欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (4): 978-987.doi: 10.3724/SP.J.1006.2023.24071

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

棉花中不同植物病毒介导的VIGE体系的研究

雷建峰1(), 李月2, 代培红2, 赵燚2, 尤扬子2, 贾建国1, 赵帅1, 曲延英1,*(), 刘晓东2,*()   

  1. 1新疆农业大学农学院/教育部棉花工程研究中心, 新疆乌鲁木齐 830052
    2新疆农业大学生命科学学院, 新疆乌鲁木齐 830052
  • 收稿日期:2022-03-30 接受日期:2022-07-21 出版日期:2023-04-12 网络出版日期:2022-08-17
  • 通讯作者: *刘晓东, E-mail: xiaodongliu75@aliyun.com;曲延英, E-mail: xjyyq5322@126.com
  • 作者简介:E-mail: kyleijianfeng@163.com
  • 基金资助:
    新疆维吾尔自治区自然科学基金项目(2022D01B23);自治区高校基本科研业务费科研项目(XJEDU2022J007)

Study on VIGE system mediated by different plant viruses in cotton

LEI Jian-Feng1(), LI Yue2, DAI Pei-Hong2, ZHAO Yi2, YOU Yang-Zi2, JIA Jian-Guo1, ZHAO Shuai1, QU Yan-Ying1,*(), LIU Xiao-Dong2,*()   

  1. 1College of Agronomy, Xinjiang Agricultural University/Research Center of Cotton Engineering, Ministry of Education, Urumqi 830052, Xinjiang, China
    2College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
  • Received:2022-03-30 Accepted:2022-07-21 Published:2023-04-12 Published online:2022-08-17
  • Contact: *E-mail: xiaodongliu75@aliyun.com;E-mail: xjyyq5322@126.com
  • Supported by:
    Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01B23);Basic Research Funds for Universities in the Autonomous Region(XJEDU2022J007)

摘要:

植物病毒介导sgRNA的传递与表达相比传统转化完整的编辑载体进行基因编辑具有巨大优势, 因为sgRNA的表达可以伴随着病毒的复制和移动而快速扩增、累积, 从而产生高效的基因编辑效率。为在棉花中开发应用更多植物病毒介导的基因编辑系统(virus-induced genome editing, VIGE)。本研究以超表达Cas9 (Cas9-OE)棉花作为VIGE受体, 在棉花中分别建立了棉花叶皱缩病毒(cotton leaf crumple virus, CLCrV)和烟草脆裂病毒(tobacco rattle virus, TRV)介导的VIGE系统。首先CLCrV和TRV介导的VIGE均可以靶向敲除棉花GhBsrk1GhMAPKKK2基因A亚组和D亚组基因组序列, 验证了这2个系统的可行性和有效性。进一步量化这2个系统对GhBsrk1GhMAPKKK2基因的编辑效率结果发现, CLCrV和TRV介导的VIGE均能够产生高效的基因编辑效率, 并且2种系统基因编辑效率不存在显著差异。本研究还探究了使用棉花内源U6启动子和拟南芥U6启动子驱动sgRNA对VIGE基因编辑效率的影响。结果显示, 这2个启动子介导的VIGE均能够产生高效的基因编辑效率, 并且基于这2种启动子介导的VIGE系统基因编辑效率不存在显著差异。以上结果预示着可以开发更多的植物病毒载体应用于棉花基因编辑的研究, 进而获得高效的sgRNA筛选体系。

关键词: 棉花, CLCrV, TRV, VIGE, 基因编辑

Abstract:

Plant virus-mediated sgRNA delivery and expression has tremendous advantage over traditional transformation of intact editing vectors for gene editing, because sgRNA expression can be rapidly amplified and be accumulated along with virus replication and movement, resulting in efficient gene editing efficiency. In this study, to develop and apply more plant virus-mediated gene editing (VIGE) systems in cotton, the overexpressing Cas9 (Cas9-OE) cotton was used as VIGE receptor and the cotton leaf crumple virus (CLCrV) and tobacco rattle virus (TRV) mediated VIGE systems were established in cotton. First of all, both CLCrV and TRV-mediated VIGE could target and knock out the GhBsrk1 and GhMAPKKK2 in subgroup A and subgroup D genomic sequences, which verified the feasibility and effectiveness of these two systems. Further quantificaiton of the editing efficiency of GhBsrk1 and GhMAPKKK2 genes by these two systems showed that both CLCrV and TRV-mediated VIGE could produce high-efficiency gene editing efficiency, and there was no significant difference in gene editing efficiency between the two systems. This study also explored the effect of sgRNAs driven by cotton endogenous U6 promoter and Arabidopsis U6 promoter on VIGE gene editing efficiency. The results showed that both promoter-mediated VIGE were able to produce high-efficiency gene editing efficiency, and there was no significant difference in gene editing efficiency based on these two promoter-mediated VIGE systems. The above results indicate that more plant virus vectors can be developed for the application of cotton gene editing research, thus obtaining an efficient sgRNA screening system.

Key words: cotton, CLCrV, TRV, VIGE, gene editing

表1

本研究中使用的引物序列"

引物 Primer name 序列 Sequence (5'-3') 目的 Destination
GhBsrk1-sgRNA1F: GATTGTTGCACTTAGCTCCATGGC 构建AtU6-26::GhBsrk1-sgRNA和GhU6-5P::GhBsrk1-sgRNA: 5'-GTTGCACTTAGCTCCATGGC-3'
Construction of AtU6-26::GhBsrk1-sgRNA and GhU6-5P::GhBsrk1-sgRNA: 5'-GTTGCACTTAGCTCCATGGC-3'
GhBsrk1-sgRNA2F: AAGTGTTGCACTTAGCTCCATGGC
GhBsrk1-sgRNA1R: AAACGCCATGGAGCTAAGTGCAAC
GhMAPKKK2-sgRNA1F: GATTGAGGGTTCCCAGCTGACATA 构建AtU6-26::GhMAPKKK2-sgRNA和GhU6-5P::GhMAPKKK2-sgRNA: 5'-GAGGGTTCCCAGCTGACATA-3'
Construction of AtU6-26::GhMAPKKK2-sgRNA and GhU6-5P::GhMAPKKK2-sgRNA: 5'-GAGGGTTCCCAGCTGACATA-3'
GhMAPKKK2-sgRNA2F: AAGTGAGGGTTCCCAGCTGACATA
GhMAPKKK2-sgRNA1R: AAACTATGTCAGCTGGGAACCCTC
M-GhBsrk1F: GTTTAGAATACAATGCAGAAACTTTC PCR扩增涵盖GhBsrk1基因A亚组和D亚组靶位点区域
PCR amplification contains the target site regions of GhBsrk1 gene subgroup A and subgroup D
M-GhBsrk1R: GACAAGTTTAAGCACACACTTC
M-MAPPPK2F: CCATGTCGTAGCTTATAAAGG PCR扩增涵盖GhMAPKKK2基因A亚组和D亚组靶位点区域
PCR amplification contains the target site regions of GhMAPKKK2 gene subgroup A and subgroup D
M-MAPPPK2R: CGATTCATTCACGAACTCATG
GhUBQ7F: GAAGGCATTCCACCTGACCAAC PCR扩增GhUBQ7基因部分片段
PCR amplification of partial fragments of GhUBQ7 gene
GhUBQ7R: CTTGACCTTCTTCTTCTTGTGCTTG
Cas9F: GTCATTACGGACGAGTACAAG qRT-PCR分析Cas9 mRNA表达量
The mRNA relative expression level of Cas9 by qRT-PCR
Cas9R: AGGTAGCAGATCCGATTCTTT

图1

CLCrV-sgRNA和TRV-sgRNA载体构建"

图2

qRT-PCR分析Cas9表达量 在同一指标中不同小写字母表示不同处理在0.05概率水平差异显著。"

图3

不同CLCrV-sgRNA和TRV-sgRNA表达载体的酶切鉴定 M: 2K Plus II DNA 标准分子量; 1: CLCrV-AtU6-26::GhBsrk1- sgRNA; 2: CLCrV-AtU6-26::GhMAPKKK2-sgRNA; 3: CLCrV- GhU6-5P::GhBsrk1-sgRNA; 4: CLCrV-GhU6-5P::GhMAPKKK2- sgRNA; 5: TRV-AtU6-26::GhBsrk1-sgRNA; 6: TRV-AtU6-26:: GhMAPKKK2-sgRNA; 7: TRV-GhU6-5P::GhBsrk1-sgRNA; 8: TRV- GhU6-5P::GhMAPKKK2-sgRNA。"

图4

CLCrV和TRV介导的VIGE靶向敲除棉花GhBsrk1和GhMAPKKK2基因 M: 2K Plus II DNA标准分子量。A和B: GhBsrk1-sgRNA靶向突变检测。A: WT为对照, 1和2分别为接种CLCrV-AtU6-26:: GhBsrk1-sgRNA和TRV-AtU6-26::GhBsrk1-sgRNA植株编号, 凝胶电泳图显示GhBsrk1基因经Nco I酶切消化的产物和未消化的PCR产物。B: 未消化的PCR产物缺乏Nco I位点(由于存在突变), 随后进行纯化、克隆和测序分析。C: GhBsrk1突变测序峰图; D和E: GhMAPKKK2-sgRNA靶向突变检测。D: WT为对照, 1和2分别为接种CLCrV-AtU6-26::GhMAPKKK2-sgRNA和TRV-AtU6-26::GhMAPKKK2-sgRNA植株编号, 凝胶电泳图显示GhMAPKKK2基因经Nde I酶切消化的产物和未消化的PCR产物。E: 未消化的PCR产物缺乏Nde I位点(由于存在突变), 随后进行纯化、克隆和测序分析。F: GhMAPKKK2突变测序峰图。PAM位点为绿色, 蓝色下画线表示靶序列上的酶切位点。‘M’表示突变序列, ‘+’碱基插入用红色大写字母表示, ‘-’碱基缺失用红色线段表示。"

图5

CLCrV和TRV介导的VIGE基因编辑效率比较 M: 2K Plus II DNA标准分子量。A: WT为对照, 1~12为接种CLCrV-AtU6-26::GhMAPKKK2-sgRNA单株编号, 13~25为接种TRV-AtU6-26::GhMAPKKK2-sgRNA单株编号。B: WT为对照, 1~8为接种CLCrV-AtU6-26::GhBsrk1-sgRNA单株编号, 9~15为接种TRV-AtU6-26::GhBsrk1-sgRNA单株编号。"

图6

不同U6启动子介导的VIGE基因编辑效率比较 M: 2K Plus II DNA标准分子量。A: WT为对照, 1~12为接种CLCrV-AtU6-26::GhMAPKKK2-sgRNA单株编号。B: WT为对照, 1~11为接种CLCrV-GhU6-5P::GhMAPKKK2-sgRNA单株编号。"

[1] Chen K L, Gao C X. Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep, 2014, 33: 575-583.
doi: 10.1007/s00299-013-1539-6 pmid: 24277082
[2] Zhou H B, Liu B, Weeks D P, Spalding M H, Yang B. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res, 2015, 42: 10903-10914.
doi: 10.1093/nar/gku806
[3] Alok A, Sandhya D, Jogam P, Rodrigues V, Bhati K K, Sharma H, Kumar J. The rise of the CRISPR/Cpf1 system for efficient genome editing in plants. Front Plant Sci, 2020, 11: 264.
doi: 10.3389/fpls.2020.00264 pmid: 32296449
[4] Wang C, Liu Q, Shen Y, Hua Y F, Wang J J, Lin J R, Wu M G, Sun T T, Cheng Z K, Mercier R, Wang K J. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat Biotechnol, 2019, 37: 283-286.
doi: 10.1038/s41587-018-0003-0 pmid: 30610223
[5] Zhang S J, Zhang R Z, Song G Q, Gao J, Li W, Han X D, Chen M L, Li Y L, Li G Y. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat. BMC Plant Biol, 2018, 18: 302.
doi: 10.1186/s12870-018-1496-x
[6] Wang D D, Samsulrizal N, Yan C, Allcock N S, Craigon J, Blanco-Ulate B, Ortega-Salazar I, Marcus S E, Bagheri H M, Fons L P, Fraser P D, Foster T, Fray R, Knox J P, Seymour G B. Characterization of CRISPR mutants targeting genes modulating pectin degradation in ripening tomato. Plant Physiol, 2019, 179: 544-557.
doi: 10.1104/pp.18.01187 pmid: 30459263
[7] Osakabe Y, Liang Z C, Ren C, Nishitani C, Osakabe K, Wada M, Komori S, Malnoy M, Velasco R, Poli M, Jung M H, Koo O J, Viola R, Kanchiswamy C N. CRISPR-Cas9-mediated genome editing in apple and grapevine. Nat Protoc, 2018, 13: 2844-2863.
doi: 10.1038/s41596-018-0067-9 pmid: 30390050
[8] Jiang W Z, Zhou H B, Bi H H, Fromm M, Yang B, Weeks D P. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res, 2013, 41: e188.
doi: 10.1093/nar/gkt780
[9] Chen X G, Lu X K, Shu N, Wang S, Wang J J, Wang D L, Guo L X, Ye W W. Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system. Sci Rep, 2017, 7: 44304.
doi: 10.1038/srep44304
[10] Long L, Guo D D, Gao W, Yang W W, Hou L P, Ma X N, Miao Y C, Botella J R, Song C P. Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods, 2018, 14: 85.
doi: 10.1186/s13007-018-0353-0 pmid: 30305839
[11] Manghwar H, Lindsey K, Zhang X L, Jin S X. CRISPR/Cas system: recent advances and future prospects for genome editing. Trends Plant Sci, 2019, 24: 1102-1125.
doi: S1360-1385(19)30243-2 pmid: 31727474
[12] Li B, Rui H P, Li Y J, Wang Q Q, Alariqi M, Qin L, Sun L, Ding X, Wang F Q, Zou J W, Wang Y Q, Yuan D J, Zhang X L, Jin S X. Robust CRISPR/Cpf1 (Cas12a)-mediated genome editing in allotetraploid cotton (Gossypium hirsutum). Plant Biotechnol J, 2019, 17: 1862-1864.
doi: 10.1111/pbi.13147 pmid: 31055869
[13] Qin L, Li J Y, Wang Q Q, Xu Z P, Sun L, Alariqi M, Manghwar H, Wang G Y, Li B, Ding X, Rui H P, Huang H M, Lu T L, Lindsey K, Daniell H, Zhang X L, Jin S X. High-efficient and precise base editing of C•G to T•A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system. Plant Biotechnol J, 2019, 18: 45-56.
doi: 10.1111/pbi.13168
[14] Zhao C Z, Wang Y L, Nie X W, Han X S, Liu H L, Li G L, Yang G J, Ruan J X, Ma Y L, Li X Y, Cheng H J, Zhao S H, Fang Y P, Xie S S. Evaluation of the effects of sequence length and microsatellite instability on single-guide RNA activity and specificity. Int J Biol Sci, 2019, 15: 2641-2653.
doi: 10.7150/ijbs.37152 pmid: 31754336
[15] Xie S S, Shen B, Zhang C B, Huang X X, Zhang Y L. sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS One, 2014, 9: e100448.
doi: 10.1371/journal.pone.0100448
[16] 李继洋, 雷建峰, 代培红, 姚瑞, 曲延英, 陈全家, 李月, 刘晓东. 基于棉花U6启动子的海岛棉CRISPR/Cas9基因组编辑体系的建立. 作物学报, 2018, 44: 227-235.
doi: 10.3724/SP.J.1006.2018.00227
Li J Y, Lei J F, Dai P H, Yao R, Qu Y Y, Chen Q J, Li Y, Liu X D. Establishment of CRISPR/Cas9 genome editing system based on GbU6 promoters in cotton (Gossypium barbadense L.). Acta Agron Sin, 2018, 44: 227-235. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00227
[17] Gao W, Long L, Tian X Q, Xu F C, Liu J, Singh P K, Botella J R, Song C P. Genome editing in cotton with the CRISPR/Cas9 system. Front Plant Sci, 2017, 8: 1364.
doi: 10.3389/fpls.2017.01364 pmid: 28824692
[18] Yin K Q, Han T, Liu G, Chen T Y, Wang Y, Alice Y Y, Liu Y L. A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Sci Rep, 2015, 5: 14926.
doi: 10.1038/srep14926 pmid: 26450012
[19] Hu J C, Li S, Li Z L, Li H Y, Song W B, Zhao H M, Lai J S, Xia L Q, Li D W, Zhang Y L. A barley stripe mosaic virus-based guide RNA delivery system for targeted mutagenesis in wheat and maize. Mol Plant Pathol, 2019, 20: 1463-1474.
doi: 10.1111/mpp.12849 pmid: 31273916
[20] Li T D, Hu J C, Sun Y, Li B S, Zhang D L, Li W L, Liu J X, Li D W, Gao C X, Zhang Y L, Wang Y P. Highly efficient heritable genome editing in wheat using an RNA virus and bypassing tissue culture. Mol Plant, 2021, 14: 1787-1798.
doi: 10.1016/j.molp.2021.07.010 pmid: 34274523
[21] Luo Y J, Na R, Nowak J S, Qiu Y, Lu Q S, Yang C Y, Marsolais F, Tian L N. Development of a Csy4-processed guide RNA delivery system with soybean-infecting virus ALSV for genome editing. BMC Plant Biol, 2021, 21: 419.
doi: 10.1186/s12870-021-03138-8
[22] Lei J F, Dai P H, Li Y, Zhang W Q, Zhou G T, Liu C, Liu X D. Heritable gene editing using FT mobile guide RNAs and DNA viruses. Plant Methods, 2021, 17: 20.
doi: 10.1186/s13007-021-00719-4
[23] Gu Z H, Huang C J, Li F F, Zhou X P. A versatile system for functional analysis of genes and microRNAs in cotton. Plant Biotechnol J, 2014, 12: 638-649.
doi: 10.1111/pbi.12169 pmid: 24521483
[24] Zhang J X, Wang F R, Zhang C Y, Zhang J H, Chen Y, Liu G D, Zhao Y X, Hao F S, Zhang J. A novel VIGS method by agroinoculation of cotton seeds and application for elucidating functions of GhBI-1 in salt-stress response. Plant Cell Rep, 2018, 37: 1091-1100.
doi: 10.1007/s00299-018-2294-5
[25] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究. 作物学报, 2021, 47: 427-437.
doi: 10.3724/SP.J.1006.2021.04178
Zhou G T, Lei J F, Dai P H, Liu C, Li Y, Liu X D. Efficient screening system of effective sgRNA for cotton CRISPR/Cas9 gene editing. Acta Agron Sin, 2021, 47: 427-437 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04178
[26] 雷建峰, 李月, 徐新霞, 阿尔祖古丽·塔什, 蒲艳, 张巨松, 刘晓东. 棉花不同GbU6启动子截短克隆及功能鉴定. 作物学报, 2016, 42: 675-683.
doi: 10.3724/SP.J.1006.2016.00675
Lei J F, Li Y, Xu X X, A’erzuguli T, Pu Y, Zhang J S, Liu X D. Cloning and functional analysis of different truncated GbU6 promoters in cotton. Acta Agron Sin, 2016, 42: 675-683. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00675
[27] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Method, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262
[28] Wang W N, Yuan Y L, Yang C, Geng S P, Sun Q, Long L, Cai C W, Chu Z Y, Liu X, Wang G H, Du X M, Miao C, Zhang X, Cai Y F. Characterization, expression, and functional analysis of a novel NAC gene associated with resistance to Verticillium wilt and abiotic stress in cotton. Genes Genom Genet, 2016, 6: 3951-3961.
[29] Wu H J, Qu X Y, Dong Z C, Luo L J, Shao C, Forner J, Lohmann J U, Su M, Xu M C, Liu X B, Zhu L, Zeng J, Liu S M, Tian Z X, Zhao Z. WUSCHEL triggers innate antiviral immunity in plant stem cells. Science, 2020, 370: 227-231.
doi: 10.1126/science.abb7360
[30] Ellison E E, Nagalakshmi U, Gamo M E, Huang P J, Dinesh-Kumar S, Voytas D F. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs. Nat Plants, 2020, 6: 620-624.
doi: 10.1038/s41477-020-0670-y pmid: 32483329
[31] Li T D, Hu J C, Sun Y, Li B S, Zhang D L, Li W L, Liu J X, Li D W, Gao C X, Zhang Y L, Wang Y P. Highly efficient heritable genome editing in wheat using an RNA virus and bypassing tissue culture. Mol Plant, 2021, 14: 1787-1798.
doi: 10.1016/j.molp.2021.07.010 pmid: 34274523
[1] 许乃银, 王扬, 王丹涛, 宁贺佳, 杨晓妮, 乔银桃. 棉花纤维质量指数的构建与WGT双标图分析[J]. 作物学报, 2023, 49(5): 1262-1271.
[2] 孟璐, 杜明伟, 黎芳, 齐海坤, 路正营, 徐东永, 李存东, 张明才, 田晓莉, 李召虎. 冀中地区高密种植条件下棉花药前群体大小和成熟度与化学脱叶催熟效果的关系[J]. 作物学报, 2023, 49(4): 1028-1038.
[3] 李兆伟, 莫祖意, 孙聪颖, 师宇, 尚平, 林伟伟, 范凯, 林文雄. OsNAC2d基因编辑水稻突变体的创建及其对干旱胁迫的响应[J]. 作物学报, 2023, 49(2): 365-376.
[4] 娄善伟, 高飞, 王崇, 田晓莉, 杜明伟, 段留生. 不同甲哌鎓滴施剂型筛选及其对棉花生长发育调控效果研究[J]. 作物学报, 2023, 49(2): 552-560.
[5] 柯会锋, 张震, 谷淇深, 赵艳, 李培育, 张冬梅, 崔彦茹, 王省芬, 吴立强, 张桂寅, 马峙英, 孙正文. 低磷胁迫下陆地棉苗期根生物量相关性状全基因组关联分析[J]. 作物学报, 2022, 48(9): 2168-2179.
[6] 李名江, 雷建峰, 祖丽皮耶•托合尼亚孜, 代培红, 刘超, 刘晓东. 棉花GhIQM1基因克隆及抗黄萎病功能分析[J]. 作物学报, 2022, 48(9): 2265-2273.
[7] 郭家鑫, 鲁晓宇, 陶一凡, 郭慧娟, 闵伟. 棉花在盐碱胁迫下代谢产物及通路的分析[J]. 作物学报, 2022, 48(8): 2100-2114.
[8] 祝令晓, 宋世佳, 李浩然, 孙红春, 张永江, 白志英, 张科, 李安昌, 刘连涛, 李存东. 基于耐低氮综合指数的棉花苗期耐低氮品种筛选[J]. 作物学报, 2022, 48(7): 1800-1812.
[9] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[10] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[11] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[12] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[13] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[14] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[15] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .