作物学报 ›› 2024, Vol. 50 ›› Issue (1): 237-250.doi: 10.3724/SP.J.1006.2024.34076
杨闯(), 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝*()
YANG Chuang(), WANG Ling, QUAN Cheng-Tao, YU Liang-Qian, DAI Cheng, GUO Liang, FU Ting-Dong, MA Chao-Zhi*()
摘要:
甘蓝型油菜是重要的油料作物, 而盐胁迫是影响油菜生长发育的主要环境条件之一, 可能会造成油菜减产、品质下降甚至死亡。本研究利用半冬性油菜ZS11作为试验材料, 对盐胁迫处理0、0.25、0.5、1、3、6、12和24 h的叶片和根系组织进行转录组测序, 通过测得的90份RNA-seq数据, 获得了油菜响应盐胁迫的高分辨率时间动态转录表达谱。相关性分析发现, 样本在盐胁迫处理1 h前后具有明显的早期响应与后期响应的聚类差异。利用DESeq2进行差异基因分析, 鉴定出根系以及叶片组织响应差异基因分别为20,462个和29,334个, 表明油菜叶片组织的响应程度整体上比根系更剧烈。进一步利用WGCNA分别构建根系以及叶片组织响应盐胁迫的基因共表达网络, 从中筛选出与盐胁迫早期响应阶段显著相关的tan和yellow模块, 以及与盐胁迫后期响应阶段显著相关的green和red模块, 对其进行GO富集分析, 并从中分别筛选出早期以及后期响应盐胁迫的核心转录因子41个和26个。功能注释显示4个模块中均存在已知的拟南芥同源基因参与不同阶段的盐胁迫响应, 还发现BnWRKY46和BnWRKY57等核心基因在505份盐胁迫处理的油菜群体变异数据中具有丰富的SNPs变异和单倍体类型, 表明这些核心转录因子可能是油菜响应盐胁迫的关键候选基因。本研究可为甘蓝型油菜耐盐性改良提供可靠的数据参考和候选基因资源。
[1] | Hazell P, Wood S. Drivers of change in global agriculture. Philosoph Trans Royal Soc B Biol Sci, 2008, 363: 495-515. |
[2] |
Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas R J, Drechsel P, Noble A D. Economics of salt-induced land degradation and restoration. Nat Resour Forum, 2014, 38: 282-295.
doi: 10.1111/narf.2014.38.issue-4 |
[3] |
Park H J, Kim W Y, Yun D J. A new insight of salt stress signaling in plant. Mol Cells, 2016, 39: 447-459.
doi: 10.14348/molcells.2016.0083 pmid: 27239814 |
[4] |
Munns R. Comparative physiology of salt and water stress. Plant Cell Environ, 2002, 25: 239-250.
doi: 10.1046/j.0016-8025.2001.00808.x |
[5] |
Tyerman S D, Munns R, Fricke W, Arsova B, Barkla B J, Bose J, Bramley H, Byrt C, Chen Z, Colmer T D, Cuin T, Day D A, Foster K J, Gilliham M, Henderson S W, Horie T, Jenkins C L D, Kaiser B N, Katsuhara M, Plett D, Miklavcic S J, Roy S J, Rubio F, Shabala S, Shelden M, Soole K, Taylor N L, Tester M, Watt M, Wege S, Wegner L H, Wen Z. Energy costs of salinity tolerance in crop plants. New Phytol, 2019, 221: 25-29.
doi: 10.1111/nph.15555 pmid: 30488600 |
[6] | 杨劲松, 姚荣江, 王相平, 谢文萍, 张新, 朱伟, 张璐, 孙瑞娟. 中国盐渍土研究: 历程、现状与展望. 土壤学报, 2022, 59: 10-27. |
Yang J S, Yao R J, Wang X P, Xie W P, Zhang X, Zhu W, Zhang L, Sun R J. Research on salt-affected soils in China: history, status quo and prospect. Acta Pedol Sin, 2022, 59: 10-27. (in Chinese with English abstract) | |
[7] |
刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019, 41: 485-489.
doi: 10.7505/j.issn.1007-9084.2019.04.001 |
Liu C, Feng Z C, Xiao T H, Ma X M, Zhou G S, Huang F H, Li J N, Wang H Z. Development, potential and adaptation of Chinese rapeseed industry. Chin J Oil Crop Sci, 2019, 41: 485-489. (in Chinese with English abstract)
doi: 10.7505/j.issn.1007-9084.2019.04.001 |
|
[8] | 何微, 李俊, 王晓梅, 林巧, 杨小薇. 全球油菜产业现状与我国油菜产业问题、对策. 中国油脂, 2022, 47(2): 1-7. |
He W, Li J, Wang X M, Lin Q, Yang X W. Current status of global rapeseed industry and problems, countermeasures of rapeseed industry in China. Chin Oils Fats, 2022, 47(2): 1-7. (in Chinese with English abstract) | |
[9] |
Kumar K, Kumar M, Kim S R, Ryu H, Cho Y G. Insights into genomics of salt stress response in rice. Rice, 2013, 6: 27-39.
doi: 10.1186/1939-8433-6-27 pmid: 24280112 |
[10] |
Zhang H, Jiang C, Lei J, Dong J, Ren J, Shi X, Zhong C, Wang X, Zhao X, Yu H. Comparative physiological and transcriptomic analyses reveal key regulatory networks and potential hub genes controlling peanut chilling tolerance. Genomics, 2022, 114: 110285.
doi: 10.1016/j.ygeno.2022.110285 |
[11] | Yuan F, Yang H, Xue Y, Kong D, Ye R, Li C, Zhang J, Theprungsirikul L, Shrift T, Krichilsky B, Johnson D M, Swift G B, He Y, Siedow J N, Pei Z M. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature, 2014, 514: 367-371. |
[12] |
Hamilton E S, Jensen G S, Maksaev G, Katims A, Sherp A M, Haswell E S. Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination. Science, 2015, 350: 438-441.
doi: 10.1126/science.aac6014 pmid: 26494758 |
[13] |
Jiang Z, Zhou X, Tao M, Yuan F, Liu L, Wu F, Wu X, Xiang Y, Niu Y, Liu F, Li C, Ye R, Byeon B, Xue Y, Zhao H, Wang H N, Crawford B M, Johnson D M, Hu C, Pei C, Zhou W, Swift G B, Zhang H, Vo-Dinh T, Hu Z, Siedow J N, Pei Z M. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx. Nature, 2019, 572: 341-346.
doi: 10.1038/s41586-019-1449-z |
[14] |
Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247-273.
doi: 10.1146/arplant.2002.53.issue-1 |
[15] | Barragán V, Leidi E O, Andrés Z, Rubio L, De Luca A, Fernández J A, Cubero B, Pardo J M.Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell, 2012, 24: 1127-1142. |
[16] |
Kim J, Kim H Y. Functional analysis of a calcium-binding transcription factor involved in plant salt stress signaling. FEBS Lett, 2006, 580: 5251-5256.
pmid: 16962584 |
[17] |
Bo C, Chen H, Luo G, Li W, Zhang X, Ma Q, Cheng B, Cai R. Maize WRKY114 gene negatively regulates salt-stress tolerance in transgenic rice. Plant Cell Rep, 2020, 39: 135-148.
doi: 10.1007/s00299-019-02481-3 pmid: 31659429 |
[18] |
Qin H, Wang J, Chen X, Wang F, Peng P, Zhou Y, Miao Y, Zhang Y, Gao Y, Qi Y, Zhou J, Huang R. Rice OsDOF15 contributes to ethylene-inhibited primary root elongation under salt stress. New Phytol, 2019, 223: 798-813.
doi: 10.1111/nph.15824 pmid: 30924949 |
[19] |
Zhang H, Mao L, Xin M, Xing H, Zhang Y, Wu J, Xu D, Wang Y, Shang Y, Wei L, Cui M, Zhuang T, Sun X, Song X. Overexpression of GhABF3 increases cotton (Gossypium hirsutum L.) tolerance to salt and drought. BMC Plant Biol, 2022, 22: 313.
doi: 10.1186/s12870-022-03705-7 |
[20] |
Li M, Chen R, Jiang Q, Sun X, Zhang H, Hu Z. GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean. Plant Mol Biol, 2021, 105: 333-345.
doi: 10.1007/s11103-020-01091-y pmid: 33155154 |
[21] |
Chowdhury H A, Bhattacharyya D K, Kalita J K. (Differential) co-expression analysis of gene expression: a survey of best practices. IEEE/ACM Trans Comput Biol Bioinform, 2020, 17: 1154-1173.
doi: 10.1109/TCBB.2019.2893170 pmid: 30668502 |
[22] |
Zheng J, He C, Qin Y, Lin G, Park W D, Sun M, Li J, Lu X, Zhang C, Yeh C T, Gunasekara C J, Zeng E, Wei H, Schnable P S, Wang G, Liu S. Co-expression analysis aids in the identification of genes in the cuticular wax pathway in maize. Plant J, 2019, 97: 530-543.
doi: 10.1111/tpj.14140 |
[23] |
李旭凯, 李任建, 张宝俊. 利用WGCNA鉴定非生物胁迫相关基因共表达网络. 作物学报, 2019, 45: 1349-1364.
doi: 10.3724/SP.J.1006.2019.82061 |
Li X K, Li R J, Zhang B J. Identification of rice stress-related gene co-expression modules by WGCNA. Acta Agron Sin, 2019, 45: 1349-1364. (in Chinese with English abstract) | |
[24] |
Ye W, Wang T, Wei W, Lou S, Lan F, Zhu S, Li Q, Ji G, Lin C, Wu X, Ma L. The full-length transcriptome of Spartina alterniflora reveals the complexity of high salt tolerance in monocotyledonous halophyte. Plant Cell Physiol, 2020, 61: 882-896.
doi: 10.1093/pcp/pcaa013 |
[25] |
Zhao N, Cui S, Li X, Liu B, Deng H, Liu Y, Hou M, Yang X, Mu G, Liu L. Transcriptome and co-expression network analyses reveal differential gene expression and pathways in response to severe drought stress in peanut (Arachis hypogaea L.). Front Genet, 2021, 12: 672884.
doi: 10.3389/fgene.2021.672884 |
[26] |
Yang L, Yang L, Zhao C, Liu J, Tong C, Zhang Y, Cheng X, Jiang H, Shen J, Xie M, Liu S. Differential alternative splicing genes and isoform co-expression networks of Brassica napus under multiple abiotic stresses. Front Plant Sci, 2022, 13: 1009998.
doi: 10.3389/fpls.2022.1009998 |
[27] | Yang Z, Wang S, Wei L, Huang Y, Liu D, Jia Y, Luo C, Lin Y, Liang C, Hu Y, Dai C, Guo L, Zhou Y, Yang Q Y. BnIR: a multi-omics database with various tools for Brassica napus research and breeding. Mol Plant, 2023, 16: 775-789. |
[28] | Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 2016, 32: 3047-3048. |
[29] |
Kim D, Paggi J M, Park C, Bennett C, Salzberg S L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol, 2019, 37: 907-915.
doi: 10.1038/s41587-019-0201-4 pmid: 31375807 |
[30] |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009, 25: 2078-2079.
doi: 10.1093/bioinformatics/btp352 pmid: 19505943 |
[31] |
Liao Y, Smyth G K, Shi W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 2014, 30: 923-930.
doi: 10.1093/bioinformatics/btt656 pmid: 24227677 |
[32] |
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[33] |
Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550.
doi: 10.1186/s13059-014-0550-8 |
[34] |
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf, 2008, 9: 559.
doi: 10.1186/1471-2105-9-559 |
[35] |
Yu G, Wang L G, Han Y, He Q Y. ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 2012, 16: 284-287.
doi: 10.1089/omi.2011.0118 pmid: 22455463 |
[36] |
Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13: 2498-2504.
doi: 10.1101/gr.1239303 pmid: 14597658 |
[37] |
Jiang Y, Deyholos M K. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol, 2009, 69: 91-105.
doi: 10.1007/s11103-008-9408-3 |
[38] |
Ji H, Pardo J M, Batelli G, Van Oosten M J, Bressan R A, Li X. The salt overly sensitive (SOS) pathway: established and emerging roles. Mol Plant, 2013, 6: 275-286.
doi: 10.1093/mp/sst017 pmid: 23355543 |
[39] |
Ali A, Maggio A, Bressan R A, Yun D J. Role and functional differences of HKT1-type transporters in plants under salt stress. Int J Mol Sci, 2019, 20: 1059.
doi: 10.3390/ijms20051059 |
[40] |
Luo X, Li C, He X, Zhang X, Zhu L. ABA signaling is negatively regulated by GbWRKY1 through JAZ1 and ABI1 to affect salt and drought tolerance. Plant Cell Rep, 2020, 39: 181-194.
doi: 10.1007/s00299-019-02480-4 pmid: 31713664 |
[41] |
Wolny E, Skalska A, Braszewska A, Mur L A J, Hasterok R. Defining the cell wall, cell cycle and chromatin landmarks in the responses of brachypodium distachyon to salinity. Int J Mol Sci, 2021, 22: 949.
doi: 10.3390/ijms22020949 |
[42] | Cai C, Wang W, Ye S, Zhang Z, Ding W, Xiang M, Wu C, Zhu Q. Overexpression of a novel Arabidopsis gene SUPA leads to various morphological and abiotic stress tolerance alternations in Arabidopsis and Poplar. Front Plant Sci, 2020, 11: 560985. |
[43] | Oh G G K, O'Leary B M, Signorelli S, Millar A H.Alternative oxidase (AOX) 1a and 1d limit proline-induced oxidative stress and aid salinity recovery in Arabidopsis. Plant Physiol, 2022, 188: 1521-1536. |
[44] |
Amsbury S, Hunt L, Elhaddad N, Baillie A, Lundgren M, Verhertbruggen Y, Scheller H V, Knox J P, Fleming A J, Gray J E. Stomatal function requires pectin de-methyl-esterification of the guard cell wall. Curr Biol, 2016, 26: 2899-2906.
doi: S0960-9822(16)30933-2 pmid: 27720618 |
[45] |
Kang H G, Kim J, Kim B, Jeong H, Choi S H, Kim E K, Lee H Y, Lim P O. Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances tolerance to cold, drought, and heat stresses in Arabidopsis thaliana. Plant Sci, 2011, 180: 634-641.
doi: 10.1016/j.plantsci.2011.01.002 |
[46] |
Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis Cys2/His2- type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol, 2004, 136: 2734-2746.
doi: 10.1104/pp.104.046599 pmid: 15333755 |
[47] | Yan Z, Wang J, Wang F, Xie C, Lyu B, Yu Z, Dai S, Liu X, Xia G, Tian H, Li C, Ding Z.MPK3/6-induced degradation of ARR1/10/12 promotes salt tolerance in Arabidopsis. EMBO Rep, 2021, 22: e52457. |
[48] | Tran L S, Nakashima K, Sakuma Y, Osakabe Y, Qin F, Simpson SD, Maruyama K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K.Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J, 2007, 49: 46-63. |
[49] | 张国方.甘蓝型油菜耐盐性遗传解析及候选基因功能验证. 华中农业大学博士学位论文, 湖北武汉, 2021. |
Zhang G F. Genetic Analysis of Salt Tolerance andFunctional Verification of Candidate Genes in Brassica napus. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2021. (in Chinese with English abstract) | |
[50] |
Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg B E, Kudla J, Harter K. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J, 2007, 50: 347-363.
doi: 10.1111/j.1365-313X.2007.03052.x pmid: 17376166 |
[51] |
Zhang H, Zhu J, Gong Z, Zhu J K. Abiotic stress responses in plants. Nat Rev Genet, 2022, 23: 104-119.
doi: 10.1038/s41576-021-00413-0 |
[52] | Luo L, Zhang P, Zhu R, Fu J, Su J, Zheng J, Wang Z, Wang D, Gong Q. Autophagy is rapidly induced by salt stress and is required for salt tolerance in Arabidopsis. Front Plant Sci, 2017, 8: 1459. |
[53] |
Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G. How plant hormones mediate salt stress responses. Trends Plant Sci, 2020, 25: 1117-1130.
doi: 10.1016/j.tplants.2020.06.008 pmid: 32675014 |
[54] |
Glawischnig E. Camalexin. Phytochemistry, 2007, 68: 401-406.
doi: 10.1016/j.phytochem.2006.12.005 pmid: 17217970 |
[55] |
Mukherjee R, Mukherjee A, Bandyopadhyay S, Mukherjee S, Sengupta S, Ray S, Majumder A L. Selective manipulation of the inositol metabolic pathway for induction of salt-tolerance in indica rice variety. Sci Rep, 2019, 9: 5358.
doi: 10.1038/s41598-019-41809-7 pmid: 30926863 |
[56] |
Le Gall H, Philippe F, Domon J M, Gillet F, Pelloux J, Rayon C. Cell wall metabolism in response to abiotic stress. Plants (Basel), 2015, 4: 112-166.
doi: 10.3390/plants4010112 |
[57] |
Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 2019, 24: 2452.
doi: 10.3390/molecules24132452 |
[58] |
Krishnamurthy P, Vishal B, Ho W J, Lok F C J, Lee F S M, Kumar P P. Regulation of a cytochrome P450 gene CYP94B1 by WRKY33 Transcription Factor controls apo plastic barrier formation in roots to confer salt tolerance. Plant Physiol, 2020, 184: 2199-2215.
doi: 10.1104/pp.20.01054 pmid: 32928900 |
[59] |
Wang Z, Fang H, Chen Y, Chen K, Li G, Gu S, Tan X. Overexpression of BnWRKY33 in oilseed rape enhances resistance to Sclerotinia sclerotiorum. Mol Plant Pathol, 2014, 15: 677-689.
doi: 10.1111/mpp.12123 pmid: 24521393 |
[60] |
Cao F Y, DeFalco T A, Moeder W, Li B, Gong Y, Liu X M, Taniguchi M, Lumba S, Toh S, Shan L, Ellis B, Desveaux D, Yoshioka K. Arabidopsis ETHYLENE RESPONSE FACTOR 8 (ERF8) has dual functions in ABA signaling and immunity. BMC Plant Biol, 2018, 18: 211.
doi: 10.1186/s12870-018-1402-6 |
[1] | 李世宽, 洪慧龙, 付佳祺, 谷勇哲, 孙如建, 邱丽娟. BSA-Seq结合RNA-Seq技术挖掘大豆叶片提前黄化衰老基因[J]. 作物学报, 2024, 50(2): 294-309. |
[2] | 肖胜华, 陆妍, 李安子, 覃耀斌, 廖铭静, 闭兆福, 卓柑锋, 朱永红, 朱龙付. 棉花AP2/ERF转录因子GhTINY2负调控植株抗盐性的功能分析[J]. 作物学报, 2024, 50(1): 126-137. |
[3] | 郭家鑫, 叶扬, 郭慧娟, 闵伟. 盐碱胁迫对棉花叶片蛋白质组的影响及差异性分析[J]. 作物学报, 2024, 50(1): 219-236. |
[4] | 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432. |
[5] | 徐扬, 张岱, 康涛, 温赛群, 张冠初, 丁红, 郭庆, 秦斐斐, 戴良香, 张智猛. 盐胁迫对花生幼苗离子动态及耐盐基因表达的影响[J]. 作物学报, 2023, 49(9): 2373-2384. |
[6] | 代书桃, 朱灿灿, 马小倩, 秦娜, 宋迎辉, 魏昕, 王春义, 李君霞. 谷子HAK/KUP/KT钾转运蛋白家族全基因组鉴定及其对低钾和高盐胁迫的响应[J]. 作物学报, 2023, 49(8): 2105-2121. |
[7] | 唐玉凤, 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报, 2023, 49(7): 1829-1842. |
[8] | 杨一丹, 何督, 刘静, 张岩, 陈飞志, 巫燕飞, 杜雪竹. 寄主诱导的基因沉默干扰核盘菌致病基因OAH在甘蓝型油菜抗菌核病中的应用[J]. 作物学报, 2023, 49(6): 1542-1550. |
[9] | 袁大双, 张晓莉, 朱冬鸣, 杨友鸿, 姚梦楠, 梁颖. BnMAPK2 对甘蓝型油菜耐旱性的影响[J]. 作物学报, 2023, 49(6): 1518-1531. |
[10] | 张小红, 彭琼, 鄢铮. 盐胁迫下不同甘薯品种的转录组测序分析[J]. 作物学报, 2023, 49(5): 1432-1444. |
[11] | 杨太桦, 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶, 周广生. 初步探究LncRNA在甘蓝型油菜生态型分化中的作用[J]. 作物学报, 2023, 49(5): 1197-1210. |
[12] | 张盈川, 吴晓明玉, 陶保龙, 陈丽, 鲁海琴, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-miR43-FBXL调控模块参与甘蓝型油菜铝胁迫的功能分析[J]. 作物学报, 2023, 49(5): 1211-1221. |
[13] | 陈晓汉, 王丽琴, 汪华栋, 肖清, 陶保龙, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. BnABCI8影响甘蓝型油菜叶绿体发育[J]. 作物学报, 2023, 49(4): 893-905. |
[14] | 柏成成, 姚小尧, 王雨璐, 王赛玉, 李金莹, 蒋有为, 靳舒荣, 陈春杰, 刘渔, 魏星玥, 徐新福, 李加纳, 倪郁. 甘蓝型油菜长链烷烃合成相关基因的克隆及其与BnCER1-2的互作[J]. 作物学报, 2023, 49(4): 1016-1027. |
[15] | 陈慧, 肖清, 汪华栋, 文静, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 易斌. 甘蓝型油菜SUMO蛋白家族成员鉴定及Bna.SUMO1.C08基因的功能研究[J]. 作物学报, 2023, 49(4): 917-925. |
|