欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (2): 310-324.doi: 10.3724/SP.J.1006.2023.34066

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蔗3个育种性状与SSR标记的关联分析及优异等位变异发掘

田春艳1,2(), 边芯1,2, 郎荣斌1,2, 俞华先1,2, 桃联安1,2, 安汝东1,2, 董立华1,2, 张钰1,2, 经艳芬1,2,*()   

  1. 1云南省农业科学院甘蔗研究所 / 云南省甘蔗遗传改良重点实验室, 云南开远 661699
    2农业农村部甘蔗生物学与遗传育种重点实验室(云南), 云南开远 661699
  • 收稿日期:2023-03-30 接受日期:2023-06-29 出版日期:2024-02-12 网络出版日期:2023-07-19
  • 通讯作者: *经艳芬, E-mail: rljyf@126.com
  • 作者简介:E-mail: tianchy89@126.com
  • 基金资助:
    云南省种子种业联合实验室项目(202205AR070001-09);国家自然科学基金项目(31860406);云南省基础研究面上项目(2019FB053)

Association analysis of three breeding traits with SSR markers and exploration of elite alleles in sugarcane

TIAN Chun-Yan1,2(), BIAN Xin1,2, LANG Rong-Bin1,2, YU Hua-Xian1,2, TAO Lian-An1,2, AN Ru-Dong1,2, DONG Li-Hua1,2, ZHANG Yu1,2, JING Yan-Fen1,2,*()   

  1. 1Academy of Agricultural Sciences / Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, Yunnan, China
    2Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, China (Yunnan), Kaiyuan 661699, Yunnan, China
  • Received:2023-03-30 Accepted:2023-06-29 Published:2024-02-12 Published online:2023-07-19
  • Contact: *E-mail: rljyf@126.com
  • Supported by:
    Yunnan Seed Laboratory Project(202205AR070001-09);National Natural Science Foundation of China(31860406);Yunnan Fundamental Research Projects(2019FB053)

摘要:

株高、茎径和锤度是甘蔗产量和蔗糖分两大育种目标的主要构成因子, 鉴定与其相关的分子标记、发掘优异等位变异及典型载体材料, 可为甘蔗分子标记辅助育种提供依据。本试验以62份甘蔗种质资源为材料, 于成熟期调查4个种植环境条件下甘蔗株高、茎径和锤度3个育种性状, 对表型数据进行方差和遗传变异分析, 并基于37对SSR标记的分子数据, 利用MLM方法进行关联分析, 鉴定出优异关联标记并进行表型效应解析, 发掘优异等位变异及载体材料。结果表明, 基因型、种植环境及其两者互作对株高、茎径和锤度具有极显着影响。3个性状的广义遗传力范围为0.68~0.76, 说明具有较稳定的遗传特性, 其表现型主要由基因型决定。表型数据统计分析表明, 3个性状均呈现出数量性状的正态分布特征, 变异系数范围为6.73%~19.89%, 具有较丰富的表型变异。37对SSR引物共检测到204个等位变异, 平均每对扩增到5.5135个, 基因多样性平均值为0.6779, PIC平均值为0.6252, 高度多态性标记(PIC>0.5)占总量的89.19%。群体结构分析表明该群体可分为3个亚群。基于MLM模型, 共检测到与株高、茎径和锤度相关的标记20个, 表型变异解释率为5.04%~27.98%。其中7个标记在2个及以上环境中均检测到认为是优异关联标记, 经表型效应解析共鉴定出8个具有增效效应的优异等位变异及携带优异等位变异的典型载体材料10份。该研究结果对甘蔗产量和糖分性状候选基因挖掘和杂交组合亲本选配具有重要指导意义。

关键词: 甘蔗, 育种性状, SSR, 关联分析, 优异等位变异, 等位变异效应

Abstract:

Cane yield and sucrose content are the two main breeding objectives in sugarcane, and plant height, stem diameter, and brix are major constituent factors of cane yield and sucrose. Identification of associated molecular markers and exploring elite alleles with yield and sucrose traits could provide a theoretical basis and reference for marker assisted breeding of sugarcane. In this study, 62 sugarcane germplasm entries were used as the experimental materials. Three breeding traits, including plant height, stem diameter, and brix were investigated under four planting environments at maturity stage. ANOVA, genetic variation analysis and association analysis between the identified from related markers for further allele effect analysis. The result of ANOVA revealed that genotype, planting environment and their interaction had significant effect on plant height, stem diameter and brix in sugarcane. The broad-sense heritability of the three traits ranged from 0.68 to 0.76, indicating that they had stable genetic characteristics and their phenotype was mainly determined by its genotype. The frequency of these three traits showed typical quantitative traits with normal distribution characteristics. The coefficients of variation of the three traits ranged from 6.73% to 19.89%, suggesting a rich variation in phenotypes. A total of 204 alleles were found with a mean of 5.5135 per marker. The average gene diversity coefficient was 0.6779, and the average PIC value was 0.6252. The 89.19% of total markers were highly polymorphic with PIC>0.5. Population structure analysis revealed that the tested group could be divided into three subgroups. A total of 20 markers were detected associated with plant height, stem diameter, and brix traits based on MLM method, which explained 5.04%-27.98% of phenotypic variation. Seven of them detected in two or more planting environments were considered as elite markers, 8 alleles with positive effect were identified and considered as the elite alleles, and 10 typical materials were found carrying these elite alleles by allele effect analysis. These results provide a great significance for candidate gene mining of yield and sucrose content traits and parents selection of hybrid combinations in sugarcane breeding.

Key words: sugarcane, breeding traits, SSR, association analysis, elite allele, allele effect

附表1

参试材料信息"

编号
Number
材料名称
Materials name
类型
Type
1 云瑞15-468 Yunrui 15-468 创新种质Innovation germplasm
2 云瑞17-142 Yunrui 17-142 创新种质Innovation germplasm
3 云瑞15-358 Yunrui 15-358 创新种质Innovation germplasm
4 云瑞17-135 Yunrui 17-135 创新种质Innovation germplasm
5 云瑞05-292 Yunrui 05-292 品系/亲本Line/parent
6 云瑞05-770 Yunrui 05-770 品系/亲本Line/parent
7 云瑞14-179 Yunrui 14-179 创新种质Innovation germplasm
8 云瑞14-177 Yunrui 14-177 创新种质Innovation germplasm
9 云瑞14-199 Yunrui 14-199 创新种质Innovation germplasm
10 云瑞17-146 Yunrui 17-146 创新种质Innovation germplasm
11 云瑞15-78 Yunrui 15-78 创新种质Innovation germplasm
12 云瑞03-315 Yunrui 03-315 品系/亲本Line/parent
13 云瑞17-148 Yunrui 17-148 创新种质Innovation germplasm
14 云瑞08-254 Yunrui 08-254 品系/亲本Line/parent
15 云瑞15-55 Yunrui 15-55 创新种质Innovation germplasm
16 云瑞17-133 Yunrui 17-133 创新种质Innovation germplasm
17 云瑞17-124 Yunrui 17-124 创新种质Innovation germplasm
18 云瑞15-566 Yunrui 15-566 创新种质Innovation germplasm
19 云瑞11-256 Yunrui 11-256 创新种质Innovation germplasm
20 云瑞17-114 Yunrui 17-114 创新种质Innovation germplasm
21 云瑞17-149 Yunrui 17-149 创新种质Innovation germplasm
22 云瑞15-503 Yunrui 15-503 创新种质Innovation germplasm
23 云瑞17-111 Yunrui 17-111 创新种质Innovation germplasm
24 云瑞15-56 Yunrui 15-56 创新种质Innovation germplasm
25 云瑞16-3 Yunrui 16-3 创新种质Innovation germplasm
26 云瑞16-4 Yunrui 16-4 创新种质Innovation germplasm
27 云瑞16 Yunrui 16 创新种质Innovation germplasm
28 云瑞37 Yunrui 37 创新种质Innovation germplasm
29 云瑞46 Yunrui 46 创新种质Innovation germplasm
30 云瑞52 Yunrui 52 创新种质Innovation germplasm
31 云瑞90 Yunrui 90 创新种质Innovation germplasm
32 云瑞151 Yunrui 151 创新种质Innovation germplasm
33 云瑞154 Yunrui 154 创新种质Innovation germplasm
34 云瑞164 Yunrui 164 创新种质Innovation germplasm
35 云瑞215 Yunrui 215 创新种质Innovation germplasm
36 云瑞258 Yunrui 258 创新种质Innovation germplasm
37 云蔗05-51 Yunzhe 05-51 品种/亲本Variety/parent
38 云蔗08-1609 Yunzhe 08-1609 品种/亲本Variety/parent
39 新台糖22号 ROC22 品种/亲本Variety/parent
40 新台糖16号 ROC16 品种/亲本Variety/parent
41 新台糖10号 ROC10 品种/亲本Variety/parent
42 粤糖60号 Yuetang 60 品种/亲本Variety/parent
43 粤糖93-159 Yuetang 93-159 品种/亲本Variety/parent
44 粤糖86-368 Yuetang 86-368 品种/亲本Variety/parent
45 粤糖00-236 Yuetang 00-236 品种/亲本Variety/parent
46 桂糖11号 Guitang 11 品种/亲本Variety/parent
47 赣蔗8号 Ganzhe 8 品种/亲本Variety/parent
48 柳城05-136 Liucheng 05-136 品种/亲本Variety/parent
49 福农15号 Funong 15 品种/亲本Variety/parent
50 福农39号 Funong 39 品种/亲本Variety/parent
51 崖城58-47 Yacheng 58-47 亲本Parent
52 崖城97-47 Yacheng 97-47 亲本Parent
53 园林6号 Yuanlin 6 品种/亲本Variety/parent
54 POJ3016 品种/亲本Variety/parent
55 POJ213 品种/亲本Variety/parent
56 Co475 品种/亲本Variety/parent
57 Q171 品种/亲本Variety/parent
58 Q208 品种/亲本Variety/parent
59 CP94-1196 品种/亲本Variety/parent
60 PK88-188 品种/亲本Variety/parent
61 VMC97-41 品种/亲本Variety/parent
62 SP81-3250 品种/亲本Variety/parent

表1

3个育种性状的方差分析结果和广义遗传力"

性状
Trait
变异来源
Source of variation
自由度
DF
总方差
SS
均方
MS
P
P-value
广义遗传力
Broad-sense heritability
株高 PH 基因型 Genotype 61 525,860.4 8620.7 <0.001 0.68
环境 Environment 3 595,918.2 198,639.4 <0.001
基因型×环境 Genotype×Environment 183 321,306.8 1755.8 <0.001
茎径SD 基因型 Genotype 61 38.695,76 0.634,36 <0.001 0.76
环境 Environment 3 132.009,44 44.003,15 <0.001
基因型×环境 Genotype×Environment 183 13.438,21 0.073,43 <0.001
锤度Brix 基因型 Genotype 61 1383.048 22.673 <0.001 0.72
环境 Environment 3 386.028 128.676 <0.001
基因型×环境 Genotype×Environment 183 1007.080 5.503 <0.001

表2

4个种植环境下供试甘蔗3个农艺性状变异"

性状
Trait
种植环境
Planting environment
平均值±标准差
Mean±SD
最大值
Maximum
最小值
Minimum
变异系数
CV (%)
偏度
Skewness
峰度
Kurtosis
株高
PH (cm)
FP_ND 263.48±28.25 324.73 197.60 10.72 -0.29 -0.41
FP_NM 264.40±28.63 330.44 205.00 10.83 0.10 -0.23
BP_RW 217.03±43.18 337.83 140.42 19.89 0.43 0.24
BP_DS 200.74±34.38 289.58 131.67 17.13 0.02 -0.51
茎径
SD (cm)
FP_ND 2.50±0.34 3.44 1.67 13.64 0.06 0.05
FP_NM 2.39±0.28 3.28 1.00 11.91 -0.38 1.76
BP_RW 1.58±0.23 2.00 0.89 14.89 -0.15 -0.65
BP_DS 1.62±0.21 2.06 1.11 12.98 -0.23 -0.32
锤度
Brix (%)
FP_ND 18.38±2.11 20.97 12.27 12.11 -1.49 1.89
FP_NM 18.95±1.27 22.21 15.56 6.73 0.05 0.13
BP_RW 17.97±1.92 22.42 13.93 10.71 0.19 -0.20
BP_DS 18.68±1.88 23.02 15.56 10.04 0.41 -0.55

图1

62份甘蔗种质资源3个育种性状的频数分布"

表3

37对SSR标记的多样性指数"

标记名称
Marker name
等位基因数
Alleles number
主要等位基因频率
Major allele frequency
多态性信息含量
PIC
基因多样性
Gene diversity
SMC334BS 9 0.3952 0.6605 0.7072
SMC336BS 9 0.2984 0.8129 0.8318
mSSCIR74 4 0.5000 0.5144 0.5951
mSSCIR3 7 0.2500 0.7961 0.8210
mSSCIR43 7 0.3790 0.6860 0.7288
SMC703BS 5 0.4435 0.6457 0.6951
SMC31CUQ 8 0.3387 0.7499 0.7802
SMC22DUQ 4 0.4435 0.5888 0.6554
SCB174 7 0.3145 0.7217 0.7607
SCB190 4 0.4194 0.6440 0.6976
DBF/Arb1 5 0.4194 0.6198 0.6778
DBF/Arb2 3 0.4758 0.4758 0.5704
DBF/Arb3 4 0.4919 0.4099 0.5235
Aqua/Arb1 2 0.5081 0.3749 0.4999
Aqua/Arb3 3 0.4355 0.5586 0.6353
SMC851MS 5 0.4113 0.6032 0.6645
SMC119CG 5 0.3387 0.6738 0.7248
SMC18SA 5 0.4113 0.6727 0.7172
SMC486CG 5 0.4435 0.6100 0.6700
SMC24DUQ 5 0.3145 0.7004 0.7453
SMC278CS 9 0.2661 0.8165 0.8362
SMC1604SA 5 0.5242 0.4876 0.5725
SMC7CUQ 4 0.5000 0.5599 0.6281
SMC1751CL 4 0.4194 0.5776 0.6457
SMC569CS 5 0.5242 0.5942 0.6424
SMC597CS 9 0.2500 0.7860 0.8124
mSSCIR66 5 0.3629 0.7107 0.7500
SMC36BUQ 5 0.3306 0.6590 0.7133
mSSCIR36 5 0.4677 0.6118 0.6677
SMC1825 4 0.5565 0.5665 0.6158
mSSCIR56 6 0.2984 0.7667 0.7964
SMC219 6 0.3710 0.6650 0.7158
SMC1752 5 0.4677 0.5913 0.6539
mSSCIR52 9 0.2500 0.8319 0.8490
IISR17b 4 0.3871 0.6698 0.7196
IISR111 3 0.4919 0.5528 0.6250
IISR306 10 0.2742 0.7918 0.8149
平均值 Mean 5.5135 0.4151 0.6252 0.6779

图2

62份甘蔗种质资源的群体结构 A: ΔK值随K值变化的折线图; B: 3个亚群的Q值频次分布图; C: 62份甘蔗种质材料的群体结构。"

表4

与3个育种性状显着关联到的SSR标记情况总概"

性状
Traits
关联位点个数
No. of associated loci
同时在2个及以上环境下检测到的位点数
No. of associated loci under two or more environments
表型变异解释率范围
Range of R2 (%)
株高Plant height 6 1 10.57-14.95
茎径Stem diameter 7 4 5.04-26.29
锤度Brix 7 2 16.90-27.98

表5

在2个及以上环境下都检测到的与农艺性状显着关联的SSR标记"

性状
Traits
标记
SSR markers
大田种植-南多
FP_ND
大田种植-弄门
FP_NM
桶栽-正常浇水
BP_RW
桶栽-干旱胁迫
BP_DS
株高 PH SCB190 - - 14.95** 10.57*
茎径 SD DBF/Arb1 15.18* 20.69* 16.37* -
SMC486CG 14.72** 26.29** - 13.47**
SMC1752 - 21.56** 12.40* -
IISR306 - 25.36** - 5.04*
锤度 Brix SMC851MS 16.90* 24.15* - -
SMC119CG 27.98** - - 26.50*

表6

7个优异关联位点及其所有等位变异对应的表型效应值"

性状
Trait
位点_等位变异
Locus_allele
表型效应Phenotypic effect of allele
FP_ND FP_NM BP_RW BP_DS
株高
PH (cm)
SCB190_247 bp - - -4.16 -2.81
SCB190_250 bp - - -7.64 -7.50
SCB190_253 bp - - -4.03 -1.59
SCB190_259 bp - - -0.16 -3.66
SCB190_263 bp - - +0.10 +2.02
茎径
SD (cm)
DBF/Arb1_217 bp +0.01 +0.02 +0.07 -
DBF/Arb1_221 bp +0.01 -0.01 +0.03 -
DBF/Arb1_222 bp -0.01 -0.02 +0.02 -
SMC486CG_222 bp +0.06 +0.06 - +0.06
SMC486CG_232 bp +0.02 +0.02 - +0.01
SMC486CG_234 bp -0.01 -0.01 - -0.01
SMC486CG_236 bp -0.07 -0.07 - -0.06
SMC486CG_237 bp -0.03 -0.06 - -0.04
SMC486CG_238 bp -0.18 -0.11 - -0.09
SMC486CG_242 bp -0.09 +0.03 - -0.02
SMC1752_135 bp - +0.02 -0.02 -
SMC1752_136 bp - -0.01 +0.01 -
SMC1752_138 bp - +0.01 -0.01 -
SMC1752_139 bp - -0.02 -0.03 -
IISR306_133 bp - -0.16 - -0.91
IISR306_134 bp - -0.13 - -0.92
IISR306_138 bp - -0.01 - -0.75
IISR306_139 bp - +0.15 - -0.75
IISR306_141 bp - +0.04 - -0.75
IISR306_142 bp - +0.04 - -0.75
IISR306_143 bp - +1.04 - -0.73
IISR306_144 bp - +2.04 - -0.73
锤度
Brix (%)
SMC851MS_129 bp -0.11 -0.08 - -
SMC851MS_131 bp -0.07 -0.09 - -
SMC851MS_132 bp -0.16 +0.11 - -
SMC851MS_133 bp +0.04 +0.01 - -
SMC851MS_134 bp +0.22 +0.04 - -
SMC851MS_137 bp -0.16 -0.26 - -
SMC119CG_110 bp +0.44 - - -0.09
SMC119CG_116 bp +0.40 - - +0.20
SMC119CG_122 bp +0.01 - - +0.51
SMC119CG_125 bp -5.27 - - -0.68
SMC119CG_132 bp -0.31 - - +0.12

表7

优异等位变异及其相应环境下对应的典型载体材料"

性状
Trait
位点_等位变异
Locus_allele
表型效应Phenotypic effect of allele 典型载体材料及其表型值
Typical carrier material and its phenotypic value
FP_ND FP_NM BP_RW BP_DS
株高
PH (cm)
SCB190_263bp - - +0.10 +2.02 云瑞164 (337.83 cm) Yunrui 164 (337.83 cm)
茎径
SD (cm)
DBF/Arb1_217bp +0.01 +0.02 +0.07 - 云瑞15-566 (3.44 cm), 粤糖86-368 (2.93 cm), 粤糖60号(2.92 cm)
Yunrui 15-566 (3.44 cm), Yuetang 86-368
(2.93 cm), Yuetang 60 (2.92 cm)
SMC486CG_222bp +0.06 +0.06 - - 云蔗08-1609 (3.09 cm), 粤糖86-368 (2.93 cm), 粤糖93-159 (2.52 cm)
Yunzhe 08-1609 (3.09 cm), Yuetang 86-368
(2.93 cm), Yuetang 93-159 (2.52 cm)
SMC486CG_232bp +0.02 +0.02 - +0.01 云蔗08-1609 (3.09 cm), 桂糖11号 (3.28 cm),
粤糖93-159 (2.52 cm)
Yunzhe 08-1609 (3.09 cm), Guitang 11 (3.28 cm), Yuetang 93-159 (2.52 cm)
锤度
Brix (%)
SMC851MS_133bp +0.04 +0.01 - - 云蔗08-1609 (22.97%), 福农15号 (22.21%)
Yunzhe 08-1609 (22.97%), Funong 15 (22.21%)
SMC851MS_134bp +0.22 +0.04 - - 云蔗08-1609 (22.97%), 福农15号 (22.21%)
Yunzhe 08-1609 (22.97%), Funong 15 (22.21%)
SMC119CG_116bp +0.40 - - +0.20 云蔗08-1609 (22.97%), 粤糖00-236 (23.02%)
Yunzhe 08-1609 (22.97%), Yuetang 00-236 (23.02%)
SMC119CG_122bp +0.01 - - +0.51 Co475 (20.39%), 粤糖00-236 (23.02%)
Co475 (20.39%), Yuetang 00-236 (23.02%)
[1] Liu J Y, Basnayake J, Jackson P A, Chen X K, Zhao J, Zhap P F, Yang L H, Bai Y D, Xia H M, Zan F G, Qin W, Yang K, Yao L, Zhao L P, Zhu J R, Lakshmanan P, Zhao X D, Fan Y H. Growth and yield of sugarcane genotypes are strongly correlated across irrigated and rainfed environments. Field Crops Res, 2016, 196: 418-425.
doi: 10.1016/j.fcr.2016.07.022
[2] Sarah E L, Richard M J, Thomas L T. Changes in juice quality and sugarcane yield with recurrent selection for sucrose. Field Crops Res, 2010, 118: 152-157.
doi: 10.1016/j.fcr.2010.05.002
[3] 刘家勇, 昝逢刚, 赵培方, 赵丽萍, 姚丽, 赵俊, 赵勇, 胡鑫, 夏红明, 覃伟, 吴才文, 张跃彬, 杨昆. 甘蔗种质资源蔗糖分性状遗传变异分析及高糖种质发掘. 植物遗传资源学报, 2022, 23: 746-754.
doi: 10.13430/j.cnki.jpgr.20211109002
Liu J Y, Zan F G, Zhao P F, Zhao L P, Yao L, Zhao J, Zhao Y, Hu X, Xia H M, Qin W, Wu C W, Zhang Y B, Yang K. Genetic variation of sucrose content and exploration of high sugar genotypes in sugarcane germplasm. J Plant Genet Resour, 2022, 23: 746-754 (in Chinese with English abstract).
[4] 杨翠芳, 段维兴, 李江涛. 施用微肥对甘蔗产量和糖分的影响. 广西糖业, 2019, (3): 57-59.
Yang C F, Duan W X, Li J T. Effects of trace element interaction on yield and sugar content of sugarcane. Guangxi Sugar Indus, 2019, (3): 57-59 (in Chinese with English abstract).
[5] 李佳慧, 程琴, 欧克纬, 谭秦亮, 庞新华, 周全光, 吕平, 宋奇琦, 唐毓玮, 朱鹏锦. 不同蔗区甘蔗品种(系)分蘖性状比较及其对产量和产量构成因子的影响. 作物杂志, 2021, (5): 79-86.
Li J H, Cheng Q, Ou K W, Tan Q L, Pang X H, Zhou Q G, Lyu P, Song Q Q, Tang Y W, Zhu P J. Comparison of tiller characters of sugarcane varieties (lines) in different sugarcane regions and their effects on yield and yield components. Crops, 2021, (5): 79-86 (in Chinese with English abstract).
[6] 李晓瑜, 方小梅, 伍浩天, 王莹倩, 刘洋, 唐恬, 王于栋, 吴银环, 岳林清, 张瑞丰, 崔静斌, 张建, 易泽林. 苦荞种质资源主要农艺性状SSR标记关联分析. 作物学报, 2022, 48: 3091-3107.
doi: 10.3724/SP.J.1006.2022.11113
Li X Y, Fang X M, Wu H T, Wang Y Q, Liu Y, Tang T, Wang Y D, Wu Y H, Yue L Q, Zhang R F, Cui J B, Zhang J, Yi Z L. Association analysis of agronomic traits of tartary buckwheat germplasm resources with SSR markers. Acta Agron Sin, 2022, 48: 3091-3107 (in Chinese with English abstract).
[7] 刘新龙, 毛钧, 陆鑫, 马丽, Aitken K S, Jachson P A, 蔡青, 范源洪. 甘蔗SSR和AFLP分子遗传连锁图谱构建. 作物学报, 2010, 36: 177-183.
Liu X L, Mao J, Lu X, Ma L, Aitken K S, Jachson P A, Cai Q, Fan Y H. Construction of molecular genetic linkage map of sugarcane based on SSR and AFLP markers. Acta Agron Sin, 2010, 36: 177-183 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2010.00177
[8] Tian C Y, Zhu J R, Pan Y B, Lu X, Dong L H, Burner D M, Tao L A, Wu C W, Jing Y F. SSR-Based molecular identification and population structure analysis for the Yunrui-series sugarcane (Saccharum spp. hybrids) genotypes. Sugar Technol, 2022, 24: 1391-1403.
doi: 10.1007/s12355-021-01099-8
[9] Liu P W, Que Y X, Pan Y B. Highly polymorphic microsatellite DNA markers for sugarcane germplasm evaluation and variety identity testing. Sugar Technol, 2006, 8: 246-256.
doi: 10.1007/BF02943564
[10] 杨翠凤. 割手密高密度遗传图谱的构建及黑穗病QTL定位. 广西大学博士学位论文, 广西南宁, 2015.
Yang C F. Construction of High-density Genetic Map and Location of QTLs for Smut in Saccharum spontaneum L. PhD Dissertation of Guangxi University, Nanning, Guangxi, China, 2015 (in Chinese with English abstract).
[11] Mackay I, Powell W. Methods for linkage disequilibrium mapping in crops. Trends Plant Sci, 2007, 12: 57-63.
doi: 10.1016/j.tplants.2006.12.001 pmid: 17224302
[12] 文自翔, 赵团结, 郑永战, 刘顺湖, 王春娥, 王芳, 盖钧镒. 中国栽培和野生大豆农艺品质性状与SSR标记的关联分析: I. 群体结构及关联标记. 作物学报, 2008, 34: 1169-1178.
Wen Z X, Zhao T J, Zheng Y Z, Liu S H, Wang C E, Wang F, Gai J Y. Association analysis of agronomic and quality traits with SSR markers in Glycine max and Glycine soja in China: I. Population structure and associated markers. Acta Agron Sin, 2008, 34: 1169-1178 (in Chinese with English abstract).
[13] Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286-289.
doi: 10.1038/90135 pmid: 11431702
[14] Agrama H A, Eizenga G C, Yan W. Association mapping of yield and its components in rice cultivars. Mol Breed, 2007, 19: 341-356.
doi: 10.1007/s11032-006-9066-6
[15] 赖勇, 吕仲昱, 贾建磊, 卢九斤, 王晋民, 朱惠琴, 马辉, 田丰, 杨莉娜, 李宗仁. 外引大麦农艺性状SSR关联位点及等位变异表型效应分析. 麦类作物学报, 2018, 38: 424-429.
Lai Y, Lyu Z Y, Jia J L, Lu J J, Wang J M, Zhu H Q, Ma H, Tian F, Yang L N, Li Z R. Analysis of SSR loci associated with agronomic traits and allelic effect on phenotype in introduced barley (Hordeum vulgare L.). J Triticeae Crops, 2018, 38: 424-429 (in Chinese with English abstract).
[16] 张军, 赵团结, 盖钧镒. 大豆育成品种农艺性状QTL与SSR标记的关联分析. 作物学报, 2008, 34: 2059-2069.
doi: 10.3724/SP.J.1006.2008.02059
Zhang J, Zhao T J, Gai J Y. Association analysis of agronomic trait QTLs with SSR markers in released soybean cultivars. Acta Agron Sin, 2008, 34: 2059-2069 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2008.02059
[17] Pinto L, Pastina M M, Garcia A A, Perecin D. Identification of microsatellites markers associated with yield components and quality parameters in sugarcane. Int Sugar J, 2010, 27: 140-144.
[18] Banerjee N, Siraree A, Yadav S, Kumar S, Singh J, Kumer S, Pandey D K, Singh R K. Marker-trait association study for sucrose and yield contributing traits in sugarcane (Saccharum spp. hybrid). Euphytica, 2015, 205: 185-201.
doi: 10.1007/s10681-015-1422-3
[19] Bilal M, Saeed M, Nasir I A, Tabassum B, Zameer M, Khan A, Tariq M, Javed A M, Husnain T. Association mapping of cane weight and tillers per plant in sugarcane. Biotechnol Biotechnol Equip, 2015, 29: 617-623.
doi: 10.1080/13102818.2015.1008203
[20] Siraree A, Banerjee N, Kumar S, Khan M S, Singh P K, Kumar S, Sharma S, Singh R K, Singh J. Identification of marker-trait associations for morphological descriptors and yield component traits in sugarcane. Physiol Mol Biol Plants, 2017, 23: 185-191.
doi: 10.1007/s12298-016-0403-x
[21] 朱专为. 甘蔗栽培品种的主要农艺性状与AFLP和SSR分子标记的关联分析. 福建农林大学硕士学位论文, 福建福州, 2018.
Zhu Z W. Association Analysis of Main Agronomic Traits of Sugarcane Cultivated Varieties Using AFLP and SSR Markers. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2018 (in Chinese with English abstract).
[22] Barreto F Z, Rosa J R B F, Balsalobre T W A, Pastina M M, Silva R R, Hoffmann H P, Souza A P, Garcia A A F, Carneiro M S. A genome-wide association study identified loci for yield component traits in sugarcane (Saccharum spp.). PLoS One, 2019, 14: e0219843.
doi: 10.1371/journal.pone.0219843
[23] Basnayake J, Jackson P A, Inman-Bamber N G, Lakshmanan P. Sugarcane for water-limited environments: variation in stomatal conductance and its genetic correlation with crop productivity. J Exp Bot, 2015, 66: 3945-3958.
doi: 10.1093/jxb/erv194 pmid: 25948709
[24] Pan Y B. Databasing molecular identities of sugarcane (Saccharum spp.) clones constructed with microsatellite (SSR) DNA markers. Am J Plant Sci, 2010, 1: 87-94.
doi: 10.4236/ajps.2010.12011
[25] Creste S, Accoroni K A G, Pinto L R, Vencovsk R, Gimenes M A, Xavier M A, Landell M G A. Genetic variability among sugarcane genotypes based on polymorphisms in sucrose metabolism and drought tolerance genes. Euphytica, 2010, 172: 435-446.
doi: 10.1007/s10681-009-0078-2
[26] 李旭娟, 徐超华, 刘洪博, 林秀琴, 马丽, 刘新龙. 中国十倍体割手密资源抗逆功能标记的遗传多样性分析. 西北植物学报, 2014, 34: 1540-1548.
Li X J, Xu C H, Liu H B, Lin X Q, Ma L, Liu X L. Genetic diversity of decaploid Saccharum spontaneum L. in China according to functional markers related stress tolerance. Acta Bot Boreali-Occident Sin, 2014, 34: 1540-1548 (in Chinese with English abstract).
[27] Liu K, Muse S V. PowerMaker: an integrated analysis environment for genetic maker analysis. Bioinformatics, 2005, 21: 2128-2129.
doi: 10.1093/bioinformatics/bti282
[28] Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945-959.
doi: 10.1093/genetics/155.2.945 pmid: 10835412
[29] Kopelman N M, Mayzel J, Jakobsson M, Rosenberg N A, Mayrose I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour, 2015, 15: 1179-1191.
doi: 10.1111/1755-0998.12387 pmid: 25684545
[30] Rosenberg N A. Admixture models and the breeding systems of H. S. Jennings: a GENETICS connection. Genetics, 2016, 202: 9-13.
doi: 10.1534/genetics.115.181057 pmid: 26733663
[31] Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829
[32] 文自翔, 赵团结, 郑永战, 刘顺湖, 王春娥, 王芳, 盖钧镒. 中国栽培和野生大豆农艺及品质性状与SSR标记的关联分析: II.优异等位变异的发掘. 作物学报, 2008, 34: 1339-1349.
doi: 10.3724/SP.J.1006.2008.01339
Wen Z X, Zhao T J, Zheng Y Z, Liu S H, Wang C E, Wang F, Gai J Y. Association analysis of agronomic and quality traits with SSR markers in Glycine max and Glycine soja in China: II. Exploration of elite alleles. Acta Agron Sin, 2008, 34: 1339-1349 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2008.01339
[33] Zhang Z W, Ersoz E, Lai C Q, Todhenter R J, Tiwari H K, Gore M A, Bradbury P J, Yu J M, Arnett D K, Ordovas J M, Buckler E S. Mixed linear model approach adapted for genome-wide association studies. Nat Genet, 2010, 4: 355-360.
doi: 10.1038/ni908
[34] 陈旭, 郝雅琼, 聂兴华, 杨海莹, 刘松, 王雪峰, 曹庆芹, 秦岭, 邢宇. 板栗总苞和坚果主要性状与SSR标记的关联分析. 中国农业科学, 2022, 55: 2613-2628.
doi: 10.3864/j.issn.0578-1752.2022.13.011
Chen X, Hao Y Q, Nie X H, Yang H Y, Liu S, Wang X F, Cao Q Q, Qin L, Xing Y. Association analysis of main characteristics of bur and nut with SSR markers in Chinese chestnut. Sci Agric Sin, 2022, 55: 2613-2628 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.13.011
[35] 钱能. 陆地棉遗传多样性与育种目标性状基因(QTL)的关联分析. 南京农业大学博士学位论文, 江苏南京, 2009.
Qian N. Genetic Diversity and Association Analysis of Gene (QTL) of Breeding Target Traits of Upland Cotton. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2015 (in Chinese with English abstract).
[36] Botstein D, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Human Genet, 1980, 32: 314-331.
[37] 周长军. 大豆有性杂交F2产量性状的遗传力分析. 黑龙江农业科学, 2006, (6): 14-15.
Zhou C J. The heritability analysis and genetic correlation for yield traits in hybridization F2 generation of soybean. Heilongjiang Agric Sci, 2006, (6): 14-15 (in Chinese with English abstract).
[38] 徐志军, 孔冉, 苏俊波, 周峰, 张垂明, 吴小丽, 刘洋. 甘蔗F1群体构建及主要农艺性状遗传变异分析. 热带作物学报, 2021, 42: 333-338.
Xu Z J, Kong R, Su J B, Zhou F, Zhang C M, Wu X L, Liu Y. Construction of sugarcane F1 population and main agronomic traits genetic variation analysis. Chin J Trop Crops, 2021, 42: 333-338 (in Chinese with English abstract).
[39] 杨昆, 赵培方, 赵俊, 夏红明, 昝逢刚, 吴转娣, 吴才文, 陈学宽, 刘家勇. 甘蔗家系经济性状遗传变异分析及综合选择. 热带作物学报, 2016, 37: 213-219.
Yang K, Zhao P F, Zhao J, Xia H M, Zan F G, Wu Z D, Wu C W, Chen X K, Liu J Y. Genetic variation of main economic traits and combined selection in sugarcane families. Chin J Trop Crops, 2016, 37: 213-219 (in Chinese with English abstract).
[40] 盛志廉, 陈瑶生. 数量遗传学. 北京: 科学出版社, 1999. pp 42-290.
Sheng Z L, Chen Y S. Quantitative Genetics. Beijing: Science Press, 1999. pp 42-290 (in Chinese)
[41] 单保山. 遗传力的概念及其发展: I. 关于传统遗传力的几个问题. 河北农业大学学报, 1988, 11(1): 39-44.
Shan B S. The concept of heritability and its development: I. Some views on heritability. J Hebei Agric Univ, 1988, 11(1): 39-44 (in Chinese with English abstract).
[42] Ukoskit K, Posudsavang G, Pongsiripat N, Chatwachirawong P, Klomsa-ard P, Poomipant P, Tragoonrung S. Detection and validation of EST-SSR markers associated with sugar-related raits in sugarcane using linkage and association mapping. Genomics, 2018, 111: 1-9.
doi: 10.1016/j.ygeno.2018.03.019
[43] 张力岚, 张列梅, 牛焕颖, 徐益, 李玉, 祁建民, 陶爱芬, 方平平, 张立武. 黄麻SSR标记与纤维产量性状的相关性. 作物学报, 2020, 46: 1905-1913.
doi: 10.3724/SP.J.1006.2020.04035
Zhang L L, Zhang L M, Niu H Y, Xu Y, Li Y, Qi J M, Tao A F, Fang P P, Zhang L W. Correlation between SSR markers and fiber yield related traits in jute (Corchorus spp.). Acta Agron Sin, 2020, 46: 1905-1913 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2020.04035
[44] Karrakman A T, Nikes R E, Berg P M, Stam P, Eeuwijk F A. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics, 2004, 168: 435-446.
doi: 10.1534/genetics.104.026831 pmid: 15454555
[45] 刘其宝, 李黎贝, 张驰, 宿俊吉, 魏恒玲, 王寒涛, 喻树迅. 陆地棉叶片叶绿素含量与SSR标记的关联分析及优异等位变异的挖掘. 中国农业科学, 2017, 50: 3439-3449.
doi: 10.3864/j.issn.0578-1752.2017.18.001
Liu Q B, Li L B, Zhang C, Su J J, Wei H L, Wang H T, Yu S X. Association analysis of leaf chlorophyll content with SSR markers and exploration of superior alleles in upland cotton. Sci Agric Sin, 2017, 50: 3439-3449 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.18.001
[46] Abbasi Z, Majidi M M, Arzani A, Rajabi A, Mashayekhi P, Bocianowski J. Association of SSR markers and morphophysiological traits associated with salinity tolerance in sugar beet (Beta vulgaris L.). Euphytica, 2015, 205: 785-797.
doi: 10.1007/s10681-015-1408-1
[47] 张允演, 刘福业, 杨俊贤, 吴文龙, 黄振豪, 潘方胤, 陈月桂. 特早熟高糖甘蔗新品种粤糖00-236的选育. 中国糖料, 2007, (1): 5-7.
Zhang Y F, Liu F Y, Yang J X, Wu W L, Huang Z H, Pan F Y, Chen Y G. Breeding of very precocious and high sugar content sugarcane variety YT00-236. Sugar Crops China, 2007, (1): 5-7 (in Chinese with English abstract).
[48] 夏红明, 赵培方, 刘家勇, 赵俊, 昝逢刚, 陈学宽, 杨昆, 杨洪昌, 姚丽, 赵丽萍, 吴转娣, 覃伟, 吴才文. 早熟高糖甘蔗新品种云蔗081609的选育. 中国糖料, 2018, 40(5): 6-9.
Xia H M, Zhao P F, Liu J Y, Zhao J, Zan F G, Chen X K, Yang K, Yang H C, Yao L, Zhao L P, Wu Z D, Qin W, Wu C W. Breeding of new sugarcane variety Yunzhe 081609 with early maturing and high sucrose content. Sugar Crops China, 2018, 40(5): 6-9 (in Chinese with English abstract).
[49] Zhao P F, Xia H M, Liu J Y, Wu C W, Zhao J, Yang K, Zan F G, Chen X K, Li J, Yao L, Yang H C, Qin W, Zhao L P, Wu Z D. Registration of ‘YZ081609’ sugarcane. J Plant Regist, 2019, 13: 362-367.
doi: 10.3198/jpr2018.10.0068crc
[50] 张远福, 幸新妹, 郭承芸, 刘春平, 刘春红. 全国甘蔗新品种比较. 安徽农业科学, 2011, 39: 22283-22285.
Zhang Y F, Xing X M, Guo C Y, Liu C P, Liu C H. Comparison of new varieties of sugarcane in China. J Anhui Agric Sci, 2011, 39: 22283-22285 (in Chinese with English abstract).
[1] 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602.
[2] 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632.
[3] 薛丽, 李心怡, 黄勇泰, 欧财篮, 吴小青, 余泽怀, 崔泽田, 张木清, 邓祖湖, 余凡. 甘蔗与斑茅杂交染色体组构成特征研究[J]. 作物学报, 2024, 50(3): 633-644.
[4] 范子培, 李龙, 史雨刚, 孙黛珍, 李超男, 景蕊莲. 小麦TabHLH112-2B基因克隆及每穗小穗数相关功能标记开发[J]. 作物学报, 2024, 50(2): 403-413.
[5] 陈天, 李昱樱, 荣二花, 吴玉香. 棉属人工异源四倍体后代性状鉴定及花器转录组学分析[J]. 作物学报, 2024, 50(2): 325-339.
[6] 马娟, 曹言勇. 玉米杂交群体产量性状及其特殊配合力全基因组关联分析[J]. 作物学报, 2024, 50(2): 363-372.
[7] 王恒波, 冯春燕, 张以星, 谢婉婕, 杜翠翠, 吴明星, 张积森. 甘蔗割手密种转录因子NAP亚家族的鉴定及SsNAP2a参与叶片衰老的功能分析[J]. 作物学报, 2024, 50(1): 110-125.
[8] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
[9] 杜翠翠, 吴明星, 张雅婷, 谢婉婕, 张积森, 王恒波. 甘蔗割手密种糖转运蛋白基因SsSWEET11的克隆与功能分析[J]. 作物学报, 2023, 49(9): 2385-2397.
[10] 莫广玲, 余陈静, 梁艳兰, 周定港, 罗俊, 王莫, 阙友雄, 黄宁, 凌辉. 甘蔗ScbHLH13基因的RT-PCR克隆与功能分析[J]. 作物学报, 2023, 49(9): 2485-2497.
[11] 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432.
[12] 玉泉馨, 杨宗桃, 张海, 程光远, 周营栓, 焦文迪, 曾康, 罗廷绪, 黄国强, 张木清, 徐景升. 甘蔗VAMP相关蛋白ScPVA12与甘蔗花叶病毒P3N-PIPO的互作研究[J]. 作物学报, 2023, 49(9): 2472-2484.
[13] 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330.
[14] 陈婷, 焦艳阳, 周鑫烨, 吴林坤, 张重义, 林煜, 林生, 林文雄. 不同土壤强化处理对连作太子参生长发育的影响及其效果评价[J]. 作物学报, 2023, 49(8): 2225-2239.
[15] 王倩, 张立媛, 许月, 李海, 刘少雄, 薛亚鹏, 陆平, 王瑞云, 刘敏轩. 黍稷高基元EST-SSR标记开发及200份核心种质资源遗传多样性分析[J]. 作物学报, 2023, 49(8): 2308-2318.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .