Theprungsirikul L, Shrift T, Krichilsky B, Johnson D M, Swift G B, He Y, Siedow J N, Pei Z M. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature, 2014, 514: 367-371.
[12] Hamilton E S, Jensen G S, Maksaev G, Katims A, Sherp A M, Haswell E S. Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination. Science, 2015, 350: 438-441.
doi: 10.1126/science.aac6014 pmid: 26494758
[13] Jiang Z, Zhou X, Tao M, Yuan F, Liu L, Wu F, Wu X, Xiang Y, Niu Y, Liu F, Li C, Ye R, Byeon B, Xue Y, Zhao H, Wang H N, Crawford B M, Johnson D M, Hu C, Pei C, Zhou W, Swift G B, Zhang H, Vo-Dinh T, Hu Z, Siedow J N, Pei Z M. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx. Nature, 2019, 572: 341-346.
doi: 10.1038/s41586-019-1449-z
[14] Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247-273.
doi: 10.1146/arplant.2002.53.issue-1
[15] Barragán V, Leidi E O, Andrés Z, Rubio L, De Luca A, Fernández J A, Cubero B, Pardo J M.Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell, 2012, 24: 1127-1142.
[16] Kim J, Kim H Y. Functional analysis of a calcium-binding transcription factor involved in plant salt stress signaling. FEBS Lett, 2006, 580: 5251-5256.
pmid: 16962584
[17] Bo C, Chen H, Luo G, Li W, Zhang X, Ma Q, Cheng B, Cai R. Maize WRKY114 gene negatively regulates salt-stress tolerance in transgenic rice. Plant Cell Rep, 2020, 39: 135-148.
doi: 10.1007/s00299-019-02481-3 pmid: 31659429
[18] Qin H, Wang J, Chen X, Wang F, Peng P, Zhou Y, Miao Y, Zhang Y, Gao Y, Qi Y, Zhou J, Huang R. Rice OsDOF15 contributes to ethylene-inhibited primary root elongation under salt stress. New Phytol, 2019, 223: 798-813.
doi: 10.1111/nph.15824 pmid: 30924949
[19] Zhang H, Mao L, Xin M, Xing H, Zhang Y, Wu J, Xu D, Wang Y, Shang Y, Wei L, Cui M, Zhuang T, Sun X, Song X. Overexpression of GhABF3 increases cotton (Gossypium hirsutum L.) tolerance to salt and drought. BMC Plant Biol, 2022, 22: 313.
doi: 10.1186/s12870-022-03705-7
[20] Li M, Chen R, Jiang Q, Sun X, Zhang H, Hu Z. GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean. Plant Mol Biol, 2021, 105: 333-345.
doi: 10.1007/s11103-020-01091-y pmid: 33155154
[21] Chowdhury H A, Bhattacharyya D K, Kalita J K. (Differential) co-expression analysis of gene expression: a survey of best practices. IEEE/ACM Trans Comput Biol Bioinform, 2020, 17: 1154-1173.
doi: 10.1109/TCBB.2019.2893170 pmid: 30668502
[22] Zheng J, He C, Qin Y, Lin G, Park W D, Sun M, Li J, Lu X, Zhang C, Yeh C T, Gunasekara C J, Zeng E, Wei H, Schnable P S, Wang G, Liu S. Co-expression analysis aids in the identification of genes in the cuticular wax pathway in maize. Plant J, 2019, 97: 530-543.
doi: 10.1111/tpj.14140
[23] 李旭凯, 李任建, 张宝俊. 利用WGCNA鉴定非生物胁迫相关基因共表达网络. 作物学报, 2019, 45: 1349-1364.
doi: 10.3724/SP.J.1006.2019.82061
Li X K, Li R J, Zhang B J. Identification of rice stress-related gene co-expression modules by WGCNA. Acta Agron Sin, 2019, 45: 1349-1364. (in Chinese with English abstract)
[24] Ye W, Wang T, Wei W, Lou S, Lan F, Zhu S, Li Q, Ji G, Lin C, Wu X, Ma L. The full-length transcriptome of Spartina alterniflora reveals the complexity of high salt tolerance in monocotyledonous halophyte. Plant Cell Physiol, 2020, 61: 882-896.
doi: 10.1093/pcp/pcaa013
[25] Zhao N, Cui S, Li X, Liu B, Deng H, Liu Y, Hou M, Yang X, Mu G, Liu L. Transcriptome and co-expression network analyses reveal differential gene expression and pathways in response to severe drought stress in peanut (Arachis hypogaea L.). Front Genet, 2021, 12: 672884.
doi: 10.3389/fgene.2021.672884
[26] Yang L, Yang L, Zhao C, Liu J, Tong C, Zhang Y, Cheng X, Jiang H, Shen J, Xie M, Liu S. Differential alternative splicing genes and isoform co-expression networks of Brassica napus under multiple abiotic stresses. Front Plant Sci, 2022, 13: 1009998.
doi: 10.3389/fpls.2022.1009998
[27] Yang Z, Wang S, Wei L, Huang Y, Liu D, Jia Y, Luo C, Lin Y, Liang C, Hu Y, Dai C, Guo L, Zhou Y, Yang Q Y. BnIR: a multi-omics database with various tools for Brassica napus research and breeding. Mol Plant, 2023, 16: 775-789.
[28] Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 2016, 32: 3047-3048.
[29] Kim D, Paggi J M, Park C, Bennett C, Salzberg S L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol, 2019, 37: 907-915.
doi: 10.1038/s41587-019-0201-4 pmid: 31375807
[30] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009, 25: 2078-2079.
doi: 10.1093/bioinformatics/btp352 pmid: 19505943
[31] Liao Y, Smyth G K, Shi W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 2014, 30: 923-930.
doi: 10.1093/bioinformatics/btt656 pmid: 24227677
[32] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[33] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550.
doi: 10.1186/s13059-014-0550-8
[34] Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf, 2008, 9: 559.
doi: 10.1186/1471-2105-9-559
[35] Yu G, Wang L G, Han Y, He Q Y. ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 2012, 16: 284-287.
doi: 10.1089/omi.2011.0118 pmid: 22455463
[36] Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13: 2498-2504.
doi: 10.1101/gr.1239303 pmid: 14597658
[37] Jiang Y, Deyholos M K. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol, 2009, 69: 91-105.
doi: 10.1007/s11103-008-9408-3
[38] Ji H, Pardo J M, Batelli G, Van Oosten M J, Bressan R A, Li X. The salt overly sensitive (SOS) pathway: established and emerging roles. Mol Plant, 2013, 6: 275-286.
doi: 10.1093/mp/sst017 pmid: 23355543
[39] Ali A, Maggio A, Bressan R A, Yun D J. Role and functional differences of HKT1-type transporters in plants under salt stress. Int J Mol Sci, 2019, 20: 1059.
doi: 10.3390/ijms20051059
[40] Luo X, Li C, He X, Zhang X, Zhu L. ABA signaling is negatively regulated by GbWRKY1 through JAZ1 and ABI1 to affect salt and drought tolerance. Plant Cell Rep, 2020, 39: 181-194.
doi: 10.1007/s00299-019-02480-4 pmid: 31713664
[41] Wolny E, Skalska A, Braszewska A, Mur L A J, Hasterok R. Defining the cell wall, cell cycle and chromatin landmarks in the responses of brachypodium distachyon to salinity. Int J Mol Sci, 2021, 22: 949.
doi: 10.3390/ijms22020949
[42] Cai C, Wang W, Ye S, Zhang Z, Ding W, Xiang M, Wu C, Zhu Q. Overexpression of a novel Arabidopsis gene SUPA leads to various morphological and abiotic stress tolerance alternations in Arabidopsis and Poplar. Front Plant Sci, 2020, 11: 560985.
[43] Oh G G K, O'Leary B M, Signorelli S, Millar A H.Alternative oxidase (AOX) 1a and 1d limit proline-induced oxidative stress and aid salinity recovery in Arabidopsis. Plant Physiol, 2022, 188: 1521-1536.
[44] Amsbury S, Hunt L, Elhaddad N, Baillie A, Lundgren M, Verhertbruggen Y, Scheller H V, Knox J P, Fleming A J, Gray J E. Stomatal function requires pectin de-methyl-esterification of the guard cell wall. Curr Biol, 2016, 26: 2899-2906.
doi: S0960-9822(16)30933-2 pmid: 27720618
[45] Kang H G, Kim J, Kim B, Jeong H, Choi S H, Kim E K, Lee H Y, Lim P O. Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances tolerance to cold, drought, and heat stresses in Arabidopsis thaliana. Plant Sci, 2011, 180: 634-641.
doi: 10.1016/j.plantsci.2011.01.002
[46] Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis Cys2/His2- type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol, 2004, 136: 2734-2746.
doi: 10.1104/pp.104.046599 pmid: 15333755
[47] Yan Z, Wang J, Wang F, Xie C, Lyu B, Yu Z, Dai S, Liu X, Xia G, Tian H, Li C, Ding Z.MPK3/6-induced degradation of ARR1/10/12 promotes salt tolerance in Arabidopsis. EMBO Rep, 2021, 22: e52457.
[48] Tran L S, Nakashima K, Sakuma Y, Osakabe Y, Qin F, Simpson SD, Maruyama K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K.Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J, 2007, 49: 46-63.
[49] 张国方.甘蓝型油菜耐盐性遗传解析及候选基因功能验证. 华中农业大学博士学位论文, 湖北武汉, 2021.
Zhang G F. Genetic Analysis of Salt Tolerance andFunctional Verification of Candidate Genes in Brassica napus. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2021. (in Chinese with English abstract)
[50] Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg B E, Kudla J, Harter K. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J, 2007, 50: 347-363.
doi: 10.1111/j.1365-313X.2007.03052.x pmid: 17376166
[51] Zhang H, Zhu J, Gong Z, Zhu J K. Abiotic stress responses in plants. Nat Rev Genet, 2022, 23: 104-119.
doi: 10.1038/s41576-021-00413-0
[52] Luo L, Zhang P, Zhu R, Fu J, Su J, Zheng J, Wang Z, Wang D, Gong Q. Autophagy is rapidly induced by salt stress and is required for salt tolerance in Arabidopsis. Front Plant Sci, 2017, 8: 1459.
[53] Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G. How plant hormones mediate salt stress responses. Trends Plant Sci, 2020, 25: 1117-1130.
doi: 10.1016/j.tplants.2020.06.008 pmid: 32675014
[54] Glawischnig E. Camalexin. Phytochemistry, 2007, 68: 401-406.
doi: 10.1016/j.phytochem.2006.12.005 pmid: 17217970
[55] Mukherjee R, Mukherjee A, Bandyopadhyay S, Mukherjee S, Sengupta S, Ray S, Majumder A L. Selective manipulation of the inositol metabolic pathway for induction of salt-tolerance in indica rice variety. Sci Rep, 2019, 9: 5358.
doi: 10.1038/s41598-019-41809-7 pmid: 30926863
[56] Le Gall H, Philippe F, Domon J M, Gillet F, Pelloux J, Rayon C. Cell wall metabolism in response to abiotic stress. Plants (Basel), 2015, 4: 112-166.
doi: 10.3390/plants4010112
[57] Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 2019, 24: 2452.
doi: 10.3390/molecules24132452
[58] Krishnamurthy P, Vishal B, Ho W J, Lok F C J, Lee F S M, Kumar P P. Regulation of a cytochrome P450 gene CYP94B1 by WRKY33 Transcription Factor controls apo plastic barrier formation in roots to confer salt tolerance. Plant Physiol, 2020, 184: 2199-2215.
doi: 10.1104/pp.20.01054 pmid: 32928900
[59] Wang Z, Fang H, Chen Y, Chen K, Li G, Gu S, Tan X. Overexpression of BnWRKY33 in oilseed rape enhances resistance to Sclerotinia sclerotiorum. Mol Plant Pathol, 2014, 15: 677-689.
doi: 10.1111/mpp.12123 pmid: 24521393
[60] Cao F Y, DeFalco T A, Moeder W, Li B, Gong Y, Liu X M, Taniguchi M, Lumba S, Toh S, Shan L, Ellis B, Desveaux D, Yoshioka K. Arabidopsis ETHYLENE RESPONSE FACTOR 8 (ERF8) has dual functions in ABA signaling and immunity. BMC Plant Biol, 2018, 18: 211.
doi: 10.1186/s12870-018-1402-6
[1] 李世宽, 洪慧龙, 付佳祺, 谷勇哲, 孙如建, 邱丽娟. BSA-Seq结合RNA-Seq技术挖掘大豆叶片提前黄化衰老基因[J]. 作物学报, 2024, 50(2): 294-309.
[2] 肖胜华, 陆妍, 李安子, 覃耀斌, 廖铭静, 闭兆福, 卓柑锋, 朱永红, 朱龙付. 棉花AP2/ERF转录因子GhTINY2负调控植株抗盐性的功能分析[J]. 作物学报, 2024, 50(1): 126-137.
[3] 郭家鑫, 叶扬, 郭慧娟, 闵伟. 盐碱胁迫对棉花叶片蛋白质组的影响及差异性分析[J]. 作物学报, 2024, 50(1): 219-236.
[4] 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432.
[5] 徐扬, 张岱, 康涛, 温赛群, 张冠初, 丁红, 郭庆, 秦斐斐, 戴良香, 张智猛. 盐胁迫对花生幼苗离子动态及耐盐基因表达的影响[J]. 作物学报, 2023, 49(9): 2373-2384.
[6] 代书桃, 朱灿灿, 马小倩, 秦娜, 宋迎辉, 魏昕, 王春义, 李君霞. 谷子HAK/KUP/KT钾转运蛋白家族全基因组鉴定及其对低钾和高盐胁迫的响应[J]. 作物学报, 2023, 49(8): 2105-2121.
[7] 唐玉凤, 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报, 2023, 49(7): 1829-1842.
[8] 杨一丹, 何督, 刘静, 张岩, 陈飞志, 巫燕飞, 杜雪竹. 寄主诱导的基因沉默干扰核盘菌致病基因OAH在甘蓝型油菜抗菌核病中的应用[J]. 作物学报, 2023, 49(6): 1542-1550.
[9] 袁大双, 张晓莉, 朱冬鸣, 杨友鸿, 姚梦楠, 梁颖. BnMAPK2 对甘蓝型油菜耐旱性的影响[J]. 作物学报, 2023, 49(6): 1518-1531.
[10] 张小红, 彭琼, 鄢铮. 盐胁迫下不同甘薯品种的转录组测序分析[J]. 作物学报, 2023, 49(5): 1432-1444.
[11] 杨太桦, 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶, 周广生. 初步探究LncRNA在甘蓝型油菜生态型分化中的作用[J]. 作物学报, 2023, 49(5): 1197-1210.
[12] 张盈川, 吴晓明玉, 陶保龙, 陈丽, 鲁海琴, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-miR43-FBXL调控模块参与甘蓝型油菜铝胁迫的功能分析[J]. 作物学报, 2023, 49(5): 1211-1221.
[13] 陈晓汉, 王丽琴, 汪华栋, 肖清, 陶保龙, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. BnABCI8影响甘蓝型油菜叶绿体发育[J]. 作物学报, 2023, 49(4): 893-905.
[14] 柏成成, 姚小尧, 王雨璐, 王赛玉, 李金莹, 蒋有为, 靳舒荣, 陈春杰, 刘渔, 魏星玥, 徐新福, 李加纳, 倪郁. 甘蓝型油菜长链烷烃合成相关基因的克隆及其与BnCER1-2的互作[J]. 作物学报, 2023, 49(4): 1016-1027.
[15] 陈慧, 肖清, 汪华栋, 文静, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 易斌. 甘蓝型油菜SUMO蛋白家族成员鉴定及Bna.SUMO1.C08基因的功能研究[J]. 作物学报, 2023, 49(4): 917-925.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .