欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (1): 209-218.doi: 10.3724/SP.J.1006.2024.34039

• 耕作栽培·生理生化 • 上一篇    下一篇

乙烯利催熟对机采棉铃重和纤维品质的影响

刘韬奋1(), 罗单1(), 张启鹏1, 孙圆圆1, 李培松1, 田景山1,*(), 张旺锋1, 向导2, 张亚黎1, 杨明凤2, 勾玲1   

  1. 1石河子大学农学院 / 新疆生产建设兵团绿洲生态农业重点实验室, 新疆石河子 832003
    2石河子气象局乌兰乌苏农业气象试验站, 新疆石河子 832003
  • 收稿日期:2023-02-27 接受日期:2023-06-29 出版日期:2024-01-12 网络出版日期:2023-07-20
  • 通讯作者: *田景山, E-mail: tianjs@shzu.edu.cn
  • 作者简介:刘韬奋, E-mail: liutaofen@stu.shzu.edu.cn; 罗单, E-mail: luodan510322@163.com

    **同等贡献

  • 基金资助:
    国家重点研发计划项目(2020YFD1001001);棉花生物学国家重点实验室开放课题(CB2022A26);新疆兵团财政科技计划项目(2021CB044)

Ethephon ripening affects boll weight and fiber quality of machine-harvested cotton

LIU Tao-Fen1(), LUO Dan1(), ZHANG Qi-Peng1, SUN Yuan-Yuan1, LI Pei-Song1, TIAN Jing-Shan1,*(), ZHANG Wang-Feng1, XIANG Dao2, ZHANG Ya-Li1, YANG Ming-Feng2, GOU Ling1   

  1. 1College of Agronomy, Shihezi University / Key Laboratory of Oasis Eco-Agriculture, the Xinjiang Production and Construction Corps, Shihezi 832003, Xinjiang, China
    2Wulanwusu Agrometeorological Experiment Station of Shihezi Meteorological Bureau, Shihezi 832003, Xinjiang, China
  • Received:2023-02-27 Accepted:2023-06-29 Published:2024-01-12 Published online:2023-07-20
  • Contact: *E-mail: tianjs@shzu.edu.cn
  • About author:**Contributed equally to this study
  • Supported by:
    National Key Research and Development Program of China(2020YFD1001001);Open Project of State Key Laboratory of Cotton Biology(CB2022A26);Financial Science and Technology Planning Project of the XPCC(2021CB044)

摘要:

催熟剂乙烯利的使用可实现机采棉提前吐絮和集中吐絮。本研究选择催熟剂敏感性和棉铃形态差异较大的18个棉花品种(材料), 在棉铃发育不同阶段一次性喷施乙烯利, 分析棉铃铃期缩短对棉花铃重和纤维品质的影响及其关系。结果表明, 当棉铃铃期为47~69 d时, 在棉铃铃龄40.5~49.7 d喷施乙烯利可使棉铃提前3.5~5.7 d吐絮。在乙烯利催熟下纤维完全发育成熟需64.1~69.7 d, 棉籽则需54.8~60.5 d。棉铃吐絮时间提前1.5~6.2 d, 铃重与纤维品质均降低的概率高达58.0%~76.5%。生产中可选择在棉铃铃龄34.8~44.1 d喷施乙烯利, 此时棉株顶部棉铃铃重损失5% (损伤量<0.26 g)、纤维品质损失1% (长度损伤量<0.28 mm、断裂比强度损伤量<0.30 cN tex-1), 这是实现棉铃提前吐絮可接受的代价。此外, 部分品种经催熟剂处理后棉铃铃期缩短但其铃重、纤维长度和断裂比强度均增加, 此类情况的概率为9.5%~23.5%, 说明部分机采棉品种适时使用乙烯利能够实现机采棉棉铃铃期缩短与提高铃重和纤维品质的协同。

关键词: 棉花, 催熟, 单铃重, 纤维品质, 集中吐絮

Abstract:

The use of ethephon can achieve early and concentrated the machine-harvested cotton boll opening. The purpose of this study is to analyze the effect of the boll-period shortening on the boll weight, fiber quality, and relationship, when the ethephon was sprayed at different stages of the boll development with a selection of 18 materials. The results showed that when the period of cotton was 47-69 days, spraying ethephon at the age of boll was 40.5-49.7 days, which could advance boll opening by 3.5-5.7 days. It took 64.1-69.7 days for fiber to fully mature under ethephon, while it took 54.8-60.5 days for cotton seed. When boll was opened 1.5-6.2 days earlier, the probability of boll weight and fiber quality decreasing was up to 58.0%-76.5%. To achieve an early opening of the boll, ethephon can be applied at the boll age of 34.8-44.1 days, when the boll weight (< 0.26 g) and fiber quality damage (length reduction < 0.28 mm and fiber strength < 0.30 cN tex-1) at the top of cotton plant are reduced by 5% and 1%, respectively. In addition, the boll period was shortened in some materials, but the boll weight, fiber length, and strength were increased, with the 9.5%-23.5% probability. Therefore, the reasonable use of ethephon in some cotton varieties can shorten the boll period and improve the boll weight and quality.

Key words: cotton, ripening, boll weight, fiber quality, concentrated boll-opening

表1

催熟剂试验的材料、棉铃铃期、挂花日期和处理时间"

年份
Year
品种(材料)
Cotton cultivars (materials)
对照棉铃铃期
(d, CK)
挂花日期(月/日)
Marked date
(month/day)
催熟剂喷施
时间处理
Treatment time
2020 苏K202, 巴1, 巴2, 巴4, 巴6, 巴8, 新陆早33号,
新陆早50号, 新陆早57号, 新陆早61号, 新陆早74号, 新陆早80号, 65-38, 16566, 2A0620, 80511, 80506, 3413
Su K202, Ba 1, Ba 2, Ba 4, Ba 6, Ba 8, Xinluzao 33, Xinluzao 50, Xinluzao 57, Xinluzao 61, Xinluzao 74, Xinluzao 80, 65-38, 16566, 2A0620, 80511, 80506, 3413
47, 50, 48, 51, 47, 51, 52, 50, 47, 50, 51, 52, 60, 60, 64, 57, 60, 69 7/6 Rd/b 0.82
7/11 Rd/b 0.72
7/16 Rd/b 0.62
2021 苏K202, 巴8, 新陆早33号, 新陆早50号,
新陆早80号, 16566, 2A0620, 80506, 3413
Su K202, Ba 8, Xinluzao 33, Xinluzao 50,
Xinluzao 80, 16566, 2A0620, 80506, 3413
47, 51, 52, 57, 60,
60, 64, 60, 69
7/11 Rd/b 0.82
7/16 Rd/b 0.72
7/21 Rd/b 0.62
7/25 Rd/b 0.52

图1

催熟剂乙烯利对棉铃铃期的影响 图中粗实线表示该组数据的平均值。Rd/b(0.82, 0.72, 0.62, 0.52)的样本数n分别为25、25、25和9。**表示不同喷施药剂处理间差异显著(P < 0.01)。棉铃铃期缩短天数是喷施乙烯利试样的棉铃铃期与对照的差值。每个喷施时间均有一个对照处理(CK)。"

图2

乙烯利催熟条件下根据棉铃铃期缩短天数对单铃纤维重及单铃棉籽重的损伤量进行分类 图中数字表示测定指标在某象限内的样本数。总样本数n=84, 其中Rd/b (0.82, 0.72, 0.62, 0.52)的样本数n分别为25、25、25和9。单铃纤维重和单铃棉籽重的损伤量是喷施乙烯利试样的单铃纤维重和单铃棉籽重与对照的差值。"

图3

乙烯利催熟条件下棉铃铃期及其缩短天数与单铃纤维重和单铃棉籽重损伤量的关系 总样本数n = 84。单铃纤维重和单铃棉籽重的损伤量是喷施乙烯利试样的单铃纤维重和单铃棉籽重与对照的差值。"

图4

乙烯利催熟条件下根据棉铃铃期缩短天数对纤维品质的损伤量进行分类 图中数字表示测定指标在某象限内的样本数。总样本数n = 81, 其中Rd/b (0.82, 0.72, 0.62, 0.52)的样本数n分别为25, 25, 25, 9。纤维品质损伤量是喷施乙烯利试样的纤维品质指标与对照的差值。"

图5

乙烯利催熟条件下棉铃铃期及其缩短天数与纤维品质损伤量的关系 总样本数为81。纤维品质损伤量是喷施乙烯利试样的纤维品质指标与对照的差值。"

表2

乙烯利催熟条件下棉铃铃期缩短对纤维长度、断裂比强度和单铃重的影响"

品种(材料)
Cotton cultivars (materials)
催熟剂喷施时间
Treatment time
喷施处理
Treatment
棉铃铃期
Boll period days (d)
纤维长度
Fiber length (mm)
断裂比强度
Fiber strength
(cN tex-1)
单铃重
Fiber weight
(g per boll)
苏K202
Su K202
Rd/b 0.82 对照 CK 60.3±0.91 a 29.1±0.28 b 30.7±0.12 b 4.77±0.67 a
乙烯利 Ethephon 57.1±0.87 b 30.1±0.18 a 31.2±0.15 a 4.87±0.72 a
新陆早61号
Xinluzao 61
Rd/b 0.82 对照 CK 57.1±0.87 a 26.2±0.37 b 27.4±0.92 a 4.50±0.10 a
乙烯利 Ethephon 54.6±1.25 a 28.1±0.01 a 28.1±1.15 a 4.60±0.17 a
新陆早74号
Xinluzao 74
Rd/b 0.82 对照 CK 61.8±1.04 a 27.7±0.70 a 29.3±0.58 a 5.07±0.67 a
乙烯利 Ethephon 61.3±0.78 a 28.6±0.57 a 29.8±0.58 a 4.27±0.30 a
新陆早74号
Xinluzao 74
Rd/b 0.72 对照 CK 58.6±0.93 a 27.8±0.15 b 31.7±0.36 a 5.03±0.13 a
乙烯利 Ethephon 55.8±0.18 a 29.4±0.50 a 29.5±0.58 b 4.40±0.20 a
新陆早57号
Xinluzao 57
Rd/b 0.62 对照 CK 57.2±1.09 a 29.2±0.58 a 29.1±0.49 b 5.37±0.18 a
乙烯利 Ethephon 51.4±0.85 b 29.3±0.58 a 31.2±0.33 a 5.10±0.21 a
3413 Rd/b 0.62 对照 CK 49.1±0.42 a 27.2±0.78 a 25.7±0.52 b 3.40±0.26 a
乙烯利 Ethephon 47.2±0.86 a 28.0±0.58 a 28.1±0.64 a 4.13±0.24 a
[1] 聂军军, 代建龙, 杜明伟, 张艳军, 田晓莉, 李召虎, 董合忠. 我国现代植棉理论与技术的新发展: 棉花集中成熟栽培. 中国农业科学, 2021, 54: 4286-4298.
doi: 10.3864/j.issn.0578-1752.2021.20.004
Nie J J, Dai J L, Du M W, Zhang Y J, Tian X L, Li Z H, Dong H Z. New development of modern cotton farming theory and technology in China: concentrated maturation cultivation of cotton. Sci Agric Sin, 2021, 54: 4286-4298 (in Chinese with English abstract).
[2] Tian J S, Zhang X Y, Yang Y L, Yang C X, Xu S Z, Zuo W Q, Zhang W F, Dong H Y, Jiu X L, Yu Y C, Zhao Z. How to reduce cotton fiber damage in the Xinjiang China. Ind Crop Prod, 2017, 109: 803-811.
doi: 10.1016/j.indcrop.2017.09.036
[3] 田晓莉, 段留生, 李召虎, 王保民, 何钟佩. 棉花化学催熟与脱叶的生理基础. 植物生理学通讯, 2004, 40: 758-762.
Tian X L, Duan L S, Li Z H, Wang B M, He Z P. Physiological bases of chemical accelerated boll maturation and defoliation in cotton. Plant Physiol J, 2004, 40: 758-762. (in Chinese with English abstract)
[4] 田景山, 张煦怡, 王文敏, 杨延龙, 随龙龙, 张鹏鹏, 张亚黎, 张旺锋, 勾玲. 棉花脱叶催熟剂对纤维品质的影响及应用时间的确定. 作物学报, 2020, 46: 1388-1397.
doi: 10.3724/SP.J.1006.2020.94196
Tian J S, Zhang X Y, Wang W M, Yang Y L, Sui L L, Zhang P P, Zhang Y L, Zhang W F, Gou L. A method of defoliant application based on fiber damage and boll growth period of machine- harvested cotton. Acta Agron Sin, 2020, 46: 1388-1397. (in Chinese with English abstract)
[5] Cathey G W, Luckett K E, Rayburn S T Jr. Accelerated cotton boll dehiscence with growth regulator and desiccant chemicals. Field Crops Res, 1982, 5: 113-120.
doi: 10.1016/0378-4290(82)90011-9
[6] Meng L, Zhang L Z, Qi H K, Du M W, Zuo Y L, Zhang M C, Tian X L, Li Z H. Optimizing the application of a novel harvest aid to improve the quality of mechanically harvested cotton in the North China Plain. J Integr Agric, 2021, 20: 2892-2899.
doi: 10.1016/S2095-3119(20)63280-4
[7] 田景山, 张煦怡, 张丽娜, 徐守振, 祁炳琴, 随龙龙, 张鹏鹏, 杨延龙, 张旺锋, 勾玲. 新疆机采棉花实现叶片快速脱落需要的温度条件. 作物学报, 2019, 45: 624-631.
Tian J S, Zhang X Y, Zhang L N, Xu S Z, Qi B Q, Sui L L, Zhang P P, Yang Y L, Zhang W F, Gou L. Temperatures of promoting rapid leaf abscission of cotton in Xinjiang region. Acta Agron Sin, 2019, 45: 624-631. (in Chinese with English abstract)
[8] 李丕明, 韩碧文, 奚惠达, 何钟佩, 徐楚年. 棉花应用乙烯利催熟技术及其原理. 中国农业科学, 1981, 14(3): 47-53.
Li P M, Han B W, Xi H D, He Z P, Xu C N. Enhancement of cotton maturity by ethrel spray. Sci Agric Sin, 1981, 14(3): 47-53. (in Chinese with English abstract)
[9] 沈岳清, 方炳初, 盛敏智. 乙烯利催熟棉铃生理原因的探讨. 植物学报, 1980, 22: 236-240.
Shen Y Q, Fang B C, Sheng M Z. A study of the physiological causes of ethephon ripening cotton bolls. Acta Bot Sin, 1980, 22: 236-240. (in Chinese with English abstract)
[10] 上海植物生理研究所. 乙烯利催熟棉花的生理基础. 植物杂志, 1977, (3): 14-16.
Shanghai Plant Physiology Institute. Physiological basis of ethephon ripening cotton. Plant J, 1977, (3): 14-16. (in Chinese)
[11] 盛敏智, 方炳初, 沈岳清, 曹惠芳. 用乙烯利催熟棉铃效果分析. 上海农业科技, 1980, (6): 19-20.
Sheng M Z, Fang B C, Shen Y Q, Cao H F. Effect analysis of ripening cotton boll with ethephon. Shanghai Agric Sci Technol, 1980, (6): 19-20. (in Chinese)
[12] 韩碧文, 徐楚年, 何钟佩, 奚惠达, 李丕明, 白玉良. 乙烯利催熟棉铃机理的探讨: 1. 乙烯利催熟对棉铃内部过氧化物酶的影响. 北京农业大学学报, 1981, 7(2): 47-53.
Han B W, Xu C N, He Z P, Xi H D, Li P M, Bai Y L. Studies on the mechanism of the ripening of cotton bolls: 1. The effect of the peroxidase activity of ethrel. Acta Agric Univ Pek, 1981, 7(2): 47-53. (in Chinese with English abstract)
[13] 沈岳清, 方炳初, 盛敏智. 乙烯利对棉叶光合能力和物质运输等方面的影响. 植物学报, 1980, 22: 136-140.
Shen Y Q, Fang B C, Sheng M Z. The effect of photosynthesis and translocation in cotton leaf. Acta Bot Sin, 1980, 22: 136-140. (in Chinese with English abstract)
[14] Xu J, Liu S D, Cai L C, Wang L Y, Dong Y F, Qi Z Y, Yu J Q, Zhou Y H. SPINDLY interacts with EIN2 to facilitate ethylene signaling-mediated fruit ripening in tomato. Plant Biol J, 2023, 21: 219-231.
[15] Li Y X, Hu W, Setter T L, He J Q, Zou J, Zhu H H, Zheng G Y, Zhao W Q, Wang Y H, Chen B L, Meng Y L, Wang S S, Zhou Z G. Soil drought decreases oil synthesis and increases protein synthesis in cottonseed kernel during the flowering and boll formation of cotton. Environ Exp Bot, 2022, 201: 104964.
doi: 10.1016/j.envexpbot.2022.104964
[16] Ruan Y L, Llewellyn D J, Furbank R T. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell, 2003, 15: 952-964.
doi: 10.1105/tpc.010108
[17] Han L B, Li Y B, Wang H Y, Wu X M, Li C L, Luo M, Wu S J, Kong Z S, Pei Y, Jiao G L, Xia G X. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. Plant Cell, 2013, 25: 4421-4438.
doi: 10.1105/tpc.113.116970
[18] Huang J F, Guo Y J, Sun Q W, Zeng W, Li J, Li X B, Xu W L. Genome-wide identification of R2R3-MYB transcription factors regulating secondary cell wall thickening in cotton fiber development. Plant Cell Physiol, 2018, 60: 687-701.
doi: 10.1093/pcp/pcy238
[19] Jin D S, Wang X R, Xu Y C, Gui H P, Zhang H H, Dong Q, Sikder R K, Yang G Z, Song M Z. Chemical defoliant promotes leaf abscission by altering ROS metabolism and photosynthetic efficiency in Gossypium hirsutum. Int J Mol Sci, 2020, 21: 2738.
[20] Du M W, Li Y, Tian X L, Duan L S, Zhang M C, Tan W M, Xu D Y, Li Z H. The phytotoxin coronatine induces abscission-related gene expression and boll ripening during defoliation of cotton. PLoS One, 2014, 9: e97652.
doi: 10.1371/journal.pone.0097652
[21] Bange M P, Long R L. Optimizing timing of chemical harvest aid application in cotton by predicting its influence on fiber quality. Agron J, 2011, 103: 390-395.
doi: 10.2134/agronj2010.0293
[22] 张旺锋, 王振林, 余松烈, 李少昆, 房建, 童文崧. 种植密度对新疆高产棉花群体光合作用、冠层结构及产量形成的影响. 植物生态学报, 2004, 28: 164-171.
doi: 10.17521/cjpe.2004.0024
Zhang W F, Wang Z L, Yu S L, Li S K, Fang J, Tong W S. Effects of planting density on canopy photosynthesis, canopy structure and yield formation of high-yield cotton in Xinjiang, China. Chin J Plant Ecol, 2004, 28: 164-171 (in Chinese with English abstract).
doi: 10.17521/cjpe.2004.0024
[23] 曹新川, 胡守林, 韩秀锋, 何良荣, 郭伟锋. 海岛棉棉铃阶段性发育与产量品质的关系. 作物学报, 2020, 46: 300-306.
doi: 10.3724/SP.J.1006.2020.94051
Cao X C, Hu S L, Han X F, He L R, Guo W F. Relationship of stage development of cotton bolls with yield and quality in island cotton. Acta Agron Sin, 2020, 46: 300-306. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94051
[24] Xu J, Chen L, Sun H, Wusiman N, Sun W N, Li B Q, Gao Y, Kong J, Zhang D W, Zhang X L, Xu H J, Yang X Y. Crosstalk between cytokinin and ethylene signaling pathways regulates leaf abscission in cotton in response to chemical defoliants. J Exp Bot, 2019, 70: 1525-1538.
doi: 10.1093/jxb/erz036 pmid: 30715415
[25] Yue P T, Wang Y N, Bu H D, Li X Y, Yuan H, Wang A D. Ethylene promotes IAA reduction through PuERFs-activated PuGH3.1 during fruit ripening in pear (Pyrus ussuriensis). Postharvest Biol Technol, 2019, 157: 110955.
doi: 10.1016/j.postharvbio.2019.110955
[26] Zhang G C, Dai L X, Ding H, Ci D W, Ning T Y, Yang J S, Zhao X H, Yu H Q, Zhang Z M. Response and adaptation to the accumulation and distribution of photosynthetic product in peanut under salt stress. J Integr Agric, 2020, 19: 690-699.
doi: 10.1016/S2095-3119(19)62608-0
[27] Long R L, Bange M P. Consequences of immature fiber on the processing performance of upland cotton. Field Crops Res, 2011, 121: 401-407.
doi: 10.1016/j.fcr.2011.01.008
[28] Hu W, Gao M, Xu B J, Wang S S, Wang Y H, Zhou Z G. Co-occurring elevated temperature and drought stresses during cotton fiber thickening stage inhibit fiber biomass accumulation and cellulose synthesis. Ind Crop Prod, 2022, 187: 115348.
doi: 10.1016/j.indcrop.2022.115348
[29] Yin C C, Zhao H, Ma B, Chen S Y, Zhang J S. Diverse roles of ethylene in regulating agronomic traits in rice. Front Plant Sci, 2017, 8: 1676.
doi: 10.3389/fpls.2017.01676
[30] Jie H D, Ma Y S, Xie D Y, Jie Y C. Transcriptional and metabolic characterization of feeding ramie growth enhanced by a combined application of gibberellin and ethrel. Int J Mol Sci, 2022, 23: 12025.
doi: 10.3390/ijms231912025
[31] Ahmed M, Iqbal A, Latif A, Din S U, Sarwar M B, Wang X D, Rao A Q, Husnain T, Shahid A A. Overexpression of a sucrose synthase gene indirectly improves cotton fiber quality through sucrose cleavage. Front Plant Sci, 2020, 11: 476251.
doi: 10.3389/fpls.2020.476251
[32] Lee B R, Zaman R, La V H, Bae D W, Kim T H. Ethephon- induced ethylene enhances starch degradation and sucrose transport with an interactive abscisic acid-mediated manner in mature leaves of oilseed rape (Brassica napus L.). Plants, 2021, 10: 1670.
doi: 10.3390/plants10081670
[33] Gao H Y, Li N N, Li J H, Khan A, Ahmad I, Wang Y Y, Wang F Y, Luo H H. Improving boll capsule wall, subtending leaves anatomy and photosynthetic capacity can increase seed cotton yield under limited drip irrigation systems. Ind Crop Prod, 2021, 161: 113214.
doi: 10.1016/j.indcrop.2020.113214
[34] Tang F Y, Wang T, Zhu J M. Carbohydrate profiles during cotton (Gossypium hirsutum L.) boll development and their relationships to boll characters. Field Crops Res, 2014, 164: 98-106.
doi: 10.1016/j.fcr.2014.06.002
[35] Zhang Q P, Luo D, Sun Y Y, Li P S, Xiang D, Zhang Y L, Yang M F, Gou L, Tian J S, Zhang W F. Cotton harvest aids promote the translocation of bur-stored photoassimilates to enhance single boll weight. Ind Crop Prod, 2023, 195: 116375.
doi: 10.1016/j.indcrop.2023.116375
[36] Guo J, Qu L L, Hu Y F, Lu W P, Lu D L. Proteomics reveals the effects of drought stress on the kernel development and starch formation of waxy maize. BMC Plant Biol, 2021, 21: 434.
doi: 10.1186/s12870-021-03214-z pmid: 34556041
[37] Li H J, Wang J W, Huang X L, Zhou Z G, Wang S S, Hu W. Novel intra-boll yield components and Q-score can further evaluate the effect of phosphorus fertilizer on cotton yield and fiber quality. Field Crops Res, 2022, 275: 108325.
doi: 10.1016/j.fcr.2021.108325
[38] 董合忠, 毛树春, 张旺锋, 陈德华. 棉花优化成铃栽培理论及其新发展. 中国农业科学, 2014, 47: 441-451.
doi: 10.3864/j.issn.0578-1752.2014.03.004
Dong H Z, Mao S C, Zhang W F, Chen D H. On boll-setting optimization theory for cotton cultivation and its new development. Sci Agric Sin, 2014, 47: 441-451 (in Chinese with English abstract).
[39] Iqbal N, Khan N A, Ferrante A, Trivellini A, Francini A, Khan M I R. Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front Plant Sci, 2017, 8: 475.
doi: 10.3389/fpls.2017.00475 pmid: 28421102
[40] Wang L K, Zhang Z Y, Zhang F, Shao Z Y, Zhao B, Huang A, Tran J, Hernandez F V, Qiao H. EIN2-directed histone acetylation requires EIN3-mediated positive feedback regulation in response to ethylene. Plant Cell, 2021, 33: 322-337.
doi: 10.1093/plcell/koaa029
[1] 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293.
[2] 李志坤, 贾文华, 朱伟, 刘伟, 马宗斌. 氮肥和缩节胺对棉花纤维产量及品质时间分布的影响[J]. 作物学报, 2024, 50(2): 514-528.
[3] 郭家鑫, 叶扬, 郭慧娟, 闵伟. 盐碱胁迫对棉花叶片蛋白质组的影响及差异性分析[J]. 作物学报, 2024, 50(1): 219-236.
[4] 肖胜华, 陆妍, 李安子, 覃耀斌, 廖铭静, 闭兆福, 卓柑锋, 朱永红, 朱龙付. 棉花AP2/ERF转录因子GhTINY2负调控植株抗盐性的功能分析[J]. 作物学报, 2024, 50(1): 126-137.
[5] 上官小霞, 杨琴莉, 李换丽. 基于CRISPR/Cas9的棉花GhbHLH71基因编辑突变体的分析[J]. 作物学报, 2024, 50(1): 138-148.
[6] 谭志新, 谢留伟, 李洪戈, 李芳军, 田晓莉, 李召虎. 基于AHP-隶属函数法的棉花子叶期耐低钾能力鉴定[J]. 作物学报, 2024, 50(1): 199-208.
[7] 孙尚文, 束红梅, 杨长琴, 张国伟, 王晓婧, 孟亚利, 王友华, 刘瑞显. 低温下环丙酸酰胺调控棉花内源激素促进噻苯隆脱叶的机制[J]. 作物学报, 2024, 50(1): 187-198.
[8] 许乃银, 王扬, 王丹涛, 宁贺佳, 杨晓妮, 乔银桃. 棉花纤维质量指数的构建与WGT双标图分析[J]. 作物学报, 2023, 49(5): 1262-1271.
[9] 孟璐, 杜明伟, 黎芳, 齐海坤, 路正营, 徐东永, 李存东, 张明才, 田晓莉, 李召虎. 冀中地区高密种植条件下棉花药前群体大小和成熟度与化学脱叶催熟效果的关系[J]. 作物学报, 2023, 49(4): 1028-1038.
[10] 雷建峰, 李月, 代培红, 赵燚, 尤扬子, 贾建国, 赵帅, 曲延英, 刘晓东. 棉花中不同植物病毒介导的VIGE体系的研究[J]. 作物学报, 2023, 49(4): 978-987.
[11] 郭宏, 于霁雯, 裴文锋, 关永虎, 李航, 李长喜, 刘金伟, 王伟, 王宝全, 梅拥军. 南疆陆地棉杂种F2的遗传分析及遗传主效聚类[J]. 作物学报, 2023, 49(3): 608-621.
[12] 娄善伟, 高飞, 王崇, 田晓莉, 杜明伟, 段留生. 不同甲哌鎓滴施剂型筛选及其对棉花生长发育调控效果研究[J]. 作物学报, 2023, 49(2): 552-560.
[13] 柯会锋, 张震, 谷淇深, 赵艳, 李培育, 张冬梅, 崔彦茹, 王省芬, 吴立强, 张桂寅, 马峙英, 孙正文. 低磷胁迫下陆地棉苗期根生物量相关性状全基因组关联分析[J]. 作物学报, 2022, 48(9): 2168-2179.
[14] 李名江, 雷建峰, 祖丽皮耶•托合尼亚孜, 代培红, 刘超, 刘晓东. 棉花GhIQM1基因克隆及抗黄萎病功能分析[J]. 作物学报, 2022, 48(9): 2265-2273.
[15] 郭家鑫, 鲁晓宇, 陶一凡, 郭慧娟, 闵伟. 棉花在盐碱胁迫下代谢产物及通路的分析[J]. 作物学报, 2022, 48(8): 2100-2114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .