作物学报 ›› 2024, Vol. 50 ›› Issue (1): 209-218.doi: 10.3724/SP.J.1006.2024.34039
刘韬奋1(), 罗单1(), 张启鹏1, 孙圆圆1, 李培松1, 田景山1,*(), 张旺锋1, 向导2, 张亚黎1, 杨明凤2, 勾玲1
LIU Tao-Fen1(), LUO Dan1(), ZHANG Qi-Peng1, SUN Yuan-Yuan1, LI Pei-Song1, TIAN Jing-Shan1,*(), ZHANG Wang-Feng1, XIANG Dao2, ZHANG Ya-Li1, YANG Ming-Feng2, GOU Ling1
摘要:
催熟剂乙烯利的使用可实现机采棉提前吐絮和集中吐絮。本研究选择催熟剂敏感性和棉铃形态差异较大的18个棉花品种(材料), 在棉铃发育不同阶段一次性喷施乙烯利, 分析棉铃铃期缩短对棉花铃重和纤维品质的影响及其关系。结果表明, 当棉铃铃期为47~69 d时, 在棉铃铃龄40.5~49.7 d喷施乙烯利可使棉铃提前3.5~5.7 d吐絮。在乙烯利催熟下纤维完全发育成熟需64.1~69.7 d, 棉籽则需54.8~60.5 d。棉铃吐絮时间提前1.5~6.2 d, 铃重与纤维品质均降低的概率高达58.0%~76.5%。生产中可选择在棉铃铃龄34.8~44.1 d喷施乙烯利, 此时棉株顶部棉铃铃重损失5% (损伤量<0.26 g)、纤维品质损失1% (长度损伤量<0.28 mm、断裂比强度损伤量<0.30 cN tex-1), 这是实现棉铃提前吐絮可接受的代价。此外, 部分品种经催熟剂处理后棉铃铃期缩短但其铃重、纤维长度和断裂比强度均增加, 此类情况的概率为9.5%~23.5%, 说明部分机采棉品种适时使用乙烯利能够实现机采棉棉铃铃期缩短与提高铃重和纤维品质的协同。
[1] |
聂军军, 代建龙, 杜明伟, 张艳军, 田晓莉, 李召虎, 董合忠. 我国现代植棉理论与技术的新发展: 棉花集中成熟栽培. 中国农业科学, 2021, 54: 4286-4298.
doi: 10.3864/j.issn.0578-1752.2021.20.004 |
Nie J J, Dai J L, Du M W, Zhang Y J, Tian X L, Li Z H, Dong H Z. New development of modern cotton farming theory and technology in China: concentrated maturation cultivation of cotton. Sci Agric Sin, 2021, 54: 4286-4298 (in Chinese with English abstract). | |
[2] |
Tian J S, Zhang X Y, Yang Y L, Yang C X, Xu S Z, Zuo W Q, Zhang W F, Dong H Y, Jiu X L, Yu Y C, Zhao Z. How to reduce cotton fiber damage in the Xinjiang China. Ind Crop Prod, 2017, 109: 803-811.
doi: 10.1016/j.indcrop.2017.09.036 |
[3] | 田晓莉, 段留生, 李召虎, 王保民, 何钟佩. 棉花化学催熟与脱叶的生理基础. 植物生理学通讯, 2004, 40: 758-762. |
Tian X L, Duan L S, Li Z H, Wang B M, He Z P. Physiological bases of chemical accelerated boll maturation and defoliation in cotton. Plant Physiol J, 2004, 40: 758-762. (in Chinese with English abstract) | |
[4] |
田景山, 张煦怡, 王文敏, 杨延龙, 随龙龙, 张鹏鹏, 张亚黎, 张旺锋, 勾玲. 棉花脱叶催熟剂对纤维品质的影响及应用时间的确定. 作物学报, 2020, 46: 1388-1397.
doi: 10.3724/SP.J.1006.2020.94196 |
Tian J S, Zhang X Y, Wang W M, Yang Y L, Sui L L, Zhang P P, Zhang Y L, Zhang W F, Gou L. A method of defoliant application based on fiber damage and boll growth period of machine- harvested cotton. Acta Agron Sin, 2020, 46: 1388-1397. (in Chinese with English abstract) | |
[5] |
Cathey G W, Luckett K E, Rayburn S T Jr. Accelerated cotton boll dehiscence with growth regulator and desiccant chemicals. Field Crops Res, 1982, 5: 113-120.
doi: 10.1016/0378-4290(82)90011-9 |
[6] |
Meng L, Zhang L Z, Qi H K, Du M W, Zuo Y L, Zhang M C, Tian X L, Li Z H. Optimizing the application of a novel harvest aid to improve the quality of mechanically harvested cotton in the North China Plain. J Integr Agric, 2021, 20: 2892-2899.
doi: 10.1016/S2095-3119(20)63280-4 |
[7] | 田景山, 张煦怡, 张丽娜, 徐守振, 祁炳琴, 随龙龙, 张鹏鹏, 杨延龙, 张旺锋, 勾玲. 新疆机采棉花实现叶片快速脱落需要的温度条件. 作物学报, 2019, 45: 624-631. |
Tian J S, Zhang X Y, Zhang L N, Xu S Z, Qi B Q, Sui L L, Zhang P P, Yang Y L, Zhang W F, Gou L. Temperatures of promoting rapid leaf abscission of cotton in Xinjiang region. Acta Agron Sin, 2019, 45: 624-631. (in Chinese with English abstract) | |
[8] | 李丕明, 韩碧文, 奚惠达, 何钟佩, 徐楚年. 棉花应用乙烯利催熟技术及其原理. 中国农业科学, 1981, 14(3): 47-53. |
Li P M, Han B W, Xi H D, He Z P, Xu C N. Enhancement of cotton maturity by ethrel spray. Sci Agric Sin, 1981, 14(3): 47-53. (in Chinese with English abstract) | |
[9] | 沈岳清, 方炳初, 盛敏智. 乙烯利催熟棉铃生理原因的探讨. 植物学报, 1980, 22: 236-240. |
Shen Y Q, Fang B C, Sheng M Z. A study of the physiological causes of ethephon ripening cotton bolls. Acta Bot Sin, 1980, 22: 236-240. (in Chinese with English abstract) | |
[10] | 上海植物生理研究所. 乙烯利催熟棉花的生理基础. 植物杂志, 1977, (3): 14-16. |
Shanghai Plant Physiology Institute. Physiological basis of ethephon ripening cotton. Plant J, 1977, (3): 14-16. (in Chinese) | |
[11] | 盛敏智, 方炳初, 沈岳清, 曹惠芳. 用乙烯利催熟棉铃效果分析. 上海农业科技, 1980, (6): 19-20. |
Sheng M Z, Fang B C, Shen Y Q, Cao H F. Effect analysis of ripening cotton boll with ethephon. Shanghai Agric Sci Technol, 1980, (6): 19-20. (in Chinese) | |
[12] | 韩碧文, 徐楚年, 何钟佩, 奚惠达, 李丕明, 白玉良. 乙烯利催熟棉铃机理的探讨: 1. 乙烯利催熟对棉铃内部过氧化物酶的影响. 北京农业大学学报, 1981, 7(2): 47-53. |
Han B W, Xu C N, He Z P, Xi H D, Li P M, Bai Y L. Studies on the mechanism of the ripening of cotton bolls: 1. The effect of the peroxidase activity of ethrel. Acta Agric Univ Pek, 1981, 7(2): 47-53. (in Chinese with English abstract) | |
[13] | 沈岳清, 方炳初, 盛敏智. 乙烯利对棉叶光合能力和物质运输等方面的影响. 植物学报, 1980, 22: 136-140. |
Shen Y Q, Fang B C, Sheng M Z. The effect of photosynthesis and translocation in cotton leaf. Acta Bot Sin, 1980, 22: 136-140. (in Chinese with English abstract) | |
[14] | Xu J, Liu S D, Cai L C, Wang L Y, Dong Y F, Qi Z Y, Yu J Q, Zhou Y H. SPINDLY interacts with EIN2 to facilitate ethylene signaling-mediated fruit ripening in tomato. Plant Biol J, 2023, 21: 219-231. |
[15] |
Li Y X, Hu W, Setter T L, He J Q, Zou J, Zhu H H, Zheng G Y, Zhao W Q, Wang Y H, Chen B L, Meng Y L, Wang S S, Zhou Z G. Soil drought decreases oil synthesis and increases protein synthesis in cottonseed kernel during the flowering and boll formation of cotton. Environ Exp Bot, 2022, 201: 104964.
doi: 10.1016/j.envexpbot.2022.104964 |
[16] |
Ruan Y L, Llewellyn D J, Furbank R T. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell, 2003, 15: 952-964.
doi: 10.1105/tpc.010108 |
[17] |
Han L B, Li Y B, Wang H Y, Wu X M, Li C L, Luo M, Wu S J, Kong Z S, Pei Y, Jiao G L, Xia G X. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. Plant Cell, 2013, 25: 4421-4438.
doi: 10.1105/tpc.113.116970 |
[18] |
Huang J F, Guo Y J, Sun Q W, Zeng W, Li J, Li X B, Xu W L. Genome-wide identification of R2R3-MYB transcription factors regulating secondary cell wall thickening in cotton fiber development. Plant Cell Physiol, 2018, 60: 687-701.
doi: 10.1093/pcp/pcy238 |
[19] | Jin D S, Wang X R, Xu Y C, Gui H P, Zhang H H, Dong Q, Sikder R K, Yang G Z, Song M Z. Chemical defoliant promotes leaf abscission by altering ROS metabolism and photosynthetic efficiency in Gossypium hirsutum. Int J Mol Sci, 2020, 21: 2738. |
[20] |
Du M W, Li Y, Tian X L, Duan L S, Zhang M C, Tan W M, Xu D Y, Li Z H. The phytotoxin coronatine induces abscission-related gene expression and boll ripening during defoliation of cotton. PLoS One, 2014, 9: e97652.
doi: 10.1371/journal.pone.0097652 |
[21] |
Bange M P, Long R L. Optimizing timing of chemical harvest aid application in cotton by predicting its influence on fiber quality. Agron J, 2011, 103: 390-395.
doi: 10.2134/agronj2010.0293 |
[22] |
张旺锋, 王振林, 余松烈, 李少昆, 房建, 童文崧. 种植密度对新疆高产棉花群体光合作用、冠层结构及产量形成的影响. 植物生态学报, 2004, 28: 164-171.
doi: 10.17521/cjpe.2004.0024 |
Zhang W F, Wang Z L, Yu S L, Li S K, Fang J, Tong W S. Effects of planting density on canopy photosynthesis, canopy structure and yield formation of high-yield cotton in Xinjiang, China. Chin J Plant Ecol, 2004, 28: 164-171 (in Chinese with English abstract).
doi: 10.17521/cjpe.2004.0024 |
|
[23] |
曹新川, 胡守林, 韩秀锋, 何良荣, 郭伟锋. 海岛棉棉铃阶段性发育与产量品质的关系. 作物学报, 2020, 46: 300-306.
doi: 10.3724/SP.J.1006.2020.94051 |
Cao X C, Hu S L, Han X F, He L R, Guo W F. Relationship of stage development of cotton bolls with yield and quality in island cotton. Acta Agron Sin, 2020, 46: 300-306. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94051 |
|
[24] |
Xu J, Chen L, Sun H, Wusiman N, Sun W N, Li B Q, Gao Y, Kong J, Zhang D W, Zhang X L, Xu H J, Yang X Y. Crosstalk between cytokinin and ethylene signaling pathways regulates leaf abscission in cotton in response to chemical defoliants. J Exp Bot, 2019, 70: 1525-1538.
doi: 10.1093/jxb/erz036 pmid: 30715415 |
[25] |
Yue P T, Wang Y N, Bu H D, Li X Y, Yuan H, Wang A D. Ethylene promotes IAA reduction through PuERFs-activated PuGH3.1 during fruit ripening in pear (Pyrus ussuriensis). Postharvest Biol Technol, 2019, 157: 110955.
doi: 10.1016/j.postharvbio.2019.110955 |
[26] |
Zhang G C, Dai L X, Ding H, Ci D W, Ning T Y, Yang J S, Zhao X H, Yu H Q, Zhang Z M. Response and adaptation to the accumulation and distribution of photosynthetic product in peanut under salt stress. J Integr Agric, 2020, 19: 690-699.
doi: 10.1016/S2095-3119(19)62608-0 |
[27] |
Long R L, Bange M P. Consequences of immature fiber on the processing performance of upland cotton. Field Crops Res, 2011, 121: 401-407.
doi: 10.1016/j.fcr.2011.01.008 |
[28] |
Hu W, Gao M, Xu B J, Wang S S, Wang Y H, Zhou Z G. Co-occurring elevated temperature and drought stresses during cotton fiber thickening stage inhibit fiber biomass accumulation and cellulose synthesis. Ind Crop Prod, 2022, 187: 115348.
doi: 10.1016/j.indcrop.2022.115348 |
[29] |
Yin C C, Zhao H, Ma B, Chen S Y, Zhang J S. Diverse roles of ethylene in regulating agronomic traits in rice. Front Plant Sci, 2017, 8: 1676.
doi: 10.3389/fpls.2017.01676 |
[30] |
Jie H D, Ma Y S, Xie D Y, Jie Y C. Transcriptional and metabolic characterization of feeding ramie growth enhanced by a combined application of gibberellin and ethrel. Int J Mol Sci, 2022, 23: 12025.
doi: 10.3390/ijms231912025 |
[31] |
Ahmed M, Iqbal A, Latif A, Din S U, Sarwar M B, Wang X D, Rao A Q, Husnain T, Shahid A A. Overexpression of a sucrose synthase gene indirectly improves cotton fiber quality through sucrose cleavage. Front Plant Sci, 2020, 11: 476251.
doi: 10.3389/fpls.2020.476251 |
[32] |
Lee B R, Zaman R, La V H, Bae D W, Kim T H. Ethephon- induced ethylene enhances starch degradation and sucrose transport with an interactive abscisic acid-mediated manner in mature leaves of oilseed rape (Brassica napus L.). Plants, 2021, 10: 1670.
doi: 10.3390/plants10081670 |
[33] |
Gao H Y, Li N N, Li J H, Khan A, Ahmad I, Wang Y Y, Wang F Y, Luo H H. Improving boll capsule wall, subtending leaves anatomy and photosynthetic capacity can increase seed cotton yield under limited drip irrigation systems. Ind Crop Prod, 2021, 161: 113214.
doi: 10.1016/j.indcrop.2020.113214 |
[34] |
Tang F Y, Wang T, Zhu J M. Carbohydrate profiles during cotton (Gossypium hirsutum L.) boll development and their relationships to boll characters. Field Crops Res, 2014, 164: 98-106.
doi: 10.1016/j.fcr.2014.06.002 |
[35] |
Zhang Q P, Luo D, Sun Y Y, Li P S, Xiang D, Zhang Y L, Yang M F, Gou L, Tian J S, Zhang W F. Cotton harvest aids promote the translocation of bur-stored photoassimilates to enhance single boll weight. Ind Crop Prod, 2023, 195: 116375.
doi: 10.1016/j.indcrop.2023.116375 |
[36] |
Guo J, Qu L L, Hu Y F, Lu W P, Lu D L. Proteomics reveals the effects of drought stress on the kernel development and starch formation of waxy maize. BMC Plant Biol, 2021, 21: 434.
doi: 10.1186/s12870-021-03214-z pmid: 34556041 |
[37] |
Li H J, Wang J W, Huang X L, Zhou Z G, Wang S S, Hu W. Novel intra-boll yield components and Q-score can further evaluate the effect of phosphorus fertilizer on cotton yield and fiber quality. Field Crops Res, 2022, 275: 108325.
doi: 10.1016/j.fcr.2021.108325 |
[38] |
董合忠, 毛树春, 张旺锋, 陈德华. 棉花优化成铃栽培理论及其新发展. 中国农业科学, 2014, 47: 441-451.
doi: 10.3864/j.issn.0578-1752.2014.03.004 |
Dong H Z, Mao S C, Zhang W F, Chen D H. On boll-setting optimization theory for cotton cultivation and its new development. Sci Agric Sin, 2014, 47: 441-451 (in Chinese with English abstract). | |
[39] |
Iqbal N, Khan N A, Ferrante A, Trivellini A, Francini A, Khan M I R. Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front Plant Sci, 2017, 8: 475.
doi: 10.3389/fpls.2017.00475 pmid: 28421102 |
[40] |
Wang L K, Zhang Z Y, Zhang F, Shao Z Y, Zhao B, Huang A, Tran J, Hernandez F V, Qiao H. EIN2-directed histone acetylation requires EIN3-mediated positive feedback regulation in response to ethylene. Plant Cell, 2021, 33: 322-337.
doi: 10.1093/plcell/koaa029 |
[1] | 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293. |
[2] | 李志坤, 贾文华, 朱伟, 刘伟, 马宗斌. 氮肥和缩节胺对棉花纤维产量及品质时间分布的影响[J]. 作物学报, 2024, 50(2): 514-528. |
[3] | 郭家鑫, 叶扬, 郭慧娟, 闵伟. 盐碱胁迫对棉花叶片蛋白质组的影响及差异性分析[J]. 作物学报, 2024, 50(1): 219-236. |
[4] | 肖胜华, 陆妍, 李安子, 覃耀斌, 廖铭静, 闭兆福, 卓柑锋, 朱永红, 朱龙付. 棉花AP2/ERF转录因子GhTINY2负调控植株抗盐性的功能分析[J]. 作物学报, 2024, 50(1): 126-137. |
[5] | 上官小霞, 杨琴莉, 李换丽. 基于CRISPR/Cas9的棉花GhbHLH71基因编辑突变体的分析[J]. 作物学报, 2024, 50(1): 138-148. |
[6] | 谭志新, 谢留伟, 李洪戈, 李芳军, 田晓莉, 李召虎. 基于AHP-隶属函数法的棉花子叶期耐低钾能力鉴定[J]. 作物学报, 2024, 50(1): 199-208. |
[7] | 孙尚文, 束红梅, 杨长琴, 张国伟, 王晓婧, 孟亚利, 王友华, 刘瑞显. 低温下环丙酸酰胺调控棉花内源激素促进噻苯隆脱叶的机制[J]. 作物学报, 2024, 50(1): 187-198. |
[8] | 许乃银, 王扬, 王丹涛, 宁贺佳, 杨晓妮, 乔银桃. 棉花纤维质量指数的构建与WGT双标图分析[J]. 作物学报, 2023, 49(5): 1262-1271. |
[9] | 孟璐, 杜明伟, 黎芳, 齐海坤, 路正营, 徐东永, 李存东, 张明才, 田晓莉, 李召虎. 冀中地区高密种植条件下棉花药前群体大小和成熟度与化学脱叶催熟效果的关系[J]. 作物学报, 2023, 49(4): 1028-1038. |
[10] | 雷建峰, 李月, 代培红, 赵燚, 尤扬子, 贾建国, 赵帅, 曲延英, 刘晓东. 棉花中不同植物病毒介导的VIGE体系的研究[J]. 作物学报, 2023, 49(4): 978-987. |
[11] | 郭宏, 于霁雯, 裴文锋, 关永虎, 李航, 李长喜, 刘金伟, 王伟, 王宝全, 梅拥军. 南疆陆地棉杂种F2的遗传分析及遗传主效聚类[J]. 作物学报, 2023, 49(3): 608-621. |
[12] | 娄善伟, 高飞, 王崇, 田晓莉, 杜明伟, 段留生. 不同甲哌鎓滴施剂型筛选及其对棉花生长发育调控效果研究[J]. 作物学报, 2023, 49(2): 552-560. |
[13] | 柯会锋, 张震, 谷淇深, 赵艳, 李培育, 张冬梅, 崔彦茹, 王省芬, 吴立强, 张桂寅, 马峙英, 孙正文. 低磷胁迫下陆地棉苗期根生物量相关性状全基因组关联分析[J]. 作物学报, 2022, 48(9): 2168-2179. |
[14] | 李名江, 雷建峰, 祖丽皮耶•托合尼亚孜, 代培红, 刘超, 刘晓东. 棉花GhIQM1基因克隆及抗黄萎病功能分析[J]. 作物学报, 2022, 48(9): 2265-2273. |
[15] | 郭家鑫, 鲁晓宇, 陶一凡, 郭慧娟, 闵伟. 棉花在盐碱胁迫下代谢产物及通路的分析[J]. 作物学报, 2022, 48(8): 2100-2114. |
|