欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (1): 110-125.doi: 10.3724/SP.J.1006.2024.34037

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蔗割手密种转录因子NAP亚家族的鉴定及SsNAP2a参与叶片衰老的功能分析

王恒波1(), 冯春燕1(), 张以星1, 谢婉婕1, 杜翠翠1, 吴明星1, 张积森2,*()   

  1. 1福建农林大学农业农村部福建甘蔗生物学与遗传育种重点实验室 / 国家甘蔗工程技术研究中心 / 福建农林大学生命科学学院, 福建福州 3500022
    2广西大学亚热带农业生物资源保护与利用国家重点实验室,广西南宁,530004
  • 收稿日期:2023-02-23 接受日期:2023-06-29 出版日期:2024-01-12 网络出版日期:2023-07-20
  • 通讯作者: *张积森, E-mail: zjisen@126.com
  • 作者简介:王恒波, E-mail: wanghengbo_0354@126.com; 冯春燕, E-mail: 1151137075@qq6.com

    **同等贡献

  • 基金资助:
    国家重点研发计划项目(2021YFF1000101-5);国家自然科学基金项目(32272156);福建省自然科学基金项目(2022J01160);国家级大学生创新创业训练计划项目(202310389001)

Genome-wide identification of NAP transcription factors subfamily in Saccharum spontaneum and functional analysis of SsNAP2a involvement in leaf senescence

WANG Heng-Bo1(), FENG Chun-Yan1(), ZHANG Yi-Xing1, XIE Wan-Jie1, DU Cui-Cui1, WU Ming-Xing1, ZHANG Ji-Sen2,*()   

  1. 1Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian), Ministry of Agriculture and Rural Affairs / National Sugarcane Engineering Technology Research / College of Life Sciences Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China
  • Received:2023-02-23 Accepted:2023-06-29 Published:2024-01-12 Published online:2023-07-20
  • Contact: *E-mail: zjisen@126.com
  • About author:**Contributed equally to this study
  • Supported by:
    National Key Research and Development Program(2021YFF1000101-5);National Natural Science Foundation of China(32272156);Natural Science Foundation of Fujian Province, China(2022J01160);National Undergraduate Innovation and Entrepreneurship Training Program Project(202310389001)

摘要:

NAP (NAC-like, activated by apetala3/pistillata)是转录因子NAC基因家族中一类参与调控植物生长发育、叶片衰老及响应激素和非生物胁迫应答的亚家族。本研究利用甘蔗割手密种基因组数据和生物信息学方法, 首先, 基于比较基因组学对NAP亚家族成员进行鉴定、系统进化分析、保守结构域及顺式调控元件预测; 其次, 克隆获得割手密种SsNAP2的等位基因SsNAP2a, 分析该基因在不同生长发育阶段的表达及其在激素和非生物胁迫下的表达特征; 最后, 利用瞬时表达和亚细胞定位分析SsNAP2a基因的功能。结果表明, 在割手密种基因组中共鉴定5个NAP亚家族成员, 亚细胞定位预测所有成员编码蛋白均定位于细胞核上, 这些基因的Ka/Ks比值均小于1, 表明纯化选择在演化中起到关键作用。系统聚类分析表明, 5个代表性的被子植物(拟南芥、菠萝、水稻、玉米和高粱)与已报道的12个物种及甘蔗的NAP亚家族成员, 共计46个, 分为4个Clade, 其演化的顺序Clade I > Clade II> Clade III > Clade IV。此外, 在SsNAP亚家族成员的启动子区域预测到较多响应脱落酸和茉莉酸、低温等逆境胁迫的顺式作用元件, 推测其参与多种激素和非生物胁迫相关应答通路。进一步, 从割手密种SES208中克隆到SsNAP2a基因, 该cDNA全长序列1173 bp (GenBank登录号为OQ335094), 编码390个氨基酸残基, 其与等位基因SsNAP2编码蛋白的序列相似性为97.70%, 有10个氨基酸残基的差异, 表明同源8倍体的割手密种等位基因序列差异较大。qRT-PCR分析表明, SsNAP2a基因在割手密种不同生长发育阶段中组成型表达, 尤其在衰老的蔗皮和根中的表达量最高; 在乙烯利(ethylene, ET)、脱落酸(abscisic acid, ABA)、4℃低温和40℃高温处理下, 其表达量呈现显著诱导表达; 而在8%聚乙二醇(polyethylene glycol, PEG)胁迫下显著下调表达。亚细胞定位表明, SsNAP2a融合蛋白定位在细胞核上。瞬时过表达SsNAP2a基因7 d后, 本氏烟(Nicotiana benthamiana)叶片有明显的卷曲、皱缩等衰老现象, ET合成相关基因(NtEFE26, NtAccdeaminase)显著上调表达, 而水杨酸、茉莉酸和ABA合成相关基因(NtPR-1a/cNtPR3NtAREB1)显著下调表达, 表明SsNAP2a基因参与多种激素信号传导途径诱发叶片衰老。以上研究结果为挖掘甘蔗NAP亚家族基因成员参与叶片衰老的生物学功能奠定了研究基础, 也为培育甘蔗抗衰老分子育种提供候选的基因资源。

关键词: 割手密种, NAP基因, 叶片衰老, 激素胁迫, 基因功能, 甘蔗

Abstract:

NAP (NAC-like, Activated by APETALA3/PISTILLATA) is a subfamily of the transcription factor NAC gene family, which is widely involved in regulating plant growth and development, leaf senescence, and response to hormones and abiotic stress. Firstly, the NAP subfamily members were identified from the genomic database of Saccharum spontaneum, and phylogenetic analysis, conserved domains, and cis-regulatory elements were predicted using comparative genomics and various bioinformatics methods. Secondly, the allele SsNAP2a of the SsNAP2 member was isolated from the cDNA library of a wide accession SES208. The relative expression characteristics of the SsNAP2a were detected by qRT-PCR under hormone and abiotic stresses at different growth and development stages. Finally, transient overexpression and subcellular localization performed the function of SsNAP2a gene. The results showed that five NAP subfamily members were identified in the genome of S. spontaneum. The subcellular localization predicted that the encoded proteins of all members were localized in the nucleus. The Ka/Ks ratio of five gene pairs was less than 1, indicating that purifying selection was crucial in the evolution. Phylogenetic analysis revealed that 46 NAP members, including five representative angiosperms (Arabidopsis thaliana, Ananas comosus, Oryza sativa, Zea mays, and Sorghum bicolor), 12 reported species, and the S. spontaneum, were classified into four Clades. The evolution order was Clade I > Clade II > Clade III > Clade IV. In addition, the promoter regions of SsNAP members predicted many cis-acting elements in response to abscisic acid, jasmonic acid, low temperature, and other stresses. We speculated that they were involved in various hormone and abiotic stress-related response pathways. Furthermore, the full-length cDNA sequence of the SsNAP2a gene (GenBank accession number: OQ335094) was isolated from the wild accession SES208, with an open reading frame of 1173 bp and encoding 390 amino acid residues. The amino acid sequence similarity between SsNAP2 and SsNAP2a proteins was 97.70%. There was a difference of 10 amino acid residues, indicating that the autopolyploid allelic sequences of Saccharum species were significant difference. The qRT-PCR demonstrated that the SsNAP2a gene was constitutively expressed in various tissues of S. spontaneum, especially in the senescent bark and root, and its expression level was significantly induced under the treatment of ethylene, ET, abscisic acid (ABA), low temperature at 4℃, and high temperature at 40℃. However, the relative expression level of the SsNAP2a gene was significantly down-regulated under 8% polyethylene glycol (PEG) stress. Subcellular localization revealed that the SsNAP2a-GFP fusion protein was located in the cell nucleus of Nicotiana benthamiana leaves. After transient overexpression of the SsNAP2a gene for seven days, the leaves of N. benthamiana displayed obvious curling and shriveling phenotype. The relative expression level of ET synthesis-related genes (NtEFE26, NtAccdeaminase) was significantly up-regulated, while salicylic acid, jasmonic acid, and ABA synthesis-related genes (NtPR-1a/c, NtPR3, and NtAREB1) were significantly down-regulated, indicating that the SsNAP2a gene was involved in multiple hormone signaling pathways to induce leaf senescence. These results lay a foundation for exploring the biological functions of NAP subfamily gene members involved in sugarcane leaf senescence and provide candidate gene resources for breeding anti-senescence new cultivars.

Key words: Saccharum spontaneum, NAP gene, leaf senescence, hormone stress, functional analysis, sugarcane

表1

本研究所用引物序列"

名称
Primer name
引物序列
Primer sequences (5′-3′)
备注
Annotation
SsNAP2a-F ATGACGACGATGATGTCGGCG 基因克隆
Gene cloning
SsNAP2a-R CTAGAAATGAGGAAGCATGTGATGG
qRT-PCR-SsNAP2a-F CCTCCAAGCTCAGGAACGTC 定量PCR引物
qRT-PCR primers
qRT-PCR-SsNAP2a-R CTCGTAGTCGGCGAGCG
qRT-PCR-SsUBC-F GATTCTACTGCGGATGGATTGA 甘蔗内参基因
Reference gene in sugarcane
qRT-PCR-SsUBC-R CAACTTTGGGATGCTTGATACAC
pMDC202-SsNAP2a-F CTCGACTCTAGAACTAGTATGACGACGATGATGTCGGCG 过表达载体构建
Construction of overexpression vector
pMDC202-SsNAP2a-R ATTTTTTCTACCGGTACCCTAGAAATGAGGAAGCATGTGATGG
pSuper-1300-SsNAP2a-F GGGGCCCGGGGTCGACATGACGACGATGATGTCGGCG 亚细胞定位载体构建
Construction of subcellular localization vector
pSuper-1300-SsNAP2a-R CCCTTGCTCACCATGGTACCGAAATGAGGAAGCATGTGATGG
qPCR-AREB1-ABA-F ATCCAGAAAAACAGAAAAGAGTGAT 脱落酸通路相关基因
Abscisic acid pathway related gene
qPCR-AREB1-ABA-R CAACACTACTTCCACCCTCCC

表2

甘蔗割手密种NAP亚家族成员的理化性质"

名称
Name
基因编号
Sequence ID
氨基酸残基数
Number of amino acid
相对
分子量
Molecular weight (kD)
理论等
电点
Theoretical pI
不稳定
系数
Instability index
平均疏水性
Grand
average of hydropathicity
高粱直系同源基因
Orthologous gene from sorghum
非同义
和同义
替换率
Ka/Ks
SsNAP1 Npp.01C032290.1 371 40.285 9.04 41.98 -0.50 Sobic.001G385800.1 0.46
SsNAP2 Npp.02D037500.1 392 41.876 7.29 44.69 -0.26 Sobic.002G420700.1 0.65
SsNAP3 Npp.03B008200.1 340 36.933 6.33 55.52 -0.45 Sobic.003G105800.1 0.48
SsNAP4 Npp.05B003240.1 396 43.899 6.22 49.34 -0.65 Sobic.005G018500.1 0.34
SsNAP5 Npp.08D002510.1 409 44.912 6.06 51.39 -0.61 Sobic.008G021800.1 0.30

图1

不同NAP成员的氨基酸序列比对"

图2

NAP亚家族成员的系统演化树和保守结构域 NAP成员分别来自: SsNAP: 甘蔗割手密种; ZmNAP: 玉米; OsNAP: 水稻; SbNAP: 高粱; TtNAM: 拟二粒小麦; AcNAP: 菠萝; ANAC: 拟南芥; VvNAC: 葡萄; GhNAC: 棉花; MsNAP: 苜蓿; BeNAC: 慈竹; CarNAC: 鹰嘴豆; MmNAP: 微甘菊; CitNAC: 甜橙; BrNAP: 菜薹; CsNAP: 番红花; PvNAC: 菜豆; AmTr_v1.0_scaffold00119.21: 无油樟。"

图3

顺式作用元件预测"

图4

SsNAP2a基因的核酸序列及编码的氨基酸序列 下画线部分为UTR序列; 红色部分为NAM保守结构域; *为终止密码子。"

图5

SsNAP2a基因在不同生长发育阶段中的表达量 Stem pith 3: 幼嫩部分的蔗肉; Stem pith 6: 衰老部分的蔗肉; Bark 3: 幼嫩部分的蔗皮; Bark 6: 衰老部分的蔗皮; Leaf sheath: 叶鞘; Bud: 蔗芽; Roller-leaf: 卷叶; Root: 根; Leaf: +1叶片。误差线为每组处理的标准误差(n = 3)。不同小写字母表示P < 0.05水平差异显著。"

图6

SsNAP2a基因在ET和ABA胁迫下的表达量 误差线为每组处理的标准误差(n = 3)。不同小写字母表示P < 0.05水平差异显著。"

图7

SsNAP2a基因在低温、高温和干旱胁迫下的表达量 误差线为每组处理的标准误差(n = 3)。不同小写字母表示P < 0.05水平差异显著。"

图8

SsNAP2a蛋白的亚细胞定位 在明场、绿色荧光、叠加场3个视野下拍摄的照片。pSuper1300-35S::GFP和pSuper1300-35S::SsNAP2a::GFP分别代表空载体和重组载体的GV3101菌液注射本氏烟叶片的结果。标尺为50 μm。"

图9

SsNAP2a基因在烟草叶片中的瞬时表达 a表示SsNAP2a基因在烟草叶片中瞬时过表达后黑暗处理不同时间的表型及DAB染色结果, Symptom 0表示瞬时过表达SsNAP2a基因1 d, Symptom 1 d和 7 d分别表示瞬时过表达SsNAP2a基因后黑暗处理的时间。b过表达SsNAP2a基因后烟草免疫和激素合成通路相关基因的表达量。误差线为每组处理的标准误差(n = 3)。不同小写字母表示P < 0.05水平差异显著。"

[1] 李伟, 韩蕾, 钱永强, 孙振元. 植物NAC转录因子的种类、特征及功能. 应用与环境生物学报, 2011, 17: 596-606.
Li W, Han L, Qian Y Q, Sun Z Y. Characteristics and functions of NAC transcription factors in plants. Chin J Appl Environ Biol, 2011, 17: 596-606. (in Chinese with English abstract)
[2] Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res, 2003, 10: 239-247.
[3] Sablowski R W, Meyerowitz E M. A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell, 1998, 92: 93-103.
doi: 10.1016/s0092-8674(00)80902-2 pmid: 9489703
[4] Guo Y, Gan S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J, 2006, 46: 601-612.
[5] Ernst H A, Olsen A N, Larsen S, Lo Leggio L. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep, 2004, 5: 297-303.
doi: 10.1038/sj.embor.7400093 pmid: 15083810
[6] 范凯, 王学德, 袁淑娜, 王铭. 植物转录因子NAP亚家族的研究进展. 中国农业科学, 2014, 47: 209-220.
doi: 10.3864/j.issn.0578-1752.2014.02.001
Fan K, Wang X D, Yuan S N, Wang M. Recent advances in research of transcription factor nap subfamily in plants. Sci Agric Sin, 2014, 47: 209-220. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2014.02.001
[7] Olsen A N, Ernst H A, Leggio L L, Skriver K. NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci, 2005, 10: 79-87.
doi: 10.1016/j.tplants.2004.12.010 pmid: 15708345
[8] Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell, 1997, 9: 841-857.
doi: 10.1105/tpc.9.6.841 pmid: 9212461
[9] 范凯. 植物转录因子NAP的系统发育及其对叶片衰老的调控. 浙江大学博士学位论文, 浙江杭州, 2015.
Fan K. Phyogenetic Analysis of the NAP Transcription Factor in Plants and Its Regulation to Leaf Senescence. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2015. (in Chinese with English abstract)
[10] Kalivas A, Pasentsis K, Argiriou A, Tsaftaris A S. Isolation, characterization, and expression analysis of an NAP-like cDNA from Crocus (Crocus sativus L.). Plant Mol Biol Rep, 2010, 28: 654-663.
doi: 10.1007/s11105-010-0197-x
[11] Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 2006, 314: 1298-1301.
doi: 10.1126/science.1133649 pmid: 17124321
[12] Meng Q, Zhang C, Gai J, Yu D. Molecular cloning, sequence characterization and tissue-specific expression of six NAC-like genes in soybean (Glycine max (L.) Merr.). J Plant Physiol, 2007, 164: 1002-1012.
doi: 10.1016/j.jplph.2006.05.019
[13] Fernandez L, Ageorges A, Torregrosa L. A putative NAP homolog specifically expressed during grapevine flower and berry development. Vitis, 2006, 45, 51-52.
[14] Chai L, Biswas M K, Ge X, Deng X. Isolation, characterization, and expression analysis of an SKP1-like gene from ‘Shatian’ Pummelo. Plant Mol Biol Rep, 2010, 28: 569-577.
doi: 10.1007/s11105-010-0184-2
[15] 樊金萍, 赵然. 金鱼藤中ApNAP基因的克隆和表达模式分析. 植物科学学报, 2014, 32: 251-258.
Fan J P, Zhao R. Cloning and expression pattern analysis of the ApNAP gene in Asarina procumbens. Plant Sci J, 2014, 32: 251-258. (in Chinese with English abstract)
[16] 晁跃辉, 李珊珊, 滕珂, 许立新, 肖国增, 郭涛, 韩烈保. 紫花苜蓿MsNAP基因克隆及烟草转化. 中国草地学报, 2016, 38(2): 13-19.
Chao Y H, Li S S, Teng K, Xu L X, Xiao G Z, Guo T, Han L B. Cloning of MsNAP gene from Medicago sativa and transformation to tobacco (Nicotiana tabacum). Chin J Grassland, 2016, 38(2): 13-19. (in Chinese with English abstract)
[17] Huang G Q, Li W, Zhou W, Zhang J M, Li D D, Gong S Y, Li X B. Seven cotton genes encoding putative NAC domain proteins are preferentially expressed in roots and in responses to abiotic stress during root development. Plant Growth Regul, 2013, 71: 101-112.
doi: 10.1007/s10725-013-9811-x
[18] Liang C, Wang Y, Zhu Y, Tang J, Hu B, Liu L, Ou S, Wu H, Sun X, Chu J, Chu C. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci USA, 2014, 111: 10013-10018.
doi: 10.1073/pnas.1321568111 pmid: 24951508
[19] Zhou Y, Huang W, Liu L, Chen T, Zhou F, Lin Y. Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence. BMC Plant Biol, 2013, 13: 132.
doi: 10.1186/1471-2229-13-132
[20] Carrillo-Bermejo E A, Gamboa-Tuz S D, Pereira-Santana A, Keb-Llanes M A, Castaño E, Figueroa-Yañez L J, Rodriguez-Zapata L C. The SoNAP gene from sugarcane (Saccharum officinarum) encodes a senescence-associated NAC transcription factor involved in response to osmotic and salt stress. J Plant Res, 2020, 133: 897-909.
doi: 10.1007/s10265-020-01230-y pmid: 33094397
[21] Oz M T, Altpeter A, Karan R, Merotto A, Altpeter F. CRISPR/Cas9-mediated multi-allelic gene targeting in sugarcane confers herbicide tolerance. Front Genome Ed, 2021, 3: 673566.
doi: 10.3389/fgeed.2021.673566
[22] 许孚, 汪洲涛, 路贵龙, 阙友雄. 甘蔗遗传改良中的基因工程: 适用、成就、局限和展望. 农业生物技术学报, 2022, 30: 580-593.
Xu F, Wang Z T, Lu G L, Que Y X. Genetic engineering in sugarcane improvement: adaptability, achievements, limitations and prospects. J Agric Biotechnol, 2022, 30: 580-593. (in Chinese with English abstract)
[23] 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2 基因的功能分析. 作物学报, 2023, 49: 46-61.
doi: 10.3724/SP.J.1006.2023.24005
Wang H B, Zhang C, Wu M X, Li X, Jiang Z L, Lin R X, Guo J L, Que Y X. Genome-wide identification of NAC transcription factors ATAF subfamily in Saccharum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar. Acta Agron Sin, 2023, 49: 46-61 (in Chinese with English abstract).
[24] 张旭, 凌辉, 刘峰, 黄宁, 王玲, 毛花英, 李聪娜, 汤翰臣, 苏炜华, 苏亚春, 阙友雄. 一个甘蔗IId类WRKY转录因子基因的克隆和表达分析. 中国农业科学, 2018, 51: 4409-4423.
doi: 10.3864/j.issn.0578-1752.2018.23.002
Zhang X, Ling H, Liu F, Huang N, Wang L, Mao H Y, Li C N, Tang H C, Su W H, Su Y C, Que Y X. Cloning and expression analysis of a IId sub-group WRKY transcription factor gene from sugarcane. Sci Agric Sin, 2018, 51: 4409-4423. (in Chinese with English abstract)
[25] 杜翠翠, 吴明星, 张雅婷, 谢婉婕, 张积森, 王恒波. 甘蔗割手密种糖转运蛋白基因SsSWEET11的克隆与功能分析. 作物学报, 2023, 51: 1-12.
Du C C, Wu M X, Zhang Y T, Xie W J, Zhang J S, Wang H B. Cloning and functional analysis of sucrose transporter protein SsSWEET11 gene in sugarcane (Saccharum spontaneum L.). Acta Agron Sin, 2023, 51: 1-12. (in Chinese with English abstract)
[26] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[27] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析. 作物学报, 2021, 47: 1275-1296.
doi: 10.3724/SP.J.1006.2021.04192
Su Y C, Li C N, Su W H, You C H, Cen G L, Zhang C, Ren Y J, Que Y X. Identification of thaumatin-like protein family in Saccharum spontaneum and functional analysis of its homologous gene in sugarcane cultivar. Acta Agron Sin, 2021, 47: 1275-1296. (in Chinese with English abstract)
[28] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[29] Liu F, Huang N, Wang L, Ling H, Sun T, Ahmad W, Muhammad K, Guo J, Xu L, Gao S, Que Y, Su Y. A novel L-ascorbate peroxidase 6 gene, ScAPX6, plays an important role in the regulation of response to biotic and abiotic stresses in sugarcane. Front Plant Sci, 2017, 8: 2262.
doi: 10.3389/fpls.2017.02262
[30] 申娟娟. 本氏烟响应黑暗胁迫的多组学分析. 郑州大学硕士学位论文. 河南郑州, 2021.
Shen J J. Muti-Omics Analysis of Nicotiana bethamiana in response to Dark Stress. MS Thesis of Zhengzhou University, Zhengzhou, Henan, China, 2021 (in Chinese with English abstract).
[31] Brogue K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais C J, Broglie R. Transgenic plants with enhanced resistance to the fungal pathogen. Science, 1991, 254: 1194-1197.
doi: 10.1126/science.254.5035.1194 pmid: 17776411
[32] 李钰卓, 刘柯, 袁璐, 曹丽雯, 王挺进, 甘苏生, 陈利萍. 菜薹BrNAP克隆及其在采后叶片衰老中的功能分析. 园艺学报, 2021, 48(1): 60-72.
doi: 10.16420/j.issn.0513-353x.2020-0295
Li Y Z, Liu K, Yuan L, Cao L W, Wang T J, Gan S S, Chen L P. Cloning and functional analyses of BrNAP in postharvest leaf senescence in Chinese flowering cabbage. Acta Hortic Sin, 2021, 48(1): 60-72. (in Chinese with English abstract)
[33] Chen N, Goodwin P H, Hsiang T. The role of ethylene during the infection of Nicotiana tabacum by Colletotrichum destructivum. J Exp Bot, 2003, 54: 2449-2456.
pmid: 14565949
[34] 朱丽萍, 于壮, 邹翠霞, 李秋莉. 植物逆境相关启动子及功能. 遗传, 2010, 32: 229-234.
Zhu L P, Yu Z, Zou C X, Li Q L. Plant stress-inducible promoters and their function. Hereditas, 2010, 32: 229-234. (in Chinese with English abstract)
[35] 李钰卓. 菜心BrNAP基因的克隆及其在采后叶片衰老中的功能研究. 浙江大学硕士学位论文, 浙江杭州, 2020.
Li J Z. Cloning and Functional Analyses of BrNAP in Postharvest Leaf Senescence in Chinese Flowering Cabbage. MS Thesis of Zhejiang University, Hangzhou, Zhejiang, China, 2020. (in Chinese with English abstract)
[36] He Y, Tang W, Swain J, Green A, Jack T, Gan S. Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiol, 2001, 126: 707-716.
pmid: 11402199
[37] Ming R, VanBuren R, Wai C M, Tang H, Schatz M C, Bowers J E, Lyons E, Wang M L, Chen J, Biggers E, Zhang J, Huang L, Zhang L, Miao W, Zhang J, Ye Z, Miao C, Lin Z, Wang H, Zhou H, Yim W C, Priest H D, Zheng C, Woodhouse M, Edger P P, Guyot R, Guo H B, Guo H, Zheng G, Singh R, Sharma A, Min X, Zheng Y, Lee H, Gurtowski J, Sedlazeck F J, Harkess A, McKain M R, Liao Z, Fang J, Liu J, Zhang X, Zhang Q, Hu W, Qin Y, Wang K, Chen L Y, Shirley N, Lin Y R, Liu L Y, Hernandez A G, Wright C L, Bulone V, Tuskan G A, Heath K, Zee F, Moore P H, Sunkar R, Leebens-Mack J H, Mockler T, Bennetzen J L, Freeling M, Sankoff D, Paterson A H, Zhu X, Yang X, Smith J A C, Cushman J C, Paull R E, Yu Q. The pineapple genome and the evolution of CAM photosynthesis. Nat Genet, 2015, 47: 1435-1442.
doi: 10.1038/ng.3435 pmid: 26523774
[38] 李捷. 水稻NAP转录因子在非生物胁迫调控中的功能分析. 上海师范大学硕士学位论文, 上海, 2013.
Li J. Characterization of NAC Family Transcription Factor OsNAP Conferring Abiotic Stress in Rice. MS Thesis of Shanghai Normal University, Shanghai, China, 2013. (in Chinese with English abstract)
[39] Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F, Jones T, Zhu X, Bowers J, Wai C M, Zheng C, Shi Y, Chen S, Xu X, Yue J, Nelson D R, Huang L, Li Z, Xu H, Zhou D, Wang Y, Hu W, Lin J, Deng Y, Pandey N, Mancini M, Zerpa D, Nguyen J K, Wang L, Yu L, Xin Y, Ge L, Arro J, Han J O, Chakrabarty S, Pushko M, Zhang W, Ma Y, Ma P, Lyu M, Chen F, Zheng G, Xu J, Yang Z, Deng F, Chen X, Liao Z, Zhang X, Lin Z, Lin H, Yan H, Kuang Z, Zhong W, Liang P, Wang G, Yuan Y, Shi J, Hou J, Lin J, Jin J, Cao P, Shen Q, Jiang Q, Zhou P, Ma Y, Zhang X, Xu R, Liu J, Zhou Y, Jia H, Ma Q, Qi R, Zhang Z, Fang J, Fang H, Song J, Wang M, Dong G, Wang G, Chen Z, Ma T, Liu H, Dhungana S R, Huss S E, Yang X, Sharma A, Trujillo J H, Martinez M C, Hudson M, Riascos J J, Schuler M, Chen L Q, Braun D M, Li L, Yu Q, Wang J, Wang K, Schatz M C, Heckerman D, Van Sluys M A, Souza G M, Moore P H, Sankoff D, Van Buren R, Paterson A H, Nagai C, Ming R. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet, 2018, 50: 1565-1573.
doi: 10.1038/s41588-018-0237-2
[40] D’Hont A, Ison D, Alix K, Roux C, Glaszmann J C. Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome, 1998, 41: 221-225.
doi: 10.1139/g98-023
[41] Zhang Q, Qi Y, Pan H, Tang H, Wang G, Hua X, Wang Y, Lin L, Li Z, Li Y, Yu F, Yu Z, Huang Y, Wang T, Ma P, Dou M, Sun Z, Wang Y, Wang H, Zhang X, Yao W, Wang Y, Liu X, Wang M, Wang J, Deng Z, Xu J, Yang Q, Liu Z, Chen B, Zhang M, Ming R, Zhang J. Genomic insights into the recent chromosome reduction of autopolyploid sugarcane Saccharum spontaneum. Nat Genet, 2022, 54: 885-896.
doi: 10.1038/s41588-022-01084-1 pmid: 35654976
[42] Torregrosa L. A putative NAP homolog specifically expressed during grapevine flower and berry development. Vitis, 2005, 45: 51-52.
[43] Fan K, Bibi N, Gan S, Li F, Yuan S, Ni M, Wang M, Shen H, Wang X. A novel NAP member GhNAP is involved in leaf senescence in Gossypium hirsutum. J Exp Bot, 2015, 66: 4669-4682.
[44] Wang Z, Dane F. NAC (NAM/ATAF/CUC) transcription factors in different stresses and their signaling pathway. Acta Physiol Plant, 2013, 35: 1397-1408.
doi: 10.1007/s11738-012-1195-4
[45] Lu P L, Chen N Z, An R, Su Z, Qi B S, Ren F, Chen J, Wang X C. A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol, 2007, 63: 289-305.
doi: 10.1007/s11103-006-9089-8
[46] Peng H, Cheng H Y, Chen C, Yu X W, Yang J N, Gao W R, Shi Q H, Zhang H, Li J G, Ma H. A NAC transcription factor gene of chickpea (Cicer arietinum), CarNAC3, is involved in drought stress response and various developmental processes. J Plant Physiol, 2009, 166: 1934-1945.
doi: 10.1016/j.jplph.2009.05.013
[47] Li D M, Wang J H, Peng S L, Zhu G F, Lyu F B. Molecular cloning and characterization of two novel NAC genes from Mikania micrantha (Asteraceae). Genet Mol Res, 2012, 11: 4383-4401.
doi: 10.4238/2012.September.19.3 pmid: 23079980
[48] Zhang K, Xia X, Zhang Y, Gan S S. An ABA-regulated and Golgi-localized protein phosphatase controls water loss during leaf senescence in Arabidopsis. Plant J, 2012, 69: 667-678.
doi: 10.1111/tpj.2012.69.issue-4
[49] Zhang K, Gan S S. An abscisic acid-AtNAP transcription factor- SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves. Plant Physiol, 2012, 158: 961-969.
doi: 10.1104/pp.111.190876
[1] 田春艳, 边芯, 郎荣斌, 俞华先, 桃联安, 安汝东, 董立华, 张钰, 经艳芬. 甘蔗3个育种性状与SSR标记的关联分析及优异等位变异发掘[J]. 作物学报, 2024, 50(2): 310-324.
[2] 杜翠翠, 吴明星, 张雅婷, 谢婉婕, 张积森, 王恒波. 甘蔗割手密种糖转运蛋白基因SsSWEET11的克隆与功能分析[J]. 作物学报, 2023, 49(9): 2385-2397.
[3] 莫广玲, 余陈静, 梁艳兰, 周定港, 罗俊, 王莫, 阙友雄, 黄宁, 凌辉. 甘蔗ScbHLH13基因的RT-PCR克隆与功能分析[J]. 作物学报, 2023, 49(9): 2485-2497.
[4] 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432.
[5] 玉泉馨, 杨宗桃, 张海, 程光远, 周营栓, 焦文迪, 曾康, 罗廷绪, 黄国强, 张木清, 徐景升. 甘蔗VAMP相关蛋白ScPVA12与甘蔗花叶病毒P3N-PIPO的互作研究[J]. 作物学报, 2023, 49(9): 2472-2484.
[6] 万夷曼, 肖圣慧, 白依超, 范佳音, 王琰, 吴长艾. 谷子毛状根诱导方法的建立与优化[J]. 作物学报, 2023, 49(7): 1758-1768.
[7] 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784.
[8] 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响[J]. 作物学报, 2023, 49(6): 1616-1629.
[9] 王劲松, 白歌, 张艳慧, 申甜雨, 董二伟, 焦晓燕. 长期不同施肥处理对高粱花后叶片衰老、抗氧化酶活性及产量的影响[J]. 作物学报, 2023, 49(3): 845-855.
[10] 杨晓祎, 王慧慧, 张艳雯, 侯典云, 张红晓, 康国章, 胥华伟. 利用CRISPR/Cas9探究水稻OsPIN5c基因功能[J]. 作物学报, 2023, 49(2): 354-364.
[11] 潘洁明, 田绍锐, 梁艳兰, 朱宇林, 周定港, 阙友雄, 凌辉, 黄宁. 甘蔗PIN-LIKES基因家族的鉴定与表达分析[J]. 作物学报, 2023, 49(2): 414-425.
[12] 肖健, 韦星璇, 杨尚东, 卢文, 谭宏伟. 间作西瓜对甘蔗产量效益和根际土壤理化性质及微生态的影响[J]. 作物学报, 2023, 49(2): 526-538.
[13] 杨宗桃, 焦文迪, 张海, 张克闽, 程光远, 罗廷绪, 曾康, 周营栓, 徐景升. 甘蔗谷胱甘肽硫转移酶ScGSTF1与P3N-PIPO互作应答甘蔗花叶病毒侵染的研究[J]. 作物学报, 2023, 49(10): 2665-2676.
[14] 沈庆庆, 王天菊, 王俊刚, 张树珍, 赵雪婷, 何丽莲, 李富生. 割手密转录因子SsWRKY1提高甘蔗品种抗旱能力的功能鉴定[J]. 作物学报, 2023, 49(10): 2654-2664.
[15] 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析[J]. 作物学报, 2023, 49(1): 46-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .