作物学报 ›› 2024, Vol. 50 ›› Issue (1): 219-236.doi: 10.3724/SP.J.1006.2024.34035
GUO Jia-Xin(), YE Yang, GUO Hui-Juan, MIN Wei*()
摘要:
盐胁迫和碱胁迫是严重影响农业生产的2种不同非生物胁迫, 探讨棉花耐受盐胁迫和碱胁迫的差异, 可为不同类型盐碱地的棉花栽培提供一定的理论基础。本试验设置对照(CK)、盐胁迫(NaCl, CS)和碱胁迫(NaHCO3+Na2CO3, AS) 3个处理, 通过蛋白质组学分析和生理指标进行验证, 揭示棉花对盐胁迫和碱胁迫的耐受机制。与CK相比, CS和AS的棉花生物量分别降低51.1%和50.9%, CS棉花叶片的叶绿素含量和净光合速率分别降低53.9%和57.2%, CS棉花叶片中己糖激酶、磷酸果糖激酶、丙酮酸激酶、柠檬酸合酶、谷氨酸脱氢酶和谷草转氨酶活性分别增加13.8%、14.4%、4.7%、4.5%、36.6%和12.9%; AS棉花叶片中己糖激酶、磷酸果糖激酶、丙酮酸激酶、苹果酸脱氢酶、柠檬酸合酶、谷氨酸脱氢酶和谷草转氨酶活性分别增加4.8%、38.8%、15.1%、4.3%、3.4%、15.2%和21.1%。基于TMT蛋白质组学分析, 在CS和AS叶片中分别鉴定出458个和140个差异表达蛋白质。这些蛋白参与了光合作用、糖代谢、2-氧羧酸代谢以及氨基酸合成和代谢等生命过程。表明盐胁迫和碱胁迫均抑制棉花生长。盐胁迫下, 与光合作用相关的蛋白表达减少, 光合作用被显著抑制, 同时碳水和能量代谢加强, 更多的光合产物用于能量代谢; 而碱胁迫对棉花光合作用无显著影响, 更多的光合产物可能运往根部分泌有机酸。
[1] | 刘祎, 钱玉源, 崔淑芳, 金卫平, 王广恩, 张曦, 张海娜, 李俊兰. 低酚棉种子利用研究进展. 中国棉花, 2018, 45(8): 4-8. |
Liu W, Qian Y Y, Cui S F, Jin W P, Wang G E, Zhang X, Zhang H N, Li J L. Research progress on seed utilization of glandless cotton. China Cotton, 2018, 45(8): 4-8. (in Chinese with English abstract) | |
[2] | Chinnusamy V, Zhu J, Zhu J K. Salt stress signaling and mechanisms of plant salt tolerance. Genet Eng, 2006, 27: 141-177. |
[3] |
Feng L, Dai J L, Tian L W, Zhang H J, Li W J, Dong H Z. Review of the technology for high-yielding and efficient cotton cultivation in the northwest inland cotton-growing region of China. Field Crops Res, 2017, 208: 18-26.
doi: 10.1016/j.fcr.2017.03.008 |
[4] |
白岩, 毛树春, 田立文, 李莉, 董合忠. 新疆棉花高产简化栽培技术评述与展. 中国农业科学, 2017, 50: 38-50.
doi: 10.3864/j.issn.0578-1752.2017.01.004 |
Bai Y, Mao S C, Tian L W, Li L, Dong H Z. Advances and prospects of high-yielding and simplified cotton cultivation technology in Xinjiang Cotton-Growing area. Sci Agric Sin, 2017, 50: 38-50. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.01.004 |
|
[5] |
Yang H C, Wang G J Y, Zhang F H. Soil aggregation and aggregate-associated carbon under four typical halophyte communities in an arid area. Environ Sci Pollut Res, 2016, 23: 23920-23929.
doi: 10.1007/s11356-016-7583-3 |
[6] |
Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci, 2014, 5: 170.
doi: 10.3389/fpls.2014.00170 pmid: 24904597 |
[7] |
Shaar-Moshe L, Blumwald E, Peleg Z. Unique physiological and transcriptional shifts under combinations of salinity, drought, and heat. Plant Physiol, 2017, 174: 421-434.
doi: 10.1104/pp.17.00030 pmid: 28314795 |
[8] |
Munns R, Gilliham M. Salinity tolerance of crops—what is the cost. New Phytol, 2015, 208: 668-673.
doi: 10.1111/nph.13519 pmid: 26108441 |
[9] |
Volkov V, Beilby M J. Salinity tolerance in plants: mechanisms and regulation of ion transport. Front Plant Sci, 2017, 8: 1795-1798.
doi: 10.3389/fpls.2017.01795 pmid: 29114255 |
[10] |
Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167: 313-324.
doi: 10.1016/j.cell.2016.08.029 |
[11] |
Ji W, Cong R, Li S, Li R, Qin Z, Li Y, Li J. Comparative proteomic analysis of soybean leaves and roots by iTRAQ provides insights into response mechanisms to short-term salt stress. Front Plant Sci, 2016, 7: 573-587.
doi: 10.3389/fpls.2016.00573 pmid: 27200046 |
[12] |
张小红, 彭琼, 鄢铮. 盐胁迫下不同甘薯品种的转录组测序分析. 作物学报, 2023, 49: 1432-1444.
doi: 10.3724/SP.J.1006.2023.24143 |
Zhang X H, Peng Q, Yan Z. Transcriptome sequencing analysis of different sweet potato varieties under salt stress. Acta Agron Sin, 2023, 49: 1432-1444. (in Chinese with English abstract) | |
[13] |
Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651-685.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910 |
[14] |
Munns R, Day D A, Fricke W, Watt M, Arsova B, Barkla B J, Tyerman S D. Energy costs of salt tolerance in crop plants. New Phytol, 2019, 225: 1072-1090.
doi: 10.1111/nph.v225.3 |
[15] |
Munns R, Passioura J B, Colmer T D, Byrt C S. Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytol, 2019, 225: 1091-1096.
doi: 10.1111/nph.v225.3 |
[16] |
Ashraf M, Harris P J C. Photosynthesis under stressful environments: an overview. Photosynthetica, 2013, 51: 163-190.
doi: 10.1007/s11099-013-0021-6 |
[17] |
Zhou Y, Gong Z Y, Yang Z F, Yuan Y, Zhu J Y, Wang M, Yuan F H, Wu S J, Wang Z Q, Yi C D, Xu T H, Ryom M C, Gu M H, Liang G H. Mutation of the light-induced yellow leaf 1 gene, which encodes a geranylgeranyl reductase, affects chlorophyll biosynthesis and light sensitivity in rice. PLoS One, 2013, 8: e75299.
doi: 10.1371/journal.pone.0075299 |
[18] |
Wei Y, Xu X, Tao H B, Wang P. Growth performance and physiological response in the halophyte Lycium barbarum grown at salt-affected soil. Ann Appl Biol, 2006, 149: 263-269.
doi: 10.1111/aab.2006.149.issue-3 |
[19] | 王文静, 麻冬梅, 蔡进军, 黄婷, 马巧利, 赵丽娟, 张莹. 基于FvCB模型的盐胁迫下紫花苜蓿幼苗光合特性的研究. 中国生态农业学报, 2021, 29: 540-548. |
Wang W J, Ma D M, Cai J J, Huang T, Ma Q L, Zhao L J, Zhang Y. Photosynthetic characteristics of alfalfa seedlings under salt stress based on FvCB model. Chin J Eco-Agric, 2021, 29: 540-548. (in Chinese with English abstract) | |
[20] |
Yang C W, Shi D C, Wang D L. Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.). Plant Growth Regul, 2008, 56: 179-190.
doi: 10.1007/s10725-008-9299-y |
[21] |
Yang C W, Chong J N, LI C Y, Kim C M, Shi D C, Wang D L. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant Soil, 2007, 294: 263-276.
doi: 10.1007/s11104-007-9251-3 |
[22] |
Liska A J, Shevchenko A, Pick U, Katz A. Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiol, 2004, 136: 2806-2817.
doi: 10.1104/pp.104.039438 pmid: 15333751 |
[23] |
Jacoby R P, Taylor N L, Millar A H. The role of mitochondrial respiration in salinity tolerance. Trends Plant Sci, 2011, 16: 614-623.
doi: 10.1016/j.tplants.2011.08.002 pmid: 21903446 |
[24] |
Ashraf M, Harris P J C. Potential biochemical indicators of salinity tolerance in plants. Plant Sci, 2004, 166: 3-16.
doi: 10.1016/j.plantsci.2003.10.024 |
[27] |
Zhang Y, Xia G H, Ma K, Li G Y, Dai Y C, Yan C X. Effects of shade on photosynthetic characteristics and chlorophyll fluorescence of Ardisia violacea. Chin J Appl Ecol, 2014, 25: 1940-1948. (in Chinese with English abstract)
pmid: 25345043 |
[28] |
Bai J H, Yan W K, Wang Y Q, Liu J H, Wight C, Ma B L. Screening oat genotypes for tolerance to salinity and alkalinity. Front Plant Sci, 2018, 9: 1302-1318.
doi: 10.3389/fpls.2018.01302 pmid: 30333838 |
[29] |
才华, 许慧慧, 孙娜, 宋婷婷, 任永晶, 杨圣秋. 从光合作用和有机酸积累角度探索转GsPPCK1和GsPPCK3基因苜蓿耐碱性增强的生理机制. 草业学报, 2018, 27(8): 107-117.
doi: 10.11686/cyxb2017391 |
Cai H, Xu H H, Sun N, Song T T, Ren Y J, Yang S Q. Physiological aspects of photosynthesis and organic acid accumulation in alkali-resistant transgenic alfalfa containing the GsPPCK1 and GsPPCK3 gens. Acta Pratac Sin, 2018, 27(8): 107-117. (in Chinese with English abstract) | |
[30] |
Nishiyama Y, Allakhverdiev S I, Murata N. Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiol Plant, 2011, 142: 35-46.
doi: 10.1111/j.1399-3054.2011.01457.x pmid: 21320129 |
[31] | Zhang H H, Shi G L, Shao J Y, Li X, Li M B, Meng L, Xu N, Sun G Y. Photochemistry and proteomics of mulberry (Morus alba L.) seedlings under NaCl and NaHCO3 stress. Ecotox Environl Safe, 2019, 184: 109624-109635. |
[32] | 宋奇娉, 封鹏雯, 刘洋, 杨兴洪. PS II组装与修复循环机制研究进展. 植物生理学报, 2019, 55: 133-140. |
Song Q P, Feng P W, Liu Y, Yang X H. The research progress of the mechanism on PS II assemble and repair circulation. Plant Physiol J, 2019, 55: 133-140. (in Chinese with English abstract) | |
[33] | Li W, Zhang C Y, Lu Q T, Wen X G, Lu C M. The combined effect of salt stress and heat shock on proteome profiling in Suaeda salsa. J Plant Physiol, 2011, 168: 1743-1752. |
[34] |
Berkowitz O, Clercq I D, Breusegem F V, Whelan J. Interaction between hormonal and mitochondrial signalling during growth, development and in plant defence responses. Plant Cell Environ, 2016, 39: 1127-1139.
doi: 10.1111/pce.v39.5 |
[35] |
Meyer E H, Welchen E, Carrie C. Assembly of the complexes of the oxidative phosphorylation system in land plant mitochondria. Annu Rev Plant Biol, 2019, 70: 23-50.
doi: 10.1146/annurev-arplant-050718-100412 pmid: 30822116 |
[36] |
Zhang A Q, Zang W, Zhang X Y, Ma Y Y, Yan X F, Pang Q Y. Global proteomic mapping of alkali stress regulated molecular networks in Helianthus tuberosus L. Plant Soil, 2016, 409: 175-202.
doi: 10.1007/s11104-016-2945-7 |
[37] |
Li J K, Cui G W, Hu G F, Wang M J, Zhang P, Qin L G, Shang C, Zhang H L, Zhu X C, Qu M N. Proteome dynamics and physiological responses to short-term salt stress in Leymus chinensis leaves. PLoS One, 2017, 12: e0183615.
doi: 10.1371/journal.pone.0183615 |
[38] |
Li M N, Zhang K, Long R C, Sun Y, Kang J M, Zhang T J, Cao S H. iTRAQ-based comparative proteomic analysis reveals tissue- specific and novel early-stage molecular mechanisms of salt stress response in Carex rigescens. Environ Exp Bot, 2017, 143: 99-114.
doi: 10.1016/j.envexpbot.2017.08.010 |
[39] |
Gupta A K, Kaur N. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plant. J Biosciences, 2005, 30: 761-776.
doi: 10.1007/BF02703574 pmid: 16388148 |
[40] |
Sellami S, Hir R L, Thorpe M R, Vilaine F, Wolff N, Brini F, Dinant S. Salinity effects on sugar homeostasis and vascular anatomy in the stem of the Arabidopsis thaliana inflorescence. Int J Mol Sci, 2019, 20: 3167-3185.
doi: 10.3390/ijms20133167 |
[41] |
Xiang G Q, Ma W Y, Gao S W, Jin Z X, Yue Q Y, Yao Y X. Transcriptomic and phosphoproteomic profiling and metabolite analyses reveal the mechanism of NaHCO3-induced organic acid secretion in grapevine roots. BMC Plant Biol, 2019, 19: 383.
doi: 10.1186/s12870-019-1990-9 |
[42] |
Zhang Y J, Beard K F M, Swart C, Bergamann S, Krahnert I, Nikoloski Z, Graf A, Ratcliffe R G, Sweetlove L J, Fernie A R, Obata T. Protein-protein interactions and metabolite channelling in the plant tricarboxylic acid cycle. Nat Commun, 2017, 8: 15212.
doi: 10.1038/ncomms15212 pmid: 28508886 |
[43] |
Ge Y D, Cao Z Y, Wang Z D, Chen L L, Zhu Y M, Zhu G P. Identification and biochemical characterization of a thermostable malate dehydrogenase from the mesophile Streptomyces coelicolor A3(2). Biosci Biotechnol Biochem, 2010, 74: 2194-2201.
doi: 10.1271/bbb.100357 |
[44] |
Sweetman C, Deluc L G, Cramer G R, Ford C M, Soole K. Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry, 2009, 70: 1329-1344.
doi: 10.1016/j.phytochem.2009.08.006 pmid: 19762054 |
[45] |
Zorrilla-Fontanesi Y, Rouard M, Cenci A, Kissel E, Do H, Dubois E, Nidelet S, Roux N, Swennen R, Carpentier S C. Differential root transcriptomics in a polyploid non-model crop: the importance of respiration during osmotic stress. Sci Rep, 2016, 6: 25683.
doi: 10.1038/srep25683 |
[46] |
Guo J X, Lu X Y, Tao Y F, Guo H J, Min W. Comparative ionomics and metabolic responses and adaptive strategies of cotton to salt and alkali stress. Front Plant Sci, 2022, 13: 871387.
doi: 10.3389/fpls.2022.871387 |
[47] |
Yu H T, Wang T. Proteomic dissection of endosperm starch granule associated proteins reveals a network coordinating starch biosynthesis and amino acid metabolism and glycolysis in rice endosperms. Front Plant Sci, 2016, 7: 707-715.
doi: 10.3389/fpls.2016.00707 pmid: 27252723 |
[48] |
Patterson J H, Newbigin E D, Tester M, Bacic A, Roessner U. Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot, 2009, 60: 4089-4103.
doi: 10.1093/jxb/erp243 |
[49] |
Amir R, Galili G, Cohen H. The metabolic roles of free amino acids during seed development. Plant Sci, 2018, 275: 11-18.
doi: S0168-9452(18)30461-8 pmid: 30107877 |
[50] |
TzinV, Galili G. New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol Plant, 2010, 3: 956-972.
doi: 10.1093/mp/ssq048 pmid: 20817774 |
[51] |
Schenck C A, Maeda H A. Tyrosine biosynthesis, metabolism, and catabolism in plants. Phytochemistry, 2018, 149: 82-102.
doi: S0031-9422(18)30034-7 pmid: 29477627 |
[52] | 蒋佳, 朱星宇, 李晶. 外源色氨酸对油菜幼苗色氨酸下游代谢网络及生长发育的影响. 西北植物学报, 2020, 40: 1549-1557. |
Jiang J, Zhu X Y, Li J. Effect of exogenous tryptophan on the downstream metabolic network of tryptophan and growth in rapa seedlings. Acta Bot Boreali-Occident Sin, 2020, 40: 1549-1557. (in Chinese with English abstract) | |
[25] |
Poorter H, Remkes C, Lambers H. Carbon and nitrogen economy of 24 wild species differing in relative growth rate. Plant Physiol, 1990, 94: 621-627.
doi: 10.1104/pp.94.2.621 pmid: 16667757 |
[26] |
Flowers T J, Munns R, Colmer T D. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot, 2015, 115: 419-431.
doi: 10.1093/aob/mcu217 |
[27] |
张云, 夏国华, 马凯, 李根有, 代英超, 严彩霞. 遮阴对堇叶紫金牛光合特性和叶绿素荧光参数的影响. 应用生态学报, 2014, 25: 1940-1948.
pmid: 25345043 |
[53] |
Yang Q Q, Zhao D S, Liu Q Q. Connections between amino acid metabolisms in plants: lysine as an example. Front Plant Sci, 2020, 11: 928-935.
doi: 10.3389/fpls.2020.00928 pmid: 32636870 |
[54] |
Wang W Y, Xu M Y, Wang G P, Galili G. New insights into the metabolism of aspartate-family amino acids in plant seeds. Plant Reprod, 2018, 31: 203-211.
doi: 10.1007/s00497-018-0322-9 pmid: 29399717 |
[55] |
Li H Y, Pan Y, Zhuang Y X, Wu C, Ma C Q, Yu B, Zhu N, Koh J, Chen S X. Salt stress response of membrane proteome of sugar beet monosomic addition line M14. J Proteomics, 2015, 127: 18-33.
doi: 10.1016/j.jprot.2015.03.025 pmid: 25845583 |
[56] |
Martin G, Marquez Y, Mantica F, Duque P, Irimia M. Alternative splicing landscapes in Arabidopsis thaliana across tissues and stress conditions highlight major functional differences with animals. Genome Biol, 2021, 22: 35.
doi: 10.1186/s13059-020-02258-y |
[57] |
Weng X, Zhou X X, Xie S Q, Gu J B, Wang Z Y. Identification of cassava alternative splicing-related genes and functional characterization of MeSCL30 involvement in drought stress. Plant Physiol Biochem, 2021, 160: 130-142.
doi: 10.1016/j.plaphy.2021.01.016 |
[58] |
Albaqami M, Laluk K, Reddy A S N. The Arabidopsis splicing regulator SR45 confers salt tolerance in a splice isoform- dependent manner. Plant Mol Biol, 2019, 100: 379-390.
doi: 10.1007/s11103-019-00864-4 |
[59] |
Lu D W, Zhu G R, Zhu D, Bian Y W, Liang X N, Cheng Z W, Deng X, Yan Y M. Proteomic and phosphoproteomic analysis reveals the response and defense mechanism in leaves of diploid wheat T. monococcum under salt stress and recovery. J Proteomics, 2016, 143: 93-105.
doi: 10.1016/j.jprot.2016.04.013 |
[60] | Hardie D G, Ross F A, Hawley S A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol, 2012, 13: 251-262. |
[61] |
Gonzalez A, Hall M N, Lin S C, Hardie D G. AMPK and TOR: the yin and yang of cellular nutrient sensing and growth control. Cell Metabolism, 2020, 31: 472-492.
doi: S1550-4131(20)30058-9 pmid: 32130880 |
[1] | 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293. |
[2] | 李志坤, 贾文华, 朱伟, 刘伟, 马宗斌. 氮肥和缩节胺对棉花纤维产量及品质时间分布的影响[J]. 作物学报, 2024, 50(2): 514-528. |
[3] | 杨闯, 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝. 甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建[J]. 作物学报, 2024, 50(1): 237-250. |
[4] | 肖胜华, 陆妍, 李安子, 覃耀斌, 廖铭静, 闭兆福, 卓柑锋, 朱永红, 朱龙付. 棉花AP2/ERF转录因子GhTINY2负调控植株抗盐性的功能分析[J]. 作物学报, 2024, 50(1): 126-137. |
[5] | 上官小霞, 杨琴莉, 李换丽. 基于CRISPR/Cas9的棉花GhbHLH71基因编辑突变体的分析[J]. 作物学报, 2024, 50(1): 138-148. |
[6] | 谭志新, 谢留伟, 李洪戈, 李芳军, 田晓莉, 李召虎. 基于AHP-隶属函数法的棉花子叶期耐低钾能力鉴定[J]. 作物学报, 2024, 50(1): 199-208. |
[7] | 孙尚文, 束红梅, 杨长琴, 张国伟, 王晓婧, 孟亚利, 王友华, 刘瑞显. 低温下环丙酸酰胺调控棉花内源激素促进噻苯隆脱叶的机制[J]. 作物学报, 2024, 50(1): 187-198. |
[8] | 刘韬奋, 罗单, 张启鹏, 孙圆圆, 李培松, 田景山, 张旺锋, 向导, 张亚黎, 杨明凤, 勾玲. 乙烯利催熟对机采棉铃重和纤维品质的影响[J]. 作物学报, 2024, 50(1): 209-218. |
[9] | 徐扬, 张岱, 康涛, 温赛群, 张冠初, 丁红, 郭庆, 秦斐斐, 戴良香, 张智猛. 盐胁迫对花生幼苗离子动态及耐盐基因表达的影响[J]. 作物学报, 2023, 49(9): 2373-2384. |
[10] | 代书桃, 朱灿灿, 马小倩, 秦娜, 宋迎辉, 魏昕, 王春义, 李君霞. 谷子HAK/KUP/KT钾转运蛋白家族全基因组鉴定及其对低钾和高盐胁迫的响应[J]. 作物学报, 2023, 49(8): 2105-2121. |
[11] | 张小红, 彭琼, 鄢铮. 盐胁迫下不同甘薯品种的转录组测序分析[J]. 作物学报, 2023, 49(5): 1432-1444. |
[12] | 许乃银, 王扬, 王丹涛, 宁贺佳, 杨晓妮, 乔银桃. 棉花纤维质量指数的构建与WGT双标图分析[J]. 作物学报, 2023, 49(5): 1262-1271. |
[13] | 孟璐, 杜明伟, 黎芳, 齐海坤, 路正营, 徐东永, 李存东, 张明才, 田晓莉, 李召虎. 冀中地区高密种植条件下棉花药前群体大小和成熟度与化学脱叶催熟效果的关系[J]. 作物学报, 2023, 49(4): 1028-1038. |
[14] | 雷建峰, 李月, 代培红, 赵燚, 尤扬子, 贾建国, 赵帅, 曲延英, 刘晓东. 棉花中不同植物病毒介导的VIGE体系的研究[J]. 作物学报, 2023, 49(4): 978-987. |
[15] | 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868. |
|