欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (1): 219-236.doi: 10.3724/SP.J.1006.2024.34035

• 耕作栽培·生理生化 • 上一篇    下一篇

盐碱胁迫对棉花叶片蛋白质组的影响及差异性分析

郭家鑫(), 叶扬, 郭慧娟, 闵伟*()   

  1. 石河子大学农学院, 新疆石河子 832000
  • 收稿日期:2023-02-22 接受日期:2023-05-24 出版日期:2024-01-12 网络出版日期:2023-12-16
  • 通讯作者: *闵伟, E-mail: minwei555@126.com
  • 作者简介:E-mail: gjx19960323@126.com
  • 基金资助:
    石河子大学青年创新人才培养计划项目(CXPY202111);农业农村部西北绿洲农业环境重点实验室开放基金(XBLZ-20214);石河子大学高层次人才科研启动资金专项(RCZK202017)

Effects and variability analysis of different salt and alkali stresses on the proteome of cotton leaves

GUO Jia-Xin(), YE Yang, GUO Hui-Juan, MIN Wei*()   

  1. Agricultual College, Shihezi University, Shihezi 832000, Xinjiang, China
  • Received:2023-02-22 Accepted:2023-05-24 Published:2024-01-12 Published online:2023-12-16
  • Contact: *E-mail: minwei555@126.com
  • Supported by:
    Youth Innovation Talent Cultivation Program of Shihezi University(CXPY202111);Open Fund of Key Laboratory of Northwest Oasis Agro-Environment of Ministry of Agriculture and Rural Affairs of China(XBLZ-20214);Scientific Research Starting Foundation for High Level Talents of Shihezi University(RCZK202017)

摘要:

盐胁迫和碱胁迫是严重影响农业生产的2种不同非生物胁迫, 探讨棉花耐受盐胁迫和碱胁迫的差异, 可为不同类型盐碱地的棉花栽培提供一定的理论基础。本试验设置对照(CK)、盐胁迫(NaCl, CS)和碱胁迫(NaHCO3+Na2CO3, AS) 3个处理, 通过蛋白质组学分析和生理指标进行验证, 揭示棉花对盐胁迫和碱胁迫的耐受机制。与CK相比, CS和AS的棉花生物量分别降低51.1%和50.9%, CS棉花叶片的叶绿素含量和净光合速率分别降低53.9%和57.2%, CS棉花叶片中己糖激酶、磷酸果糖激酶、丙酮酸激酶、柠檬酸合酶、谷氨酸脱氢酶和谷草转氨酶活性分别增加13.8%、14.4%、4.7%、4.5%、36.6%和12.9%; AS棉花叶片中己糖激酶、磷酸果糖激酶、丙酮酸激酶、苹果酸脱氢酶、柠檬酸合酶、谷氨酸脱氢酶和谷草转氨酶活性分别增加4.8%、38.8%、15.1%、4.3%、3.4%、15.2%和21.1%。基于TMT蛋白质组学分析, 在CS和AS叶片中分别鉴定出458个和140个差异表达蛋白质。这些蛋白参与了光合作用、糖代谢、2-氧羧酸代谢以及氨基酸合成和代谢等生命过程。表明盐胁迫和碱胁迫均抑制棉花生长。盐胁迫下, 与光合作用相关的蛋白表达减少, 光合作用被显著抑制, 同时碳水和能量代谢加强, 更多的光合产物用于能量代谢; 而碱胁迫对棉花光合作用无显著影响, 更多的光合产物可能运往根部分泌有机酸。

关键词: 盐胁迫, 碱胁迫, 棉花, 蛋白质组, 光合作用

Abstract:

Salt stress and alkali stress are two different abiotic stresses that seriously affect agricultural production. Exploring the differences between salt stress and alkali stress in cotton provides a theoretical basis for cotton cultivation on different types of saline alkali land. In this experiment, three treatments of CK, NaCl (CS), and NaHCO3+Na2CO3 (AS) were conducted. Proteomics analysis and physiological index verification revealed that the tolerance mechanism of cotton to salt stress and alkali stress. Compared with CK, CS, and AS cotton plants decreased by 51.1% and 50.9% at P < 0.05 in biomass, respectively. The chlorophyll content and Pn under salt stress decreased significantly by 53.9% and 57.2%, respectively. Under salt stress, the activities of hexokinase, fructose phosphate kinase, pyruvate kinase, citrate synthase, glutamate dehydrogenase, and glutamic oxaloacetic transaminase in cotton leaves increased significantly by 13.8%, 14.4%, 4.7%, 4.5%, 36.6%, and 12.9%, respectively. Under alkali stress, the activities of hexokinase, phosphofructose kinase, pyruvate kinase, malate dehydrogenase, citrate synthase, glutamate dehydrogenase, and glutamic oxaloacetic transaminase in cotton leaves significantly increased by 4.8%, 38.8%, 15.1%, 4.3%, 3.4%, 15.2%, and 21.1%, respectively. Based on TMT proteomics, 458 differentially expressed proteins and 140 differentially expressed proteins in salt stress and alkali stress species were detected, respectively. These proteins were involved in photosynthesis, sugar metabolism, 2-oxocarbonic acid metabolism, amino acid synthesis and metabolism, and other life processes. These results showed that both salt stress and alkali stress inhibited cotton growth. The difference was that under salt stress, proteins expression related to photosynthesis decreased, photosynthesis was significantly inhibited, and carbon water and energy metabolism were enhanced, and more photosynthates were used for energy metabolism. Alkali stress had no significant effect on cotton photosynthesis, and more photosynthates might be transported to the roots to secrete organic acids.

Key words: salt stress, alkali stress, cotton, proteome, photosynthesis

表1

不同处理土壤盐碱类型和盐碱化程度"

处理
Treatment
盐碱类型及盐碱化程度
Saline and alkaline
含盐量
Salt content (g kg-1)
电导率
Electrical conductivity EC1:5 (dS m-1)
pH
(1:2.5)
对照
CK
对照-非盐(碱)化
Control-non salting (alkalization)
0.53 0.17 8.16
盐胁迫
CS
NaCl-中度盐化
NaCl-moderate salinization
4.43 1.39 8.43
碱胁迫
AS
Na2CO3+NaHCO3-中度碱化
Na2CO3+NaHCO3-moderate alkalization
2.03 0.63 9.92

表2

盐胁迫和碱胁迫对棉花生物量的影响"

处理
Treatment
生物量Biomass (g plant-1)
叶Leaf 茎Stem 根Root 总Total
CK 2.45±0.200 a 1.81±0.100 a 0.87±0.040 a 5.13±0.260 a
CS 1.24±0.015 b 0.73±0.006 c 0.54±0.015 c 2.51±0.025 c
AS 1.27±0.095 b 0.72±0.050 b 0.53±0.045 b 2.52±0.190 b

图1

盐胁迫和碱胁迫对棉花光合作用的影响 柱上不同小写字母表示不同处理在0.05概率水平差异显著。处理同表2。"

图2

盐胁迫和碱胁迫下棉花叶片中表达蛋白的主坐标分析 处理同表2。"

图3

棉花叶片中表达蛋白火山图 A: CS vs CK; B: AS vs CK。散点颜色: 显著上调的蛋白质以红色表示, 显著下调的蛋白质以蓝色表示, 非显著差异的蛋白质为灰色。处理同表2。"

图4

棉花叶片差异表达蛋白GO富集分析分类直方图 A: CS vs CK; B: AS vs CK。富集条目为top 10, 纵坐标为映射差异表达蛋白个数。BP: 生物过程; CC: 细胞组分; MF: 分子功能。处理同表2。"

图5

棉花叶片差异表达蛋白的前十位KEGG代谢通路富集分析图 A: CS vs CK; B: AS vs CK。图中横坐标为富集因子值, 纵坐标为KEGG 通路信息。其中, 圆圈的大小表示映射通路的差异表达蛋白个数, 圆圈越大, 数量越多; 圆圈的颜色表示P值大小, 颜色越红, P值越小。处理同表2。"

图6

盐胁迫和碱胁迫对棉花光合作用和碳转化蛋白的影响 A: 光合作用; B: 糖酵解; C: 柠檬酸循环; D: 氨基酸转化。柱上不同小写字母表示不同处理在0.05概率水平差异显著。处理同表2。"

表3

盐胁迫和碱胁迫对棉花叶片能量代谢的影响"

处理
Treatment
代谢通路
Pathway name
序列号
Accession
功能描述
Description
变化倍数
Fold change
(CS or AS)/CK
CS 2-氧代羧酸代谢
2-oxocarboxylic acid metabolism
A0A7J9KP33 酮酸还原酶
Ketol-acid reductoisomerase
1.29*
A0A7J9MR64 乙酰谷氨酸激酶
Acetylglutamate kinase
1.36**
A0A7J9M5F7 乌头酸水合酶
Aconitate hydratase
0.73*
A0A7J9N0C5 芳香脱硫葡萄糖酸磺基转移酶
Aromatic desulfoglucosinolate sulfotransferase
1.27*
氧化磷酸化
Oxidative
phosphorylation
A0A7J9LU75 F型H+转运ATP酶亚基δ
F-type H+-transporting ATPase subunit delta
1.37*
A0A7J9LUR9 F型H+转运ATP酶亚基γ
F-type H+-transporting ATPase subunit gamma
1.21*
A0A7J9KQM1 F型H+转运ATP酶亚基d
F-type H+-transporting ATPase subunit d
1.57*
A0A7J9MB87 F型H+转运ATP酶亚基g
F-type H+-transporting ATPase subunit g
1.40**
A0A7J9LJA3 V型H+转运ATP酶亚基D
V-type H+-transporting ATPase subunit D
1.31*
A0A7J9N9Y3 细胞色素c氧化酶亚基5b
Cytochrome c oxidase subunit 5b
2.86**
A0A7J9ML93 NADH脱氢酶(泛醌) 1α亚基1
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 1
1.27**
A0A7J9LKQ6 NADH脱氢酶(泛醌)1α亚基9
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 9
1.22*
脂肪酸代谢
Fatty acid
metabolism
A0A7J9M364 长链酰基辅酶A合成酶 Long-chain acyl-CoA synthetase 1.68**
A0A7J9KWA3 3-羟基酰基-[酰基载体蛋白]脱水酶
3-hydroxyacyl-[acyl-carrier-protein] dehydratase
1.24*
A0A7J9LZQ8 3-氧代酰基-[酰基载体蛋白]合成酶II
3-oxoacyl-[acyl-carrier-protein] synthase II
1.29*
原核生物中的碳固定途径
Carbon fixation pathways in
prokaryotes
A0A7J9KVG7 磷酸烯醇式丙酮酸羧化酶
Phosphoenolpyruvate carboxylase
0.64*
A0A7J9M5F7 乌头酸水合酶
Aconitate hydratase
0.73*
甲烷代谢
Methane metabolism
A0A7J9KVG7 磷酸烯醇式丙酮酸羧化酶
Phosphoenolpyruvate carboxylase
0.64*
A0A7J9KMU6 烯醇化酶
Enolase
1.25*
AS 2-氧代羧酸代谢
2-Oxocarboxylic acid metabolism
A0A7J9KP33 酮酸还原酶
Ketol-acid reductoisomerase
1.39*
A0A7J9M6Q9 支链氨基酸氨基转移酶
Branched-chain amino acid aminotransferase
0.83**
A0A7J9L982 乙酰乳酸合成酶I/III小亚基
Acetolactate synthase I/III small subunit
1.22*
AS 脂肪酸代谢
Fatty acid
metabolism
A0A7J9N2P9 酰基-[酰基载体蛋白]去饱和酶
Acyl-[acyl-carrier-protein] desaturase
1.39*
A0A7J9LKB6 乙酰辅酶A酰基转移酶1
Acetyl-CoA acyltransferase 1
0.71**
硫代谢
Sulfur metabolism
A0A7J9MMD9 胱硫醚γ合酶
Cystathionine gamma-synthase
1.48*
A0A7J9L9D5 3’-磷酸腺苷5’-磷酸硫酸合成酶
3’-phosphoadenosine 5’-phosphosulfate synthase
1.29*
氧化磷酸化
Oxidative
phosphorylation
A0A7J9LGN1 无机焦磷酸酶
Inorganic pyrophosphatase
0.80*
A0A7J9LJA3 V型H+转运ATP酶亚基D
V-type H+-transporting ATPase subunit D
1.26**

表4

盐胁迫和碱胁迫对棉花叶片氨基酸代谢的影响"

处理
Treatment
代谢通路
Pathway name
序列号
Accession
功能描述
Description
变化倍数
Fold change
(CS or AS)/CK
CS 苯丙氨酸、酪氨酸和色氨酸
生物合成
Phenylalanine, tyrosine, and tryptophan biosynthesis
A0A7J9LV20 蒽酰磷酸核糖转移酶
Anthranilate phosphoribosyl transferase
1.30*
A0A7J9KNK6 蒽合酶
Anthranilate synthase
0.83**
A0A7J9N2J2 色氨酸合成酶α链
Tryptophan synthase alpha chain
1.64**
A0A7J9N2X9 色氨酸合成酶β链
Tryptophan synthase beta chain
1.78**
A0A7J9N2E0 芳香烃脱水酶
Arogenate dehydratase
1.32*
A0A7J9LLN6 色氨酸合成酶β链
Tryptophan synthase beta chain
1.39*
甘氨酸、丝氨酸和苏氨酸代谢
Glycine, serine and threonine metabolism
A0A7J9N2J2 色氨酸合成酶α链
Tryptophan synthase alpha chain
1.64**
A0A7J9N2X9 色氨酸合成酶β链
Tryptophan synthase beta chain
1.78**
A0A7J9M6Y0 苏氨酸合酶
Threonine synthase
1.57**
A0A7J9LLN6 色氨酸合成酶β链
Tryptophan synthase beta chain
1.39*
A0A7J9M104 乙醛酸/羟基丙酮酸还原酶
Glyoxylate/hydroxypyruvate reductase
0.79**
酪氨酸代谢
Tyrosine metabolism
A0A7J9MAI5 多酚氧化酶
Polyphenol oxidase
0.68*
A0A7J9M832 富马酸酯酶
Fumarylacetoacetase
0.75*
A0A7J9M104 羟基苯基丙酮酸还原酶
Hydroxyphenylpyruvate reductase
0.79**
精氨酸生物合成
Arginine biosynthesis
A0A7J9MR64 乙酰谷氨酸激酶
Acetylglutamate kinase
1.36**
CS 精氨酸生物合成
Arginine biosynthesis
A0A7J9KRZ6 精氨酸琥珀酸裂解酶
Argininosuccinate lyase
1.53*
丙氨酸、天冬氨酸和谷氨酸
代谢
Alanine, aspartate, and
glutamate metabolism
A0A7J9KPZ3 谷氨酸脱羧酶
Glutamate decarboxylase
0.77*
A0A7J9KRZ6 精氨酸琥珀酸裂解酶
Argininosuccinate lyase
1.53*
色氨酸代谢
Tryptophan metabolism
A0A7J9KNP8 细胞色素P450家族1亚家族A1
Cytochrome P450 family 1 subfamily A1
0.16**
A0A7J9N0C5 芳香脱硫葡萄糖酸磺基转移酶
Aromatic desulfoglucosinolate sulfotransferase
1.27*
AS 缬氨酸、亮氨酸和异亮氨酸
生物合成
Valine, leucine, and isoleucine biosynthesis
A0A7J9KP33 酮酸还原酶
Ketol-acid reductoisomerase
1.39*
A0A7J9M6Q9 支链氨基酸氨基转移酶
Branched-chain amino acid aminotransferase
0.83*
A0A7J9L982 乙酰乳酸合成酶I/III小亚基
Acetolactate synthase I/III small subunit
1.22*
苯丙氨酸、酪氨酸和色氨酸
生物合成
Phenylalanine, tyrosine, and tryptophan biosynthesis
A0A7J9LV20 蒽酰磷酸核糖转移酶
Anthranilate phosphoribosyl transferase
1.25*
A0A7J9N2J2 色氨酸合成酶α链
Tryptophan synthase alpha chain
1.41*
A0A7J9N2X9 色氨酸合成酶β链
Tryptophan synthase beta chain
1.49*
A0A7J9MCV6 预苯酸脱水酶
Prephenate dehydratase
1.29**
A0A7J9M850 芳香酸脱氢酶(NADP+)
Arogenate dehydrogenase (NADP+)
1.44*
缬氨酸、亮氨酸和异亮氨酸
降解
Valine, leucine, and isoleucine degradation
A0A7J9M6Q9 支链氨基酸氨基转移酶
Branched-chain amino acid aminotransferase
0.83*
A0A7J9LT42 羟甲基戊二酰辅酶A合酶
Hydroxymethylglutaryl-CoA synthase
1.27**
A0A7J9LKB6 乙酰辅酶A酰基转移酶1
Acetyl-CoA acyltransferase 1
0.71*
半胱氨酸和蛋氨酸代谢
Cysteine and methionine
metabolism
A0A7J9LQ81 5-甲基四氢蝶酰三谷氨酸 5-methyltetrahydropteroyltriglutamate 0.73*
A0A7J9M6Q9 支链氨基酸氨基转移酶
Branched-chain amino acid aminotransferase
0.83*
A0A7J9MMD9 胱硫苷γ合酶
Cystathionine gamma-synthase
1.48*
A0A7J9LCJ0 1,2-二羟基-3-酮-5-甲基硫戊烯双加氧酶
1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase
0.80**
甘氨酸、丝氨酸和苏氨酸代谢
Glycine, serine, and threonine metabolism
A0A7J9N2J2 色氨酸合成酶α链
Tryptophan synthase alpha chain
1.41*
A0A7J9N2X9 色氨酸合成酶β链
Tryptophan synthase beta chain
1.49*

图7

盐胁迫对蛋白代谢的影响 A: 翻译过程; B: 复制和修复过程; C: 转录过程; D: 折叠、分类和降解过程。处理同表2。"

图8

碱胁迫对蛋白代谢的影响 A: 转录过程; B: 折叠、分类和降解过程; C: 翻译过程。处理同表2。"

表5

盐胁迫和碱胁迫对棉花叶片信号传导的影响"

处理
Treatment
代谢通路
Pathway name
序列号
Accession
功能描述
Description
变化倍数
Fold change
(CS or AS)/CK
CS AMPK信号通路
AMPK signaling pathway
A0A7J9L324 5'-AMP激活蛋白激酶, 调节β亚基
5'-AMP-activated protein kinase, regulatory beta subunit
1.29*
A0A7J9MK06 5'-AMP激活蛋白激酶, 调节γ亚基
5'-AMP-activated protein kinase, regulatory gamma subunit
0.64**
A0A7J9MBY1 钙结合蛋白39
Calcium binding protein 39
1.37*
MAPK信号通路
MAPK signaling pathway
A0A7J9KIX8 酪蛋白激酶1
Casein kinase 1
0.75*
A0A7J9KNP5 14-3-3蛋白ε
14-3-3 protein epsilon
1.45*
FoxO信号通路
FoxO signaling pathway
A0A7J9L324 5'-AMP激活蛋白激酶, 调节β亚基
5'-AMP-activated protein kinase, regulatory beta subunit
1.29*
A0A7J9MK06 5'-AMP激活蛋白激酶, 调节γ亚基
5'-AMP-activated protein kinase, regulatory gamma subunit
0.64**
Apelin信号通路
Apelin signaling pathway
A0A7J9L324 5'-AMP激活蛋白激酶, 调节β亚基
5'-AMP-activated protein kinase, regulatory beta subunit
1.29*
A0A7J9MK06 5'-AMP激活蛋白激酶, 调节γ亚基
5'-AMP-activated protein kinase, regulatory gamma subunit
0.64**
CS mTOR信号通路
mTOR signaling pathway
A0A7J9LJA3 V型H+转运ATP酶亚基D
V-type H+-transporting ATPase subunit D
1.31*
A0A7J9MBY1 钙结合蛋白39
Calcium binding protein 39
1.37*
AS 植物激素信号转导
Plant hormone signal transduction
A0A7J9LIK5 含组氨酸磷酸转移蛋白
Histidine-containing phosphotransfer peotein
1.30**
A0A7J9MIA1 丝氨酸/苏氨酸蛋白激酶SRK2
Serine/threonine-protein kinase SRK2
1.23*
mTOR信号通路
mTOR signaling pathway
A0A7J9LJA3 V型H+转运ATP酶亚基D
V-type H+-transporting ATPase subunit D
1.26**
A0A7J9MBY1 钙结合蛋白39
Calcium binding protein 39
1.29*
[1] 刘祎, 钱玉源, 崔淑芳, 金卫平, 王广恩, 张曦, 张海娜, 李俊兰. 低酚棉种子利用研究进展. 中国棉花, 2018, 45(8): 4-8.
Liu W, Qian Y Y, Cui S F, Jin W P, Wang G E, Zhang X, Zhang H N, Li J L. Research progress on seed utilization of glandless cotton. China Cotton, 2018, 45(8): 4-8. (in Chinese with English abstract)
[2] Chinnusamy V, Zhu J, Zhu J K. Salt stress signaling and mechanisms of plant salt tolerance. Genet Eng, 2006, 27: 141-177.
[3] Feng L, Dai J L, Tian L W, Zhang H J, Li W J, Dong H Z. Review of the technology for high-yielding and efficient cotton cultivation in the northwest inland cotton-growing region of China. Field Crops Res, 2017, 208: 18-26.
doi: 10.1016/j.fcr.2017.03.008
[4] 白岩, 毛树春, 田立文, 李莉, 董合忠. 新疆棉花高产简化栽培技术评述与展. 中国农业科学, 2017, 50: 38-50.
doi: 10.3864/j.issn.0578-1752.2017.01.004
Bai Y, Mao S C, Tian L W, Li L, Dong H Z. Advances and prospects of high-yielding and simplified cotton cultivation technology in Xinjiang Cotton-Growing area. Sci Agric Sin, 2017, 50: 38-50. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.01.004
[5] Yang H C, Wang G J Y, Zhang F H. Soil aggregation and aggregate-associated carbon under four typical halophyte communities in an arid area. Environ Sci Pollut Res, 2016, 23: 23920-23929.
doi: 10.1007/s11356-016-7583-3
[6] Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci, 2014, 5: 170.
doi: 10.3389/fpls.2014.00170 pmid: 24904597
[7] Shaar-Moshe L, Blumwald E, Peleg Z. Unique physiological and transcriptional shifts under combinations of salinity, drought, and heat. Plant Physiol, 2017, 174: 421-434.
doi: 10.1104/pp.17.00030 pmid: 28314795
[8] Munns R, Gilliham M. Salinity tolerance of crops—what is the cost. New Phytol, 2015, 208: 668-673.
doi: 10.1111/nph.13519 pmid: 26108441
[9] Volkov V, Beilby M J. Salinity tolerance in plants: mechanisms and regulation of ion transport. Front Plant Sci, 2017, 8: 1795-1798.
doi: 10.3389/fpls.2017.01795 pmid: 29114255
[10] Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167: 313-324.
doi: 10.1016/j.cell.2016.08.029
[11] Ji W, Cong R, Li S, Li R, Qin Z, Li Y, Li J. Comparative proteomic analysis of soybean leaves and roots by iTRAQ provides insights into response mechanisms to short-term salt stress. Front Plant Sci, 2016, 7: 573-587.
doi: 10.3389/fpls.2016.00573 pmid: 27200046
[12] 张小红, 彭琼, 鄢铮. 盐胁迫下不同甘薯品种的转录组测序分析. 作物学报, 2023, 49: 1432-1444.
doi: 10.3724/SP.J.1006.2023.24143
Zhang X H, Peng Q, Yan Z. Transcriptome sequencing analysis of different sweet potato varieties under salt stress. Acta Agron Sin, 2023, 49: 1432-1444. (in Chinese with English abstract)
[13] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651-685.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910
[14] Munns R, Day D A, Fricke W, Watt M, Arsova B, Barkla B J, Tyerman S D. Energy costs of salt tolerance in crop plants. New Phytol, 2019, 225: 1072-1090.
doi: 10.1111/nph.v225.3
[15] Munns R, Passioura J B, Colmer T D, Byrt C S. Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytol, 2019, 225: 1091-1096.
doi: 10.1111/nph.v225.3
[16] Ashraf M, Harris P J C. Photosynthesis under stressful environments: an overview. Photosynthetica, 2013, 51: 163-190.
doi: 10.1007/s11099-013-0021-6
[17] Zhou Y, Gong Z Y, Yang Z F, Yuan Y, Zhu J Y, Wang M, Yuan F H, Wu S J, Wang Z Q, Yi C D, Xu T H, Ryom M C, Gu M H, Liang G H. Mutation of the light-induced yellow leaf 1 gene, which encodes a geranylgeranyl reductase, affects chlorophyll biosynthesis and light sensitivity in rice. PLoS One, 2013, 8: e75299.
doi: 10.1371/journal.pone.0075299
[18] Wei Y, Xu X, Tao H B, Wang P. Growth performance and physiological response in the halophyte Lycium barbarum grown at salt-affected soil. Ann Appl Biol, 2006, 149: 263-269.
doi: 10.1111/aab.2006.149.issue-3
[19] 王文静, 麻冬梅, 蔡进军, 黄婷, 马巧利, 赵丽娟, 张莹. 基于FvCB模型的盐胁迫下紫花苜蓿幼苗光合特性的研究. 中国生态农业学报, 2021, 29: 540-548.
Wang W J, Ma D M, Cai J J, Huang T, Ma Q L, Zhao L J, Zhang Y. Photosynthetic characteristics of alfalfa seedlings under salt stress based on FvCB model. Chin J Eco-Agric, 2021, 29: 540-548. (in Chinese with English abstract)
[20] Yang C W, Shi D C, Wang D L. Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.). Plant Growth Regul, 2008, 56: 179-190.
doi: 10.1007/s10725-008-9299-y
[21] Yang C W, Chong J N, LI C Y, Kim C M, Shi D C, Wang D L. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant Soil, 2007, 294: 263-276.
doi: 10.1007/s11104-007-9251-3
[22] Liska A J, Shevchenko A, Pick U, Katz A. Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiol, 2004, 136: 2806-2817.
doi: 10.1104/pp.104.039438 pmid: 15333751
[23] Jacoby R P, Taylor N L, Millar A H. The role of mitochondrial respiration in salinity tolerance. Trends Plant Sci, 2011, 16: 614-623.
doi: 10.1016/j.tplants.2011.08.002 pmid: 21903446
[24] Ashraf M, Harris P J C. Potential biochemical indicators of salinity tolerance in plants. Plant Sci, 2004, 166: 3-16.
doi: 10.1016/j.plantsci.2003.10.024
[27] Zhang Y, Xia G H, Ma K, Li G Y, Dai Y C, Yan C X. Effects of shade on photosynthetic characteristics and chlorophyll fluorescence of Ardisia violacea. Chin J Appl Ecol, 2014, 25: 1940-1948. (in Chinese with English abstract)
pmid: 25345043
[28] Bai J H, Yan W K, Wang Y Q, Liu J H, Wight C, Ma B L. Screening oat genotypes for tolerance to salinity and alkalinity. Front Plant Sci, 2018, 9: 1302-1318.
doi: 10.3389/fpls.2018.01302 pmid: 30333838
[29] 才华, 许慧慧, 孙娜, 宋婷婷, 任永晶, 杨圣秋. 从光合作用和有机酸积累角度探索转GsPPCK1GsPPCK3基因苜蓿耐碱性增强的生理机制. 草业学报, 2018, 27(8): 107-117.
doi: 10.11686/cyxb2017391
Cai H, Xu H H, Sun N, Song T T, Ren Y J, Yang S Q. Physiological aspects of photosynthesis and organic acid accumulation in alkali-resistant transgenic alfalfa containing the GsPPCK1 and GsPPCK3 gens. Acta Pratac Sin, 2018, 27(8): 107-117. (in Chinese with English abstract)
[30] Nishiyama Y, Allakhverdiev S I, Murata N. Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiol Plant, 2011, 142: 35-46.
doi: 10.1111/j.1399-3054.2011.01457.x pmid: 21320129
[31] Zhang H H, Shi G L, Shao J Y, Li X, Li M B, Meng L, Xu N, Sun G Y. Photochemistry and proteomics of mulberry (Morus alba L.) seedlings under NaCl and NaHCO3 stress. Ecotox Environl Safe, 2019, 184: 109624-109635.
[32] 宋奇娉, 封鹏雯, 刘洋, 杨兴洪. PS II组装与修复循环机制研究进展. 植物生理学报, 2019, 55: 133-140.
Song Q P, Feng P W, Liu Y, Yang X H. The research progress of the mechanism on PS II assemble and repair circulation. Plant Physiol J, 2019, 55: 133-140. (in Chinese with English abstract)
[33] Li W, Zhang C Y, Lu Q T, Wen X G, Lu C M. The combined effect of salt stress and heat shock on proteome profiling in Suaeda salsa. J Plant Physiol, 2011, 168: 1743-1752.
[34] Berkowitz O, Clercq I D, Breusegem F V, Whelan J. Interaction between hormonal and mitochondrial signalling during growth, development and in plant defence responses. Plant Cell Environ, 2016, 39: 1127-1139.
doi: 10.1111/pce.v39.5
[35] Meyer E H, Welchen E, Carrie C. Assembly of the complexes of the oxidative phosphorylation system in land plant mitochondria. Annu Rev Plant Biol, 2019, 70: 23-50.
doi: 10.1146/annurev-arplant-050718-100412 pmid: 30822116
[36] Zhang A Q, Zang W, Zhang X Y, Ma Y Y, Yan X F, Pang Q Y. Global proteomic mapping of alkali stress regulated molecular networks in Helianthus tuberosus L. Plant Soil, 2016, 409: 175-202.
doi: 10.1007/s11104-016-2945-7
[37] Li J K, Cui G W, Hu G F, Wang M J, Zhang P, Qin L G, Shang C, Zhang H L, Zhu X C, Qu M N. Proteome dynamics and physiological responses to short-term salt stress in Leymus chinensis leaves. PLoS One, 2017, 12: e0183615.
doi: 10.1371/journal.pone.0183615
[38] Li M N, Zhang K, Long R C, Sun Y, Kang J M, Zhang T J, Cao S H. iTRAQ-based comparative proteomic analysis reveals tissue- specific and novel early-stage molecular mechanisms of salt stress response in Carex rigescens. Environ Exp Bot, 2017, 143: 99-114.
doi: 10.1016/j.envexpbot.2017.08.010
[39] Gupta A K, Kaur N. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plant. J Biosciences, 2005, 30: 761-776.
doi: 10.1007/BF02703574 pmid: 16388148
[40] Sellami S, Hir R L, Thorpe M R, Vilaine F, Wolff N, Brini F, Dinant S. Salinity effects on sugar homeostasis and vascular anatomy in the stem of the Arabidopsis thaliana inflorescence. Int J Mol Sci, 2019, 20: 3167-3185.
doi: 10.3390/ijms20133167
[41] Xiang G Q, Ma W Y, Gao S W, Jin Z X, Yue Q Y, Yao Y X. Transcriptomic and phosphoproteomic profiling and metabolite analyses reveal the mechanism of NaHCO3-induced organic acid secretion in grapevine roots. BMC Plant Biol, 2019, 19: 383.
doi: 10.1186/s12870-019-1990-9
[42] Zhang Y J, Beard K F M, Swart C, Bergamann S, Krahnert I, Nikoloski Z, Graf A, Ratcliffe R G, Sweetlove L J, Fernie A R, Obata T. Protein-protein interactions and metabolite channelling in the plant tricarboxylic acid cycle. Nat Commun, 2017, 8: 15212.
doi: 10.1038/ncomms15212 pmid: 28508886
[43] Ge Y D, Cao Z Y, Wang Z D, Chen L L, Zhu Y M, Zhu G P. Identification and biochemical characterization of a thermostable malate dehydrogenase from the mesophile Streptomyces coelicolor A3(2). Biosci Biotechnol Biochem, 2010, 74: 2194-2201.
doi: 10.1271/bbb.100357
[44] Sweetman C, Deluc L G, Cramer G R, Ford C M, Soole K. Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry, 2009, 70: 1329-1344.
doi: 10.1016/j.phytochem.2009.08.006 pmid: 19762054
[45] Zorrilla-Fontanesi Y, Rouard M, Cenci A, Kissel E, Do H, Dubois E, Nidelet S, Roux N, Swennen R, Carpentier S C. Differential root transcriptomics in a polyploid non-model crop: the importance of respiration during osmotic stress. Sci Rep, 2016, 6: 25683.
doi: 10.1038/srep25683
[46] Guo J X, Lu X Y, Tao Y F, Guo H J, Min W. Comparative ionomics and metabolic responses and adaptive strategies of cotton to salt and alkali stress. Front Plant Sci, 2022, 13: 871387.
doi: 10.3389/fpls.2022.871387
[47] Yu H T, Wang T. Proteomic dissection of endosperm starch granule associated proteins reveals a network coordinating starch biosynthesis and amino acid metabolism and glycolysis in rice endosperms. Front Plant Sci, 2016, 7: 707-715.
doi: 10.3389/fpls.2016.00707 pmid: 27252723
[48] Patterson J H, Newbigin E D, Tester M, Bacic A, Roessner U. Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot, 2009, 60: 4089-4103.
doi: 10.1093/jxb/erp243
[49] Amir R, Galili G, Cohen H. The metabolic roles of free amino acids during seed development. Plant Sci, 2018, 275: 11-18.
doi: S0168-9452(18)30461-8 pmid: 30107877
[50] TzinV, Galili G. New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol Plant, 2010, 3: 956-972.
doi: 10.1093/mp/ssq048 pmid: 20817774
[51] Schenck C A, Maeda H A. Tyrosine biosynthesis, metabolism, and catabolism in plants. Phytochemistry, 2018, 149: 82-102.
doi: S0031-9422(18)30034-7 pmid: 29477627
[52] 蒋佳, 朱星宇, 李晶. 外源色氨酸对油菜幼苗色氨酸下游代谢网络及生长发育的影响. 西北植物学报, 2020, 40: 1549-1557.
Jiang J, Zhu X Y, Li J. Effect of exogenous tryptophan on the downstream metabolic network of tryptophan and growth in rapa seedlings. Acta Bot Boreali-Occident Sin, 2020, 40: 1549-1557. (in Chinese with English abstract)
[25] Poorter H, Remkes C, Lambers H. Carbon and nitrogen economy of 24 wild species differing in relative growth rate. Plant Physiol, 1990, 94: 621-627.
doi: 10.1104/pp.94.2.621 pmid: 16667757
[26] Flowers T J, Munns R, Colmer T D. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot, 2015, 115: 419-431.
doi: 10.1093/aob/mcu217
[27] 张云, 夏国华, 马凯, 李根有, 代英超, 严彩霞. 遮阴对堇叶紫金牛光合特性和叶绿素荧光参数的影响. 应用生态学报, 2014, 25: 1940-1948.
pmid: 25345043
[53] Yang Q Q, Zhao D S, Liu Q Q. Connections between amino acid metabolisms in plants: lysine as an example. Front Plant Sci, 2020, 11: 928-935.
doi: 10.3389/fpls.2020.00928 pmid: 32636870
[54] Wang W Y, Xu M Y, Wang G P, Galili G. New insights into the metabolism of aspartate-family amino acids in plant seeds. Plant Reprod, 2018, 31: 203-211.
doi: 10.1007/s00497-018-0322-9 pmid: 29399717
[55] Li H Y, Pan Y, Zhuang Y X, Wu C, Ma C Q, Yu B, Zhu N, Koh J, Chen S X. Salt stress response of membrane proteome of sugar beet monosomic addition line M14. J Proteomics, 2015, 127: 18-33.
doi: 10.1016/j.jprot.2015.03.025 pmid: 25845583
[56] Martin G, Marquez Y, Mantica F, Duque P, Irimia M. Alternative splicing landscapes in Arabidopsis thaliana across tissues and stress conditions highlight major functional differences with animals. Genome Biol, 2021, 22: 35.
doi: 10.1186/s13059-020-02258-y
[57] Weng X, Zhou X X, Xie S Q, Gu J B, Wang Z Y. Identification of cassava alternative splicing-related genes and functional characterization of MeSCL30 involvement in drought stress. Plant Physiol Biochem, 2021, 160: 130-142.
doi: 10.1016/j.plaphy.2021.01.016
[58] Albaqami M, Laluk K, Reddy A S N. The Arabidopsis splicing regulator SR45 confers salt tolerance in a splice isoform- dependent manner. Plant Mol Biol, 2019, 100: 379-390.
doi: 10.1007/s11103-019-00864-4
[59] Lu D W, Zhu G R, Zhu D, Bian Y W, Liang X N, Cheng Z W, Deng X, Yan Y M. Proteomic and phosphoproteomic analysis reveals the response and defense mechanism in leaves of diploid wheat T. monococcum under salt stress and recovery. J Proteomics, 2016, 143: 93-105.
doi: 10.1016/j.jprot.2016.04.013
[60] Hardie D G, Ross F A, Hawley S A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol, 2012, 13: 251-262.
[61] Gonzalez A, Hall M N, Lin S C, Hardie D G. AMPK and TOR: the yin and yang of cellular nutrient sensing and growth control. Cell Metabolism, 2020, 31: 472-492.
doi: S1550-4131(20)30058-9 pmid: 32130880
[1] 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293.
[2] 李志坤, 贾文华, 朱伟, 刘伟, 马宗斌. 氮肥和缩节胺对棉花纤维产量及品质时间分布的影响[J]. 作物学报, 2024, 50(2): 514-528.
[3] 杨闯, 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝. 甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建[J]. 作物学报, 2024, 50(1): 237-250.
[4] 肖胜华, 陆妍, 李安子, 覃耀斌, 廖铭静, 闭兆福, 卓柑锋, 朱永红, 朱龙付. 棉花AP2/ERF转录因子GhTINY2负调控植株抗盐性的功能分析[J]. 作物学报, 2024, 50(1): 126-137.
[5] 上官小霞, 杨琴莉, 李换丽. 基于CRISPR/Cas9的棉花GhbHLH71基因编辑突变体的分析[J]. 作物学报, 2024, 50(1): 138-148.
[6] 谭志新, 谢留伟, 李洪戈, 李芳军, 田晓莉, 李召虎. 基于AHP-隶属函数法的棉花子叶期耐低钾能力鉴定[J]. 作物学报, 2024, 50(1): 199-208.
[7] 孙尚文, 束红梅, 杨长琴, 张国伟, 王晓婧, 孟亚利, 王友华, 刘瑞显. 低温下环丙酸酰胺调控棉花内源激素促进噻苯隆脱叶的机制[J]. 作物学报, 2024, 50(1): 187-198.
[8] 刘韬奋, 罗单, 张启鹏, 孙圆圆, 李培松, 田景山, 张旺锋, 向导, 张亚黎, 杨明凤, 勾玲. 乙烯利催熟对机采棉铃重和纤维品质的影响[J]. 作物学报, 2024, 50(1): 209-218.
[9] 徐扬, 张岱, 康涛, 温赛群, 张冠初, 丁红, 郭庆, 秦斐斐, 戴良香, 张智猛. 盐胁迫对花生幼苗离子动态及耐盐基因表达的影响[J]. 作物学报, 2023, 49(9): 2373-2384.
[10] 代书桃, 朱灿灿, 马小倩, 秦娜, 宋迎辉, 魏昕, 王春义, 李君霞. 谷子HAK/KUP/KT钾转运蛋白家族全基因组鉴定及其对低钾和高盐胁迫的响应[J]. 作物学报, 2023, 49(8): 2105-2121.
[11] 张小红, 彭琼, 鄢铮. 盐胁迫下不同甘薯品种的转录组测序分析[J]. 作物学报, 2023, 49(5): 1432-1444.
[12] 许乃银, 王扬, 王丹涛, 宁贺佳, 杨晓妮, 乔银桃. 棉花纤维质量指数的构建与WGT双标图分析[J]. 作物学报, 2023, 49(5): 1262-1271.
[13] 孟璐, 杜明伟, 黎芳, 齐海坤, 路正营, 徐东永, 李存东, 张明才, 田晓莉, 李召虎. 冀中地区高密种植条件下棉花药前群体大小和成熟度与化学脱叶催熟效果的关系[J]. 作物学报, 2023, 49(4): 1028-1038.
[14] 雷建峰, 李月, 代培红, 赵燚, 尤扬子, 贾建国, 赵帅, 曲延英, 刘晓东. 棉花中不同植物病毒介导的VIGE体系的研究[J]. 作物学报, 2023, 49(4): 978-987.
[15] 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .