作物学报 ›› 2024, Vol. 50 ›› Issue (2): 294-309.doi: 10.3724/SP.J.1006.2023.34062
李世宽1,2,**(), 洪慧龙2,**, 付佳祺1,2, 谷勇哲1,2, 孙如建3, 邱丽娟1,2,*()
LI Shi-Kuan1,2,**(), HONG Hui-Long2,**, FU Jia-Qi1,2, GU Yong-Zhe1,2, SUN Ru-Jian3, QIU Li-Juan1,2,*()
摘要:
大豆产量与其生殖生长的持续时间呈正相关, 延缓其开花后叶片的衰老, 提高其生理功能, 有利于增加植物的粒重。叶片黄化是植物衰老的显著特征之一。关于在大豆鼓粒后期叶片黄化的研究鲜见报道。本研究对鼓粒后期叶片提前黄化突变体ly和野生型ofc杂交组合进行遗传分析, 结果表明, 大豆鼓粒后期叶片提前黄化性状受单隐性核基因控制。通过BSA-Seq在19号染色体得到一个2.23 Mb的初定位区间, 经开发标记图位克隆后将区间缩短至1.75 Mb, 区间内有219个基因, 再结合RNA-Seq分析, 得到了区间内12个候选基因, 其中有4个SNP变异基因和8个差异表达基因。本研究结果为大豆鼓粒后期叶片黄化衰老基因的克隆奠定了基础。
[1] |
Ainsworth E A, Yendrek C R, Skoneczka J A. Accelerating yield potential in soybean: potential targets for biotechnological improvement. Plant Cell Environ, 2012, 35: 38-52.
doi: 10.1111/pce.2012.35.issue-1 |
[2] |
Lindoo S J, Larry D N. The interrelation of fruit development and leaf senescence in Anoka soybeans. Bot Gaz, 1976, 137: 218-223.
doi: 10.1086/336861 |
[3] |
Aharoni N. Endogenous gibberellin and abscisic acid as related to senescence of detached lettuce leaves. Plant Physiol, 1978, 62: 224-228.
doi: 10.1104/pp.62.2.224 pmid: 16660490 |
[4] |
Back A, Richmond A E. Interrelations between gibberellic acid, cytokinins and abscisic acid inretarding leaf senescence. Plant Physiol, 1971, 24: 76-79.
doi: 10.1111/ppl.1971.24.issue-1 |
[5] | Zeev E C, Itai C. The role of abscisic acid in senescence of detached tobacco leaves. Plant Physiol, 1975, 34: 97-100. |
[6] |
Killough D T, Horlacher W R. The inheritance of virescent yellow and red plant colors in cotton. Genetics, 1933, 18: 329-334.
doi: 10.1093/genetics/18.4.329 pmid: 17246695 |
[7] |
Huang X Q, Wang P R, Zhao H X, Deng X J. Genetic analysis and molecular mapping of a novel chlorophyll-deficit mutant gene in rice. Rice Sci, 2008, 15: 7-12.
doi: 10.1016/S1672-6308(08)60013-X |
[8] |
Sinclair T R, Dewit C T. Analysis of the carbon and nitrogen limitations to soybean yield. Agron J, 1976, 68: 319-324.
doi: 10.2134/agronj1976.00021962006800020021x |
[9] |
Spano G, Di F N, Perrotta C, Platani C, Ronga G, Lawlor D W, Napier J A, Shewry P R. Physiological characterization of ‘stay-green’ mutants in durum wheat. J Exp Bot, 2003, 54: 1415-1420.
doi: 10.1093/jxb/erg150 pmid: 12709488 |
[10] | 傅金民, 张庚灵, 苏芳, 王振林, 董燕, 史春余. 大豆籽粒形成期14C同化物的分配和源库调节效应的研究. 作物学报, 1999, 25: 169-173. |
Fu J M, Zhang G L, Su F, Wang Z L, Dong Y, Shi C Y. Partitioning of 14C-assimilates and effects of source-sink manipulation at seed-filling in soybean. Acta Agron Sin, 1999, 25: 169-173 (in Chinese with English abstract). | |
[11] | 薛丽华, 章建新. 大豆鼓粒期非叶光合器官与粒重的关系. 大豆科学, 2006, 25: 425-428. |
Xue L H, Zhang J X. Relationship between non-leaf photosynthetic organs of soybean and seed weight at pod-filling date. Soybean Sci, 2006, 25: 425-428 (in Chinese with English abstract). | |
[12] |
Lin S, Cianzio S R, Shoemaker R C. Mapping genetic loci for iron deficiency chlorosis in soybean. Mol Breed, 1997, 3: 219-229.
doi: 10.1023/A:1009637320805 |
[13] |
Palmer R G, Burzlaff J D, Shoemaker R C. Genetic analyses of two independent chlorophyll-deficient mutants identified among the progeny of a single chimeric foliage soybean plant. J Hered, 2000, 91: 297-303.
pmid: 10912676 |
[14] | Kato K K, Palmer R G. Duplicate chlorophyll-deficient loci in soybean. Genome Biol, 2004, 47: 190-198. |
[15] | 崔世友, 喻德跃. 大豆不同生育时期叶绿素含量QTL的定位及其与产量的关联分析. 作物学报, 2007, 33: 744-750. |
Cui S Y, Yu D Y. QTL mapping of chlorophyll content at various growing stages and its relationship with yield in soybean. Acta Agron Sin, 2007, 33: 744-750 (in Chinese with English abstract). | |
[16] |
Zhang H, Zhang D, Han S, Zhang X, Yu D. Identification and gene mapping of a soybean chlorophyll-deficient mutant. Plant Breed, 2011, 130: 133-138.
doi: 10.1111/pbr.2011.130.issue-2 |
[17] | Reed S, Atkinson T, Gorecki C, Espinosa K, Przybylski S, Goggi AS, Palmer R G, Sandhu D. Candidate gene identification for a lethal chlorophyll-deficient mutant in soybean. Agron J, 2014, 4: 462-469. |
[18] | 陈薇. 大豆叶片黄化新突变体的表现特点与遗传研究. 南京农业大学硕士学位论文, 江苏南京, 2014. |
Chen W. Performance and Genetic Analyses of the New Yellow Leaf Mutants in Soybean. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2014 (in Chinese with English abstract). | |
[19] | 冯星星. 大豆黄化突变体 Gmcdm l 与矮化突变体Gmdwf 6的基因定位. 中国科学院大学硕士学位论文, 北京, 2015. |
Feng X X. Genetic Analysis and Gene Mapping of the Gmcdm l and Gmdwf 6 in Soybean. MS Thesis of University of Chinese Academy of Sciences, Beijing, China, 2015 (in Chinese with English abstract). | |
[20] | Campbell B W, Mani D, Curtin S J, Slattery R A, Michno J M, Ort D R, Schaus P J, Palmer R G, Orf J H, Stupar R M. Identical substitutions in magnesium chelatase paralogs result in chlorophyll-deficient soybean mutants. G3: Genes Genom Genet, 2014, 5: 123-131. |
[21] | 朱晓炜. 大豆叶色突变基因GmLCM的图位克隆及功能研究. 中国科学院大学博士学位论文, 北京, 2016. |
Zhu X W. Map-based Cloning and Functional Analysis of GmLCM Associated with Soybean Leaf Color Mutant. PhD Dissertation of University of Chinese Academy of Sciences, Beijing, China, 2016 (in Chinese with English abstract). | |
[22] | 李清. 大豆叶片黄化基因的克隆与功能分析. 中国科学院大学博士学位论文, 北京, 2016. |
Li Q. Clone and Function Analysis of the Leaf Etiolation Gene in Soybean. PhD Dissertation of University of Chinese Academy of Sciences, Beijing, China, 2016 (in Chinese with English abstract). | |
[23] | 孔可可, 许孟歌, 王亚琪, 孔杰杰, Al-Amin G M, 赵团结. 大豆黄绿叶突变体NJ9903-5性状表现与基因定位研究. 大豆科学, 2017, 36: 494-501. |
Kong K K, Xu M G, Wang Y Q, Kong J J, Al-Amin G M, Zhao T J. Gene mapping and character performance of a yellow-green leaf mutant NJ9903-5 in soybean. Soybean Sci, 2017, 36: 494-501 (in Chinese with English abstract). | |
[24] |
Liu M, Wang Y, Nie Z, Gai J, Bhat J A, Kong J, Zhao T. Double mutation of two homologous genes YL1 and YL2 results in a leaf yellowing phenotype in soybean [Glycine max (L.) Merr.]. Plant Mol Biol, 2020, 103: 527-543.
doi: 10.1007/s11103-020-01008-9 |
[25] |
Wang M, Li W, Fang C, Xu F, Liu Y, Wang Z, Yang R, Zhang M, Liu S, Lu S, Lin T, Tang J, Wang Y, Wang H, Lin H, Zhu B, Chen M, Kong F, Liu B, Zeng D, Jackson S A, Chu C, Tian Z. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat Genet, 2018, 50: 1435-1441.
doi: 10.1038/s41588-018-0229-2 pmid: 30250128 |
[26] |
Nawy T, Bayer M, Mravec J, Friml J, Birnbaum K D, Lukowitz W. The GATA factor HANABA TARANU is required to position the proembryo boundary in the early Arabidopsis embryo. Dev Cell, 2010, 19: 103-113.
doi: 10.1016/j.devcel.2010.06.004 pmid: 20643354 |
[27] |
Gallavotti A, Long J A, Stanfield S, Yang X, Jackson D, Vollbrecht E, Schmidt R J. The control of axillary meristem fate in the maize ramosa pathway. Development, 2010, 137: 2849-2856.
doi: 10.1242/dev.051748 pmid: 20699296 |
[28] |
Vlad D, Kierzkowski D, Rast M I, Vuolo F, Ioio R D, Galinha C, Gan X, Hajheidari M, Hay A, Smith R S, Huijser P, Bailey C D, Tsiantis M. Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene. Science, 2014, 343: 780-783.
doi: 10.1126/science.1248384 pmid: 24531971 |
[29] | Stewart G C, Roeder A K, Patrick S, Chris S, Wolfgang L, Hector C. A genetic screen for mutations affecting cell division in the Arabidopsis thaliana embryo identifies seven loci required for cytokinesis. PLoS Genet, 2016, 11: e0146492. |
[30] |
Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol, 2012, 30: 174-178.
doi: 10.1038/nbt.2095 pmid: 22267009 |
[31] |
Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano L M, Kamoun S, Terauchi R. QTL-Seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J, 2013, 74: 174-183.
doi: 10.1111/tpj.2013.74.issue-1 |
[32] |
Zhang H, Wang X, Pan Q, Li P, Liu Y, Lu X, Zhong W, Li M, Han L, Li J, Wang P, Li D, Liu Y, Li Q, Yang F, Zhang Y M, Wang G, Li L. QTL-Seq accelerates QTL fine mapping through QTL partitioning and whole-genome sequencing of bulked segregant samples. Mol Plant, 2019, 12: 426-437.
doi: 10.1016/j.molp.2018.12.018 |
[33] | Klein H, Xiao Y, Conklin P A, Govindarajulu R, Kelly J A, Scanlon M J, Whipple C J, Bartlett M. Bulked-segregant analysis coupled to whole genome sequencing (BSA-Seq) for rapid gene cloning in maize. G3: Genes Genom Genet, 2018, 8: 3583-3592. |
[34] | Lopez M H, Brinza L, Marchet C, Kielbassa J, Bastien S, Boutigny M, Monnin D, Filali A E, Carareto C M, Vieira C, Picard F, Kremer N, Vavre F, Sagot M F, Lacroix V. SNP calling from RNA-Seq data without a reference genome: identification, quantification, differential analysis and impact on the protein sequence. Nucleic Acids Res, 2016, 44: e148. |
[35] |
Rogier O, Chateigner A, Amanzougarene S, Lesage-Descauses M C, Balzergue S, Brunaud V, Caius J, Soubigou-Taconnat L, Jorge V, Segura V. Accuracy of RNA-seq based SNP discovery and genotyping in Populusnigra. BMC Genomics, 2018, 19: 909.
doi: 10.1186/s12864-018-5239-z pmid: 30541448 |
[36] |
Wang H, Cheng H, Wang W, Liu J, Hao M, Mei D, Zhou R, Fu L, Hu Q. Identification of BnaYucca6 as a candidate gene for branch angle in Brassica napus by QTL-Seq. Sci Rep, 2016, 6: 38493-38502.
doi: 10.1038/srep38493 pmid: 27922076 |
[37] |
Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, Sun J, Zhang Z, Weng Y, Huang S. QTL-Seq identifies an early flowering QTL located near flowering locus T in cucumber. Theor Appl Genet, 2014, 127: 1491-1499.
doi: 10.1007/s00122-014-2313-z pmid: 24845123 |
[38] |
Lei L, Zheng H, Bi Y, Yang L, Liu H, Wang J, Sun J, Zhao H, Li X, Li J, Lai Y, Zou D. Identification of a major QTL and candidate gene analysis of salt tolerance at the bud burst stage in rice using QTL-Seq and RNA-Seq. Rice (N Y), 2020, 13: 55-68.
doi: 10.1186/s12284-020-00416-1 pmid: 32778977 |
[39] |
Song Q J, Jenkins J, Jia G F, Hyten D L, Pantalone V, Jackson S A. Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01. BMC Genomics, 2016, 17: 33.
doi: 10.1186/s12864-015-2344-0 pmid: 26739042 |
[40] |
Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, Depristo M A. The genome analysis toolkit: a map reduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20: 1297-1303.
doi: 10.1101/gr.107524.110 |
[41] |
Cingolani P, Platts A, Wang L L, Coon M, Nguyen T, Wang L, Land S J, Lu X Y, Ruden D M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin), 2012, 6: 80-92.
doi: 10.4161/fly.19695 pmid: 22728672 |
[42] | Trapell C, Pacher L, Salzberg S L. Tophat: discovering splice junctions with RNA-Seq. Bionformatics, 2009, 25: 1105-1111. |
[43] |
Trapell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D R, Pimental H, Salzberg S L, Rinn J L, Pachter L. Differential gene and transcript expression analysis of RNA-Seq experiments with TopHat and Cufflinks. Nat Protoc, 2012, 7: 562-578.
doi: 10.1038/nprot.2012.016 pmid: 22383036 |
[44] | Benjamini Y, Yektieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat, 2001, 29: 1165-1188. |
[45] |
Hill J T, Demarest B L, Bisgrove B W, Gorsi B, Su Y C, Yost H J. MMAPPR: mutation mapping analysis pipeline for pooled RNA-Seq. Genome Res, 2013, 23: 687-697.
doi: 10.1101/gr.146936.112 pmid: 23299975 |
[46] |
Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20: 1297-1303.
doi: 10.1101/gr.107524.110 pmid: 20644199 |
[47] |
Robinson M D, McCarthy D J, Smyth G K. EdgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26, 139-140.
doi: 10.1093/bioinformatics/btp616 pmid: 19910308 |
[48] | 李得孝, 王晶, 刘修杰, 胡超, 刘义. 利用荚果厚度模拟大豆鼓粒进程的研究. 中国农业大学学报, 2014, 19(1): 29-36. |
Li D X, Wang J, Liu X J, Hu C, Liu Y. Seed-bulging simulation with pod thickness in soybean. J China Agric Univ, 2014, 19(1): 29-36 (in Chinese with English abstract). | |
[49] |
Fraser J, Egli D B, Leggett J E. Pod and seed development in soybean cultivars with differences in seed size. Agron J, 1982, 74: 81-85.
doi: 10.2134/agronj1982.00021962007400010022x |
[50] | 苏黎, 张仁双, 宋书宏, 董钻, 谢甫绨, 王晓光. 不同结荚习性大豆开花结荚鼓粒进程的比较研究. 大豆科学, 1997, (3): 52-59. |
Su L, Zhang R S, Song S H, Dong J, Xie F T, Wang X G. Comparative studies on flowering pod setting and seed filling of soybeans with different podding habits. Soybean Sci, 1997, (3): 52-59 (in Chinese with English abstract). | |
[51] | 于龙凤, 孙海桥, 安福全. 不同大豆品种叶片叶绿素变化规律的研究. 黑龙江农业科学, 2009, (2): 32-34. |
Yu L F, Sun H Q, An F Q. Study on leaf blade chlorophyll change of different soybean varieties. Heilongjiang Agric Sci, 2009, (2): 32-34 (in Chinese with English abstract). | |
[52] |
王聪, 赵连佳, 张建勋, 章建新. 春大豆鼓粒期冠层翻叶原因及翻叶对叶片净光合速率和粒重的影响. 中国农学通报, 2020, 36(33): 38-44.
doi: 10.11924/j.issn.1000-6850.casb20191200926 |
Wang C, Zhao L J, Zhang J X, Zhang J X. Canopy leaf turning of spring soybean at seed-filling stage: reasons and effects on net photosynthetic rate and grain weight. Chin Agric Sci Bull, 2020, 36(33): 38-44 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb20191200926 |
|
[53] | 杨阳, 苍晶, 王学东, 崔琳, 王兴, 周子珊. 大豆豆荚光合特性及其对产量的贡献. 东北农业大学学报, 2008, 39(12): 51-56. |
Yang Y, Cang J, Wang X D, Cui L, Wang X, Zhou Z S. Photosynthetic characteristics of soybean pod and its contribution to yield. J Northeast Agric Univ, 2008, 39(12): 51-56 (in Chinese with English abstract). | |
[54] | 林国强, 黄建成, 徐树传, 王金官. 菜用大豆“292”秋播花后干物质积累及鼓粒特性的研究. 大豆科学, 1997, 16: 293-297. |
Lin G Q, Huang J C, Xu S C, Wang J G. Studies on dry matter accumulation and seed filling characteristics after anthesis in fall of vegetable soybean 292. Soybean Sci, 1997, 16: 293-297 (in Chinese with English abstract). | |
[55] |
Kavakli I H, Slattery C J, Ito H, Okita T W. The conversion of carbon and nitrogen into starch and storage proteins in developing storage organs: an overview. Funct Plant Biol, 2000, 27: 561-570.
doi: 10.1071/PP99176 |
[56] | 郎漫, 刘元英, 彭显龙, 张文钊. 不同氮肥用量下镁对大豆碳氮代谢的影响. 大豆科学, 2006, 25: 49-52. |
Lang M, Liu Y Y, Peng X L, Zhang W Z. Effects of magnesium on carbon and nitrogen metabolism of soybean at different effects of magnesium on carbon and nitrogen metabolism of soybean at different. Soybean Sci, 2006, 25: 49-52 (in Chinese with English abstract). | |
[57] | 李菁华, 张明聪, 金喜军, 王孟雪, 任春元, 张玉先, 胡国华, 宋晓慧. 高油型和高蛋白型大豆鼓粒期的糖分积累规律. 大豆科学, 2017, 36: 68-73. |
Li J H, Zhang M C, Jin X J, Wang M X, Ren C Y, Zhang Y X, Hu G H, Song X H. Sugar accumulation rule of high oil and high protein soybean during the seed-filling period. Soybean Sci, 2017, 36: 68-73 (in Chinese with English abstract). |
[1] | 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632. |
[2] | 刘薇, 王玉斌, 李伟, 张礼凤, 徐冉, 王彩洁, 张彦威. 过量表达大豆异丙基苹果酸脱氢酶基因GmIPMDH促进植株开花和生长[J]. 作物学报, 2024, 50(3): 613-622. |
[3] | 宋健, 熊亚俊, 陈伊洁, 徐瑞新, 刘康林, 郭庆元, 洪慧龙, 高华伟, 谷勇哲, 张丽娟, 郭勇, 阎哲, 刘章雄, 关荣霞, 李英慧, 王晓波, 郭兵福, 孙如建, 闫龙, 王好让, 姬月梅, 常汝镇, 王 俊, 邱丽娟. 大豆巢式关联作图(NAM)群体构建及花色和种皮色遗传分析[J]. 作物学报, 2024, 50(3): 556-575. |
[4] | 杨闯, 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝. 甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建[J]. 作物学报, 2024, 50(1): 237-250. |
[5] | 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264. |
[6] | 石宇欣, 刘欣玥, 孙建强, 李晓菲, 郭潇阳, 周雅, 邱丽娟. 利用CRISPR/Cas9技术编辑GmBADH1基因改变大豆耐盐性[J]. 作物学报, 2024, 50(1): 100-109. |
[7] | 袁晓婷, 王甜, 罗凯, 刘姗姗, 彭新月, 杨立达, 蒲甜, 王小春, 杨文钰, 雍太文. 带宽和株距对带状间作大豆物质积累分配及产量形成的影响[J]. 作物学报, 2024, 50(1): 161-171. |
[8] | 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432. |
[9] | 王娟, 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明, 何春梅. 一个新的玉米Miniature1基因等位突变体的鉴定与遗传分析[J]. 作物学报, 2023, 49(8): 2088-2096. |
[10] | 李刚, 周彦辰, 熊亚俊, 陈伊洁, 郭庆元, 高杰, 宋健, 王俊, 李英慧, 邱丽娟. 大豆叶型调控基因Ln及其同源基因单倍型分析[J]. 作物学报, 2023, 49(8): 2051-2063. |
[11] | 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541. |
[12] | 李慧, 路依萍, 汪小凯, 王璐瑶, 邱婷婷, 张雪婷, 黄海燕, 崔晓玉. CBL互作蛋白激酶GmCIPK10增强大豆耐盐性[J]. 作物学报, 2023, 49(5): 1272-1281. |
[13] | 戴文慧, 朱琪, 张小芳, 吕沈阳, 项显波, 马涛, 陈宇杰, 朱世华, 丁沃娜. 一个水稻脆秆突变体bc21的鉴定和基因定位[J]. 作物学报, 2023, 49(5): 1426-1431. |
[14] | 吴宗声, 徐彩龙, 李瑞东, 徐一帆, 孙石, 韩天富, 宋雯雯, 吴存祥. 麦秸覆盖还田对大豆耕层物理性状及产量形成的影响[J]. 作物学报, 2023, 49(4): 1052-1064. |
[15] | 严昕, 项超, 刘荣, 李冠, 李孟伟, 李正丽, 宗绪晓, 杨涛. 基于BSA-seq技术对豌豆花色基因的精细定位[J]. 作物学报, 2023, 49(4): 1006-1015. |
|