欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (2): 294-309.doi: 10.3724/SP.J.1006.2023.34062

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

BSA-Seq结合RNA-Seq技术挖掘大豆叶片提前黄化衰老基因

李世宽1,2,**(), 洪慧龙2,**, 付佳祺1,2, 谷勇哲1,2, 孙如建3, 邱丽娟1,2,*()   

  1. 1哈尔滨师范大学生命科学与技术学院, 黑龙江哈尔滨 150025
    2中国农业科学院作物科学研究所, 北京 100081
    3呼伦贝尔市农业科学研究所, 内蒙古扎兰屯 162650
  • 收稿日期:2023-03-23 接受日期:2023-06-29 出版日期:2024-02-12 网络出版日期:2023-07-14
  • 通讯作者: *邱丽娟, E-mail: qiulijuan@caas.cn
  • 作者简介:李世宽, E-mail: 1327605644@qq.com
    **同等贡献
  • 基金资助:
    国家自然科学基金项目(32172005)

Mine the genes of premature yellowing and aging in soybean leaves by BSA-seq combined with RNA-seq technology

LI Shi-Kuan1,2,**(), HONG Hui-Long2,**, FU Jia-Qi1,2, GU Yong-Zhe1,2, SUN Ru-Jian3, QIU Li-Juan1,2,*()   

  1. 1College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, Heilongjiang, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3Hulun Buir Institution of Agricultural Sciences, Zhalantun 162650, Inner Mongolia, China
  • Received:2023-03-23 Accepted:2023-06-29 Published:2024-02-12 Published online:2023-07-14
  • Contact: *E-mail: qiulijuan@caas.cn
  • About author:**Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(32172005)

摘要:

大豆产量与其生殖生长的持续时间呈正相关, 延缓其开花后叶片的衰老, 提高其生理功能, 有利于增加植物的粒重。叶片黄化是植物衰老的显著特征之一。关于在大豆鼓粒后期叶片黄化的研究鲜见报道。本研究对鼓粒后期叶片提前黄化突变体ly和野生型ofc杂交组合进行遗传分析, 结果表明, 大豆鼓粒后期叶片提前黄化性状受单隐性核基因控制。通过BSA-Seq在19号染色体得到一个2.23 Mb的初定位区间, 经开发标记图位克隆后将区间缩短至1.75 Mb, 区间内有219个基因, 再结合RNA-Seq分析, 得到了区间内12个候选基因, 其中有4个SNP变异基因和8个差异表达基因。本研究结果为大豆鼓粒后期叶片黄化衰老基因的克隆奠定了基础。

关键词: 大豆, 突变体, BSA-Seq, RNA-Seq, 图位克隆

Abstract:

The yield of soybean is positively correlated with the duration of reproductive growth, which delays the aging of leaves after flowering, enhances their physiological performance, and supports growing plants with heavier grains. Leaf yellowing is one of the distinctive features of plant aging. Studies on leaf yellowing at the late stage of soybean drum grain have rarely been reported. The early yellowing feature of soybean late tympanic leaves was controlled by a single recessive nuclear gene, according to the genetic analysis of the hybrid of the early yellowing mutant ly and wild-type ofc in this study. Using Molecular Marker to Map-Based Cloning, a 2.23 Mb preliminary localization interval on chromosome 19 was obtained. The interval was shortened to 1.75 Mb and contained 219 genes. When this interval was combined with RNA-Seq analysis, 12 candidate genes were detected, including 4 SNP variant genes and 8 differentially expressed genes. The findings of this study provides the framework for the cloning of genes that cause aging and yellowing during the filling later period in soybean.

Key words: soybean, mutant, BSA-Seq, RNA-Seq, map-based cloning

图1

矮皱叶和高展叶的野生型和突变型"

表1

7个变异位点上下游引物序列"

引物名称
Primer name
上游引物序列
Forward primer (5°-3°)
下游引物序列
Reverse primers (5°-3°)
Glyma.19G223400 TGATTGGTTTAGCCGTGTTTC AACATCTCGGTTGTAAGTCCTCT
Glyma.19G228000 ATGTAACAGAAGGACGCG TGTTGGTAAATAGAGTAATG
Glyma.19G236800 TAACATCACTCAAATAAAAC AACCAGCTTAACAACCTCAA
Glyma.19G237000 AGAAGACATGGTTCCAGCAC CCCGAGGAATCTCAAAGGA
Glyma.19G216000 CACTTTGCTTTCTTCTCCCTT TACCAGCATTGATGCAGTTT
Glyma.19G233000 AATAGCCATTTCGCTTATC ACAAACTTGTTGGGAGTAG
Glyma.19G219600 AGTAGTATAGAAGTGCGTAA CTTCTCAACTACTTATTAAGATATG
Glyma.19G241500D ATGCGTATGGACTTCCCCAA TGGCATTCGTTGGGCACTAA

表2

定位区间内7个标记的引物序列"

引物名称
Primer ID
上游引物序列
Forward primer (5°-3°)
下游引物序列
Reverse primers (5°-3°)
216000 Fam: GAAGGTGACCAAGTTCATGCTTGGAGGGAGGGGGACTGg
Hex: GAAGGTCGGAGTCAACGGATTGTGGAGGGAGGGGGACTGa
ACTTTGCTTTCTTCTCCCTTTTATCTTTCT
223400 Fam: GAAGGTGACCAAGTTCATGCTATAGGACCATTAAGAGGCGGCATt
Hex: GAAGGTCGGAGTCAACGGATTTAGGACCATTAAGAGGCGGCATc
AAGACAGATGCTGCAGCTGCG
228000 Fam: GAAGGTGACCAAGTTCATGCTCGCCGAAATATAGTCACCGg
Hex: GAAGGTCGGAGTCAACGGATTAACGCCGAAATATAGTCACCGa
CTGAGATTCGGAGAAGCTTGC
219600 Fam: GAAGGTGACCAAGTTCATGCTGGTGTCAATTTTCTAAAAATTCATACTCTTc
Hex: GAAGGTCGGAGTCAACGGATTGGTGTCAATTTTCTAAAAATTCATACTCTTt
TTGTGACTTTCTCTTCTCAACTACTTATTAAG
233000 Fam: GAAGGTGACCAAGTTCATGCTATAAGTTCTTCAGTGTTCACTTGAGAGg
Hex: GAAGGTCGGAGTCAACGGATTAATAAGTTCTTCAGTGTTCACTTGAGAGa
TCATTAGTCCTTAACCCGTCACATAG
237000 Fam: GAAGGTGACCAAGTTCATGCTATGCATCACGGGTCATTCTg
Hex: GAAGGTCGGAGTCAACGGATTAAATGCATCACGGGTCATTCTa
CAAAGAAAGAAAGTAACTACTGAAGTGTACG
241500D ATGCGTATGGACTTCCCCAA ATCAGTTTTGTAAATAATAGTTGTgA

图2

野生型与突变型鼓粒后期植株整体的差异变化(A)、叶色变化差异(B)、荚色变化差异(C)和成熟种子的差异(D)"

表3

突变型和野生型鼓粒后期水分和干物质的差异"

取样时间
Time
(种子鲜重-种子干重)/荚果重
(Seed fresh weight-Seed dry weight)/Pod weight
种子干重/荚果重
Seed dry weight/Pod weight
野生型
Wild-type
突变型
Mutant
t检验的P
P-value by t-test
野生型
Wild-type
突变型
Mutant
t检验的P
P-value by t-test
第1天Day 1 0.31 0.31 P=0.91 0.24 0.28 P=0.04<0.05
第2天Day 2 0.31 0.31 0.26 0.29
第3天Day 3 0.29 0.31 0.28 0.30
第4天Day 4 0.34 0.35 0.26 0.30
第5天Day 5 0.34 0.34 0.33 0.31
第6天Day 6 0.35 0.34 0.35 0.34
第7天Day 7 0.36 0.34 0.35 0.39
第8天Day 8 0.22 0.23 0.50 0.52

图3

大豆鼓粒后期叶片SPAD值的变化"

表4

野生型和突变型的考种数据分析"

生长条件
Growth
conditions
性状
Characters
株高
Plant height (cm)
分枝
Branch
节数
Number of
sections
荚数
Number of
pods
粒数
Number of grains
百粒重
100-grain weight
(g)
短日照条件
Short-day
conditions
矮皱叶
Dwarf-wrink led leaves
野生型
Wild
34.32±3.98* 0.37±0.51 12.75±1.42 27.36±7.33* 42.93±14.08* 34.81±4.18**
突变型
Mutant
29.31±3.45* 0.27±0.53 11.07±1.93 22.34±10.58* 37.18±18.32* 29.44±2.21**
高展叶
Tall-flat leaves
突变型
Mutant
45.28±6.20** 1.52±1.72* 11.91±1.26* 32.06±16.13 61.96±31.66 30.72±3.14**
野生型
Wild
52.32±5.02** 0.77±1.14* 13.32±1.65* 32.75±14.60 65.55±34.33 37.44±3.51**
长日照条件
Long-day
conditions
矮皱叶
Dwarf-wrink led leaves
野生型
Wild
65.66±7.52 0.44±0.42 19.51±2.47 35.97±10.02* 51.37±13.93 27.74±1.50
突变型
Mutant
67.30±7.38 0.55±0.40 21.71±1.05 42.89±9.42* 51.27±6.29 27.32±1.20
高展叶
Tall-flat leaves
突变型
Mutant
122.15±6.23 4.31±1.11* 23.26±0.95 114.50±25.84 194.39±51.06* 33.62±1.82**
野生型
Wild
124.79±9.12 2.95±1.06* 22.67±1.32 85.81±17.37 173.87±29.41* 37.42±1.72**

图4

SNP/InDel的ED和index关联分析结果 图中A和B为SNP和InDel的ED关联分析结果; C和D为SNP和InDel的index关联分析结果; 横坐标为染色体位置, 纵坐标代表ED或index值, 黑线为拟合后的ED或index关联值, 红色虚线代表显著性关联阈值。"

表5

SNP/InDel分析结果利用2种方法在19号染色体获得关联区域"

关联分析类型
Association analysis type
染色体
Chr.
起始位置
Start position
终止位置
Termination location
区间大小
Region size (Mb)
区间内基因数量
Gene number in the regions
SNP关联结果SNP correlates results Chr19 45760000 50720000 4.96 636
InDel关联结果InDel correlates results Chr11 0 250000 0.25 44
Chr05 20110000 21450000 1.34 10
Chr12 16090000 16560000 0.47 16
Chr16 21180000 23610000 2.43 51
Chr17 24150000 25190000 1.04 12
Chr17 35420000 35660000 0.24 2
Chr18 26340000 26470000 0.13 3
Chr18 9180000 9390000 0.21 15
Chr19 46440000 49040000 2.60 326
2个关联结果交集
The intersection of the two association results
Chr19 46810000 49040000 2.23 277

图5

SNP (A)和InDel (B)在染色体上结果的可视化分布 图中从外到内依次为: 第1圈: 染色体坐标, 第2圈: 基因分布, 第3圈: 密度分布, 第4圈: ED值分布, 第5圈: Δindex值分布。"

图6

7个标记在F2:3纯合行的表型连锁分析"

表6

7个标记在F2:3纯合行的单标记分析"


Value
表型
Phenotype
基因型
Genotype
标记Marker
216000 219600 223400 228000 233000 237000 241500D
理论值
Theoretical value
绿色Green A 197 195 259 197 180 197 214
黄色Yellow B 149 196 183 194 183 149 163
实际值
Actual value
绿色Green A 67 182 181 257 176 171 145
黄色Yellow B 115 119 193 166 189 176 102
χ2值χ2-value 31.13 6.91 0.97 1.50 2.24 0.63 22.25
PP-value 0 0.01 0.31 0.21 0.12 0.40 0

表7

SNP突变的4个候选基因"

基因ID
Gene ID
SNP位点
SNP loci
碱基类型 Base type 突变类型
Mutation type
突变的影响
Effects of mutations
野生型
Wild type
突变型
Mutant
Glyma.19G223400 47582632 A G 基因的3'UTR内
Gene within 3' UTR
改变RNA二级结构
Change the RNA secondary structure
Glyma.19G233000 48299560 A G 基因的3'UTR内
Gene within 3' UTR
改变RNA二级结构
Change the RNA secondary structure
Glyma.19G236800 48581005 A G 非同义SNV
Non-synonymous SNV
脯氨酸变成亮氨酸, 改变蛋白结构
Proline becomes leucine, changing the protein structure
Glyma.19G237000 48622649 T C 基因的5'UTR内
Gene within 5' UTR
改变RNA二级结构
Change the RNA secondary structure

表8

4个SNP基因的表达信息"

基因编号
Gene number
野生型子代FPKM值
Wild type offspring FPKM value
突变型子代FPKM值
Mutant offspring FPKM value
野生型亲本FPKM值
FPKM values of wild type parents
突变型亲本FPKM值
FPKM values of mutant parents
野生型vs突变型
Wild type vs mutant
Glyma.19G223400 5.97 8.20 6.65 7.87 no
Glyma.19G233000 15.50 17.41 15.19 14.89 no
Glyma.19G236800 22.14 14.91 19.63 19.63 no
Glyma.19G237000 2.35 4.24 1.97 2.89 no

图7

野生型和突变型的亲本或子代间的差异基因取交集(A)亲本和子代的野生型或突变型的差异基因取并集(B)"

表9

区间内8个差异表达基因"

基因编号
Gene number
野生型子代FPKM值
Wild type offspring FPKM value
突变型子代FPKM值
Mutant offspring FPKM value
野生型亲本FPKM值
FPKM values of wild type parents
突变型亲本FPKM值
FPKM values of mutant parents
野生型vs突变型
Wild type vs mutant
Glyma.19G222400 1.141 0.311 1.959 0.334 up
Glyma.19G224500 2.857 15.923 1.933 10.123 down
Glyma.19G225900 0.446 0.083 0.959 0.039 up
Glyma.19G226800 14.965 3.935 11.658 2.708 up
Glyma.19G228200 1.935 0.051 1.032 0.200 up
Glyma.19G228300 4.934 0.775 4.272 0.751 up
Glyma.19G230600 1.125 0.470 1.485 0.329 down
Glyma.19G241200 59.422 137.849 45.382 103.845 down

图8

12个候选基因的表达图谱 方块内颜色显示候选基因表达水平: 蓝色最低, 白色居中, 红色最高。"

表10

候选基因蛋白序列BLAST分析"

类型
Type
基因编号
Gene number
具有同源序列的蛋白
Proteins with homologous sequences
SNP突变
SNP mutations
Glyma.19G223400 G蛋白β亚基(含WD40重复蛋白同源序列)、丝氨酸/苏氨酸激酶受体相关蛋白以及醌血红素蛋白β亚基
G protein β subunits (containing WD40 repeat homologous sequences), serine/threonine kinase receptor-associated proteins, and quinone heme protein β subunits
Glyma.19G233000 乙酰肝素-α-氨基葡萄糖苷N-乙酰转移酶Heparan-α-glucosaside N-acetyltransferase
Glyma.19G236800 E3泛素蛋白连接酶、和锌指结构域 E3 ubiquitin protein ligase, and zinc finger domains
Glyma.19G237000 PLP依赖的D-天冬氨酸氨基转移酶, 核苷三磷酸水解酶的P环
PLP-dependent D-aspartate aminotransferase, the P loop of nucleoside triphosphate hydrolases
差异表达基因
Differentially expressed genes
Glyma.19G222400 果胶乙酰酯酶家族蛋白Pectin acetylesterase family proteins
Glyma.19G224500 果胶乙酰酯酶家族蛋白Pectin acetylesterase family proteins
Glyma.19G225900 碳水化合物代谢过程碳水化合物结合X8结构域蛋白
Carbohydrate metabolism process, carbohydrate binding to X8 domain protein
Glyma.19G226800 核苷三磷酸水解酶的P环P loop of nucleoside triphosphate hydrolases
Glyma.19G228200 类似ECH相关蛋白1的Kelch Kelch-like ech-associated protein 1
Glyma.19G228300 转录因子MEIS1和相关HOX结构域蛋白
Transcription factor MEIS1 and associated HOX-domain proteins
Glyma.19G230600 丝氨酸/苏氨酸特异性蛋白磷酸酶, 蛋白磷酸酶2C
Serine/threonine-specific protein phosphatase, protein phosphatase 2C
Glyma.19G241200 转移酶活性, 转移氨基酰基以外的酰基
Transferase activity, transfer of acyl groups other than aminoacyl
[1] Ainsworth E A, Yendrek C R, Skoneczka J A. Accelerating yield potential in soybean: potential targets for biotechnological improvement. Plant Cell Environ, 2012, 35: 38-52.
doi: 10.1111/pce.2012.35.issue-1
[2] Lindoo S J, Larry D N. The interrelation of fruit development and leaf senescence in Anoka soybeans. Bot Gaz, 1976, 137: 218-223.
doi: 10.1086/336861
[3] Aharoni N. Endogenous gibberellin and abscisic acid as related to senescence of detached lettuce leaves. Plant Physiol, 1978, 62: 224-228.
doi: 10.1104/pp.62.2.224 pmid: 16660490
[4] Back A, Richmond A E. Interrelations between gibberellic acid, cytokinins and abscisic acid inretarding leaf senescence. Plant Physiol, 1971, 24: 76-79.
doi: 10.1111/ppl.1971.24.issue-1
[5] Zeev E C, Itai C. The role of abscisic acid in senescence of detached tobacco leaves. Plant Physiol, 1975, 34: 97-100.
[6] Killough D T, Horlacher W R. The inheritance of virescent yellow and red plant colors in cotton. Genetics, 1933, 18: 329-334.
doi: 10.1093/genetics/18.4.329 pmid: 17246695
[7] Huang X Q, Wang P R, Zhao H X, Deng X J. Genetic analysis and molecular mapping of a novel chlorophyll-deficit mutant gene in rice. Rice Sci, 2008, 15: 7-12.
doi: 10.1016/S1672-6308(08)60013-X
[8] Sinclair T R, Dewit C T. Analysis of the carbon and nitrogen limitations to soybean yield. Agron J, 1976, 68: 319-324.
doi: 10.2134/agronj1976.00021962006800020021x
[9] Spano G, Di F N, Perrotta C, Platani C, Ronga G, Lawlor D W, Napier J A, Shewry P R. Physiological characterization of ‘stay-green’ mutants in durum wheat. J Exp Bot, 2003, 54: 1415-1420.
doi: 10.1093/jxb/erg150 pmid: 12709488
[10] 傅金民, 张庚灵, 苏芳, 王振林, 董燕, 史春余. 大豆籽粒形成期14C同化物的分配和源库调节效应的研究. 作物学报, 1999, 25: 169-173.
Fu J M, Zhang G L, Su F, Wang Z L, Dong Y, Shi C Y. Partitioning of 14C-assimilates and effects of source-sink manipulation at seed-filling in soybean. Acta Agron Sin, 1999, 25: 169-173 (in Chinese with English abstract).
[11] 薛丽华, 章建新. 大豆鼓粒期非叶光合器官与粒重的关系. 大豆科学, 2006, 25: 425-428.
Xue L H, Zhang J X. Relationship between non-leaf photosynthetic organs of soybean and seed weight at pod-filling date. Soybean Sci, 2006, 25: 425-428 (in Chinese with English abstract).
[12] Lin S, Cianzio S R, Shoemaker R C. Mapping genetic loci for iron deficiency chlorosis in soybean. Mol Breed, 1997, 3: 219-229.
doi: 10.1023/A:1009637320805
[13] Palmer R G, Burzlaff J D, Shoemaker R C. Genetic analyses of two independent chlorophyll-deficient mutants identified among the progeny of a single chimeric foliage soybean plant. J Hered, 2000, 91: 297-303.
pmid: 10912676
[14] Kato K K, Palmer R G. Duplicate chlorophyll-deficient loci in soybean. Genome Biol, 2004, 47: 190-198.
[15] 崔世友, 喻德跃. 大豆不同生育时期叶绿素含量QTL的定位及其与产量的关联分析. 作物学报, 2007, 33: 744-750.
Cui S Y, Yu D Y. QTL mapping of chlorophyll content at various growing stages and its relationship with yield in soybean. Acta Agron Sin, 2007, 33: 744-750 (in Chinese with English abstract).
[16] Zhang H, Zhang D, Han S, Zhang X, Yu D. Identification and gene mapping of a soybean chlorophyll-deficient mutant. Plant Breed, 2011, 130: 133-138.
doi: 10.1111/pbr.2011.130.issue-2
[17] Reed S, Atkinson T, Gorecki C, Espinosa K, Przybylski S, Goggi AS, Palmer R G, Sandhu D. Candidate gene identification for a lethal chlorophyll-deficient mutant in soybean. Agron J, 2014, 4: 462-469.
[18] 陈薇. 大豆叶片黄化新突变体的表现特点与遗传研究. 南京农业大学硕士学位论文, 江苏南京, 2014.
Chen W. Performance and Genetic Analyses of the New Yellow Leaf Mutants in Soybean. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2014 (in Chinese with English abstract).
[19] 冯星星. 大豆黄化突变体 Gmcdm l 与矮化突变体Gmdwf 6的基因定位. 中国科学院大学硕士学位论文, 北京, 2015.
Feng X X. Genetic Analysis and Gene Mapping of the Gmcdm l and Gmdwf 6 in Soybean. MS Thesis of University of Chinese Academy of Sciences, Beijing, China, 2015 (in Chinese with English abstract).
[20] Campbell B W, Mani D, Curtin S J, Slattery R A, Michno J M, Ort D R, Schaus P J, Palmer R G, Orf J H, Stupar R M. Identical substitutions in magnesium chelatase paralogs result in chlorophyll-deficient soybean mutants. G3: Genes Genom Genet, 2014, 5: 123-131.
[21] 朱晓炜. 大豆叶色突变基因GmLCM的图位克隆及功能研究. 中国科学院大学博士学位论文, 北京, 2016.
Zhu X W. Map-based Cloning and Functional Analysis of GmLCM Associated with Soybean Leaf Color Mutant. PhD Dissertation of University of Chinese Academy of Sciences, Beijing, China, 2016 (in Chinese with English abstract).
[22] 李清. 大豆叶片黄化基因的克隆与功能分析. 中国科学院大学博士学位论文, 北京, 2016.
Li Q. Clone and Function Analysis of the Leaf Etiolation Gene in Soybean. PhD Dissertation of University of Chinese Academy of Sciences, Beijing, China, 2016 (in Chinese with English abstract).
[23] 孔可可, 许孟歌, 王亚琪, 孔杰杰, Al-Amin G M, 赵团结. 大豆黄绿叶突变体NJ9903-5性状表现与基因定位研究. 大豆科学, 2017, 36: 494-501.
Kong K K, Xu M G, Wang Y Q, Kong J J, Al-Amin G M, Zhao T J. Gene mapping and character performance of a yellow-green leaf mutant NJ9903-5 in soybean. Soybean Sci, 2017, 36: 494-501 (in Chinese with English abstract).
[24] Liu M, Wang Y, Nie Z, Gai J, Bhat J A, Kong J, Zhao T. Double mutation of two homologous genes YL1 and YL2 results in a leaf yellowing phenotype in soybean [Glycine max (L.) Merr.]. Plant Mol Biol, 2020, 103: 527-543.
doi: 10.1007/s11103-020-01008-9
[25] Wang M, Li W, Fang C, Xu F, Liu Y, Wang Z, Yang R, Zhang M, Liu S, Lu S, Lin T, Tang J, Wang Y, Wang H, Lin H, Zhu B, Chen M, Kong F, Liu B, Zeng D, Jackson S A, Chu C, Tian Z. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat Genet, 2018, 50: 1435-1441.
doi: 10.1038/s41588-018-0229-2 pmid: 30250128
[26] Nawy T, Bayer M, Mravec J, Friml J, Birnbaum K D, Lukowitz W. The GATA factor HANABA TARANU is required to position the proembryo boundary in the early Arabidopsis embryo. Dev Cell, 2010, 19: 103-113.
doi: 10.1016/j.devcel.2010.06.004 pmid: 20643354
[27] Gallavotti A, Long J A, Stanfield S, Yang X, Jackson D, Vollbrecht E, Schmidt R J. The control of axillary meristem fate in the maize ramosa pathway. Development, 2010, 137: 2849-2856.
doi: 10.1242/dev.051748 pmid: 20699296
[28] Vlad D, Kierzkowski D, Rast M I, Vuolo F, Ioio R D, Galinha C, Gan X, Hajheidari M, Hay A, Smith R S, Huijser P, Bailey C D, Tsiantis M. Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene. Science, 2014, 343: 780-783.
doi: 10.1126/science.1248384 pmid: 24531971
[29] Stewart G C, Roeder A K, Patrick S, Chris S, Wolfgang L, Hector C. A genetic screen for mutations affecting cell division in the Arabidopsis thaliana embryo identifies seven loci required for cytokinesis. PLoS Genet, 2016, 11: e0146492.
[30] Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol, 2012, 30: 174-178.
doi: 10.1038/nbt.2095 pmid: 22267009
[31] Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano L M, Kamoun S, Terauchi R. QTL-Seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J, 2013, 74: 174-183.
doi: 10.1111/tpj.2013.74.issue-1
[32] Zhang H, Wang X, Pan Q, Li P, Liu Y, Lu X, Zhong W, Li M, Han L, Li J, Wang P, Li D, Liu Y, Li Q, Yang F, Zhang Y M, Wang G, Li L. QTL-Seq accelerates QTL fine mapping through QTL partitioning and whole-genome sequencing of bulked segregant samples. Mol Plant, 2019, 12: 426-437.
doi: 10.1016/j.molp.2018.12.018
[33] Klein H, Xiao Y, Conklin P A, Govindarajulu R, Kelly J A, Scanlon M J, Whipple C J, Bartlett M. Bulked-segregant analysis coupled to whole genome sequencing (BSA-Seq) for rapid gene cloning in maize. G3: Genes Genom Genet, 2018, 8: 3583-3592.
[34] Lopez M H, Brinza L, Marchet C, Kielbassa J, Bastien S, Boutigny M, Monnin D, Filali A E, Carareto C M, Vieira C, Picard F, Kremer N, Vavre F, Sagot M F, Lacroix V. SNP calling from RNA-Seq data without a reference genome: identification, quantification, differential analysis and impact on the protein sequence. Nucleic Acids Res, 2016, 44: e148.
[35] Rogier O, Chateigner A, Amanzougarene S, Lesage-Descauses M C, Balzergue S, Brunaud V, Caius J, Soubigou-Taconnat L, Jorge V, Segura V. Accuracy of RNA-seq based SNP discovery and genotyping in Populusnigra. BMC Genomics, 2018, 19: 909.
doi: 10.1186/s12864-018-5239-z pmid: 30541448
[36] Wang H, Cheng H, Wang W, Liu J, Hao M, Mei D, Zhou R, Fu L, Hu Q. Identification of BnaYucca6 as a candidate gene for branch angle in Brassica napus by QTL-Seq. Sci Rep, 2016, 6: 38493-38502.
doi: 10.1038/srep38493 pmid: 27922076
[37] Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, Sun J, Zhang Z, Weng Y, Huang S. QTL-Seq identifies an early flowering QTL located near flowering locus T in cucumber. Theor Appl Genet, 2014, 127: 1491-1499.
doi: 10.1007/s00122-014-2313-z pmid: 24845123
[38] Lei L, Zheng H, Bi Y, Yang L, Liu H, Wang J, Sun J, Zhao H, Li X, Li J, Lai Y, Zou D. Identification of a major QTL and candidate gene analysis of salt tolerance at the bud burst stage in rice using QTL-Seq and RNA-Seq. Rice (N Y), 2020, 13: 55-68.
doi: 10.1186/s12284-020-00416-1 pmid: 32778977
[39] Song Q J, Jenkins J, Jia G F, Hyten D L, Pantalone V, Jackson S A. Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01. BMC Genomics, 2016, 17: 33.
doi: 10.1186/s12864-015-2344-0 pmid: 26739042
[40] Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, Depristo M A. The genome analysis toolkit: a map reduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20: 1297-1303.
doi: 10.1101/gr.107524.110
[41] Cingolani P, Platts A, Wang L L, Coon M, Nguyen T, Wang L, Land S J, Lu X Y, Ruden D M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin), 2012, 6: 80-92.
doi: 10.4161/fly.19695 pmid: 22728672
[42] Trapell C, Pacher L, Salzberg S L. Tophat: discovering splice junctions with RNA-Seq. Bionformatics, 2009, 25: 1105-1111.
[43] Trapell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D R, Pimental H, Salzberg S L, Rinn J L, Pachter L. Differential gene and transcript expression analysis of RNA-Seq experiments with TopHat and Cufflinks. Nat Protoc, 2012, 7: 562-578.
doi: 10.1038/nprot.2012.016 pmid: 22383036
[44] Benjamini Y, Yektieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat, 2001, 29: 1165-1188.
[45] Hill J T, Demarest B L, Bisgrove B W, Gorsi B, Su Y C, Yost H J. MMAPPR: mutation mapping analysis pipeline for pooled RNA-Seq. Genome Res, 2013, 23: 687-697.
doi: 10.1101/gr.146936.112 pmid: 23299975
[46] Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20: 1297-1303.
doi: 10.1101/gr.107524.110 pmid: 20644199
[47] Robinson M D, McCarthy D J, Smyth G K. EdgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26, 139-140.
doi: 10.1093/bioinformatics/btp616 pmid: 19910308
[48] 李得孝, 王晶, 刘修杰, 胡超, 刘义. 利用荚果厚度模拟大豆鼓粒进程的研究. 中国农业大学学报, 2014, 19(1): 29-36.
Li D X, Wang J, Liu X J, Hu C, Liu Y. Seed-bulging simulation with pod thickness in soybean. J China Agric Univ, 2014, 19(1): 29-36 (in Chinese with English abstract).
[49] Fraser J, Egli D B, Leggett J E. Pod and seed development in soybean cultivars with differences in seed size. Agron J, 1982, 74: 81-85.
doi: 10.2134/agronj1982.00021962007400010022x
[50] 苏黎, 张仁双, 宋书宏, 董钻, 谢甫绨, 王晓光. 不同结荚习性大豆开花结荚鼓粒进程的比较研究. 大豆科学, 1997, (3): 52-59.
Su L, Zhang R S, Song S H, Dong J, Xie F T, Wang X G. Comparative studies on flowering pod setting and seed filling of soybeans with different podding habits. Soybean Sci, 1997, (3): 52-59 (in Chinese with English abstract).
[51] 于龙凤, 孙海桥, 安福全. 不同大豆品种叶片叶绿素变化规律的研究. 黑龙江农业科学, 2009, (2): 32-34.
Yu L F, Sun H Q, An F Q. Study on leaf blade chlorophyll change of different soybean varieties. Heilongjiang Agric Sci, 2009, (2): 32-34 (in Chinese with English abstract).
[52] 王聪, 赵连佳, 张建勋, 章建新. 春大豆鼓粒期冠层翻叶原因及翻叶对叶片净光合速率和粒重的影响. 中国农学通报, 2020, 36(33): 38-44.
doi: 10.11924/j.issn.1000-6850.casb20191200926
Wang C, Zhao L J, Zhang J X, Zhang J X. Canopy leaf turning of spring soybean at seed-filling stage: reasons and effects on net photosynthetic rate and grain weight. Chin Agric Sci Bull, 2020, 36(33): 38-44 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb20191200926
[53] 杨阳, 苍晶, 王学东, 崔琳, 王兴, 周子珊. 大豆豆荚光合特性及其对产量的贡献. 东北农业大学学报, 2008, 39(12): 51-56.
Yang Y, Cang J, Wang X D, Cui L, Wang X, Zhou Z S. Photosynthetic characteristics of soybean pod and its contribution to yield. J Northeast Agric Univ, 2008, 39(12): 51-56 (in Chinese with English abstract).
[54] 林国强, 黄建成, 徐树传, 王金官. 菜用大豆“292”秋播花后干物质积累及鼓粒特性的研究. 大豆科学, 1997, 16: 293-297.
Lin G Q, Huang J C, Xu S C, Wang J G. Studies on dry matter accumulation and seed filling characteristics after anthesis in fall of vegetable soybean 292. Soybean Sci, 1997, 16: 293-297 (in Chinese with English abstract).
[55] Kavakli I H, Slattery C J, Ito H, Okita T W. The conversion of carbon and nitrogen into starch and storage proteins in developing storage organs: an overview. Funct Plant Biol, 2000, 27: 561-570.
doi: 10.1071/PP99176
[56] 郎漫, 刘元英, 彭显龙, 张文钊. 不同氮肥用量下镁对大豆碳氮代谢的影响. 大豆科学, 2006, 25: 49-52.
Lang M, Liu Y Y, Peng X L, Zhang W Z. Effects of magnesium on carbon and nitrogen metabolism of soybean at different effects of magnesium on carbon and nitrogen metabolism of soybean at different. Soybean Sci, 2006, 25: 49-52 (in Chinese with English abstract).
[57] 李菁华, 张明聪, 金喜军, 王孟雪, 任春元, 张玉先, 胡国华, 宋晓慧. 高油型和高蛋白型大豆鼓粒期的糖分积累规律. 大豆科学, 2017, 36: 68-73.
Li J H, Zhang M C, Jin X J, Wang M X, Ren C Y, Zhang Y X, Hu G H, Song X H. Sugar accumulation rule of high oil and high protein soybean during the seed-filling period. Soybean Sci, 2017, 36: 68-73 (in Chinese with English abstract).
[1] 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632.
[2] 刘薇, 王玉斌, 李伟, 张礼凤, 徐冉, 王彩洁, 张彦威. 过量表达大豆异丙基苹果酸脱氢酶基因GmIPMDH促进植株开花和生长[J]. 作物学报, 2024, 50(3): 613-622.
[3] 宋健, 熊亚俊, 陈伊洁, 徐瑞新, 刘康林, 郭庆元, 洪慧龙, 高华伟, 谷勇哲, 张丽娟, 郭勇, 阎哲, 刘章雄, 关荣霞, 李英慧, 王晓波, 郭兵福, 孙如建, 闫龙, 王好让, 姬月梅, 常汝镇, 王 俊, 邱丽娟. 大豆巢式关联作图(NAM)群体构建及花色和种皮色遗传分析[J]. 作物学报, 2024, 50(3): 556-575.
[4] 杨闯, 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝. 甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建[J]. 作物学报, 2024, 50(1): 237-250.
[5] 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264.
[6] 石宇欣, 刘欣玥, 孙建强, 李晓菲, 郭潇阳, 周雅, 邱丽娟. 利用CRISPR/Cas9技术编辑GmBADH1基因改变大豆耐盐性[J]. 作物学报, 2024, 50(1): 100-109.
[7] 袁晓婷, 王甜, 罗凯, 刘姗姗, 彭新月, 杨立达, 蒲甜, 王小春, 杨文钰, 雍太文. 带宽和株距对带状间作大豆物质积累分配及产量形成的影响[J]. 作物学报, 2024, 50(1): 161-171.
[8] 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432.
[9] 王娟, 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明, 何春梅. 一个新的玉米Miniature1基因等位突变体的鉴定与遗传分析[J]. 作物学报, 2023, 49(8): 2088-2096.
[10] 李刚, 周彦辰, 熊亚俊, 陈伊洁, 郭庆元, 高杰, 宋健, 王俊, 李英慧, 邱丽娟. 大豆叶型调控基因Ln及其同源基因单倍型分析[J]. 作物学报, 2023, 49(8): 2051-2063.
[11] 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541.
[12] 李慧, 路依萍, 汪小凯, 王璐瑶, 邱婷婷, 张雪婷, 黄海燕, 崔晓玉. CBL互作蛋白激酶GmCIPK10增强大豆耐盐性[J]. 作物学报, 2023, 49(5): 1272-1281.
[13] 戴文慧, 朱琪, 张小芳, 吕沈阳, 项显波, 马涛, 陈宇杰, 朱世华, 丁沃娜. 一个水稻脆秆突变体bc21的鉴定和基因定位[J]. 作物学报, 2023, 49(5): 1426-1431.
[14] 吴宗声, 徐彩龙, 李瑞东, 徐一帆, 孙石, 韩天富, 宋雯雯, 吴存祥. 麦秸覆盖还田对大豆耕层物理性状及产量形成的影响[J]. 作物学报, 2023, 49(4): 1052-1064.
[15] 严昕, 项超, 刘荣, 李冠, 李孟伟, 李正丽, 宗绪晓, 杨涛. 基于BSA-seq技术对豌豆花色基因的精细定位[J]. 作物学报, 2023, 49(4): 1006-1015.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .