作物学报 ›› 2024, Vol. 50 ›› Issue (1): 110-125.doi: 10.3724/SP.J.1006.2024.34037
王恒波1(), 冯春燕1(), 张以星1, 谢婉婕1, 杜翠翠1, 吴明星1, 张积森2,*()
WANG Heng-Bo1(), FENG Chun-Yan1(), ZHANG Yi-Xing1, XIE Wan-Jie1, DU Cui-Cui1, WU Ming-Xing1, ZHANG Ji-Sen2,*()
摘要:
NAP (NAC-like, activated by apetala3/pistillata)是转录因子NAC基因家族中一类参与调控植物生长发育、叶片衰老及响应激素和非生物胁迫应答的亚家族。本研究利用甘蔗割手密种基因组数据和生物信息学方法, 首先, 基于比较基因组学对NAP亚家族成员进行鉴定、系统进化分析、保守结构域及顺式调控元件预测; 其次, 克隆获得割手密种SsNAP2的等位基因SsNAP2a, 分析该基因在不同生长发育阶段的表达及其在激素和非生物胁迫下的表达特征; 最后, 利用瞬时表达和亚细胞定位分析SsNAP2a基因的功能。结果表明, 在割手密种基因组中共鉴定5个NAP亚家族成员, 亚细胞定位预测所有成员编码蛋白均定位于细胞核上, 这些基因的Ka/Ks比值均小于1, 表明纯化选择在演化中起到关键作用。系统聚类分析表明, 5个代表性的被子植物(拟南芥、菠萝、水稻、玉米和高粱)与已报道的12个物种及甘蔗的NAP亚家族成员, 共计46个, 分为4个Clade, 其演化的顺序Clade I > Clade II> Clade III > Clade IV。此外, 在SsNAP亚家族成员的启动子区域预测到较多响应脱落酸和茉莉酸、低温等逆境胁迫的顺式作用元件, 推测其参与多种激素和非生物胁迫相关应答通路。进一步, 从割手密种SES208中克隆到SsNAP2a基因, 该cDNA全长序列1173 bp (GenBank登录号为OQ335094), 编码390个氨基酸残基, 其与等位基因SsNAP2编码蛋白的序列相似性为97.70%, 有10个氨基酸残基的差异, 表明同源8倍体的割手密种等位基因序列差异较大。qRT-PCR分析表明, SsNAP2a基因在割手密种不同生长发育阶段中组成型表达, 尤其在衰老的蔗皮和根中的表达量最高; 在乙烯利(ethylene, ET)、脱落酸(abscisic acid, ABA)、4℃低温和40℃高温处理下, 其表达量呈现显著诱导表达; 而在8%聚乙二醇(polyethylene glycol, PEG)胁迫下显著下调表达。亚细胞定位表明, SsNAP2a融合蛋白定位在细胞核上。瞬时过表达SsNAP2a基因7 d后, 本氏烟(Nicotiana benthamiana)叶片有明显的卷曲、皱缩等衰老现象, ET合成相关基因(NtEFE26, NtAccdeaminase)显著上调表达, 而水杨酸、茉莉酸和ABA合成相关基因(NtPR-1a/c、NtPR3和NtAREB1)显著下调表达, 表明SsNAP2a基因参与多种激素信号传导途径诱发叶片衰老。以上研究结果为挖掘甘蔗NAP亚家族基因成员参与叶片衰老的生物学功能奠定了研究基础, 也为培育甘蔗抗衰老分子育种提供候选的基因资源。
[1] | 李伟, 韩蕾, 钱永强, 孙振元. 植物NAC转录因子的种类、特征及功能. 应用与环境生物学报, 2011, 17: 596-606. |
Li W, Han L, Qian Y Q, Sun Z Y. Characteristics and functions of NAC transcription factors in plants. Chin J Appl Environ Biol, 2011, 17: 596-606. (in Chinese with English abstract) | |
[2] | Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res, 2003, 10: 239-247. |
[3] |
Sablowski R W, Meyerowitz E M. A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell, 1998, 92: 93-103.
doi: 10.1016/s0092-8674(00)80902-2 pmid: 9489703 |
[4] | Guo Y, Gan S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J, 2006, 46: 601-612. |
[5] |
Ernst H A, Olsen A N, Larsen S, Lo Leggio L. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep, 2004, 5: 297-303.
doi: 10.1038/sj.embor.7400093 pmid: 15083810 |
[6] |
范凯, 王学德, 袁淑娜, 王铭. 植物转录因子NAP亚家族的研究进展. 中国农业科学, 2014, 47: 209-220.
doi: 10.3864/j.issn.0578-1752.2014.02.001 |
Fan K, Wang X D, Yuan S N, Wang M. Recent advances in research of transcription factor nap subfamily in plants. Sci Agric Sin, 2014, 47: 209-220. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2014.02.001 |
|
[7] |
Olsen A N, Ernst H A, Leggio L L, Skriver K. NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci, 2005, 10: 79-87.
doi: 10.1016/j.tplants.2004.12.010 pmid: 15708345 |
[8] |
Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell, 1997, 9: 841-857.
doi: 10.1105/tpc.9.6.841 pmid: 9212461 |
[9] | 范凯. 植物转录因子NAP的系统发育及其对叶片衰老的调控. 浙江大学博士学位论文, 浙江杭州, 2015. |
Fan K. Phyogenetic Analysis of the NAP Transcription Factor in Plants and Its Regulation to Leaf Senescence. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2015. (in Chinese with English abstract) | |
[10] |
Kalivas A, Pasentsis K, Argiriou A, Tsaftaris A S. Isolation, characterization, and expression analysis of an NAP-like cDNA from Crocus (Crocus sativus L.). Plant Mol Biol Rep, 2010, 28: 654-663.
doi: 10.1007/s11105-010-0197-x |
[11] |
Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 2006, 314: 1298-1301.
doi: 10.1126/science.1133649 pmid: 17124321 |
[12] |
Meng Q, Zhang C, Gai J, Yu D. Molecular cloning, sequence characterization and tissue-specific expression of six NAC-like genes in soybean (Glycine max (L.) Merr.). J Plant Physiol, 2007, 164: 1002-1012.
doi: 10.1016/j.jplph.2006.05.019 |
[13] | Fernandez L, Ageorges A, Torregrosa L. A putative NAP homolog specifically expressed during grapevine flower and berry development. Vitis, 2006, 45, 51-52. |
[14] |
Chai L, Biswas M K, Ge X, Deng X. Isolation, characterization, and expression analysis of an SKP1-like gene from ‘Shatian’ Pummelo. Plant Mol Biol Rep, 2010, 28: 569-577.
doi: 10.1007/s11105-010-0184-2 |
[15] | 樊金萍, 赵然. 金鱼藤中ApNAP基因的克隆和表达模式分析. 植物科学学报, 2014, 32: 251-258. |
Fan J P, Zhao R. Cloning and expression pattern analysis of the ApNAP gene in Asarina procumbens. Plant Sci J, 2014, 32: 251-258. (in Chinese with English abstract) | |
[16] | 晁跃辉, 李珊珊, 滕珂, 许立新, 肖国增, 郭涛, 韩烈保. 紫花苜蓿MsNAP基因克隆及烟草转化. 中国草地学报, 2016, 38(2): 13-19. |
Chao Y H, Li S S, Teng K, Xu L X, Xiao G Z, Guo T, Han L B. Cloning of MsNAP gene from Medicago sativa and transformation to tobacco (Nicotiana tabacum). Chin J Grassland, 2016, 38(2): 13-19. (in Chinese with English abstract) | |
[17] |
Huang G Q, Li W, Zhou W, Zhang J M, Li D D, Gong S Y, Li X B. Seven cotton genes encoding putative NAC domain proteins are preferentially expressed in roots and in responses to abiotic stress during root development. Plant Growth Regul, 2013, 71: 101-112.
doi: 10.1007/s10725-013-9811-x |
[18] |
Liang C, Wang Y, Zhu Y, Tang J, Hu B, Liu L, Ou S, Wu H, Sun X, Chu J, Chu C. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci USA, 2014, 111: 10013-10018.
doi: 10.1073/pnas.1321568111 pmid: 24951508 |
[19] |
Zhou Y, Huang W, Liu L, Chen T, Zhou F, Lin Y. Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence. BMC Plant Biol, 2013, 13: 132.
doi: 10.1186/1471-2229-13-132 |
[20] |
Carrillo-Bermejo E A, Gamboa-Tuz S D, Pereira-Santana A, Keb-Llanes M A, Castaño E, Figueroa-Yañez L J, Rodriguez-Zapata L C. The SoNAP gene from sugarcane (Saccharum officinarum) encodes a senescence-associated NAC transcription factor involved in response to osmotic and salt stress. J Plant Res, 2020, 133: 897-909.
doi: 10.1007/s10265-020-01230-y pmid: 33094397 |
[21] |
Oz M T, Altpeter A, Karan R, Merotto A, Altpeter F. CRISPR/Cas9-mediated multi-allelic gene targeting in sugarcane confers herbicide tolerance. Front Genome Ed, 2021, 3: 673566.
doi: 10.3389/fgeed.2021.673566 |
[22] | 许孚, 汪洲涛, 路贵龙, 阙友雄. 甘蔗遗传改良中的基因工程: 适用、成就、局限和展望. 农业生物技术学报, 2022, 30: 580-593. |
Xu F, Wang Z T, Lu G L, Que Y X. Genetic engineering in sugarcane improvement: adaptability, achievements, limitations and prospects. J Agric Biotechnol, 2022, 30: 580-593. (in Chinese with English abstract) | |
[23] |
王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2 基因的功能分析. 作物学报, 2023, 49: 46-61.
doi: 10.3724/SP.J.1006.2023.24005 |
Wang H B, Zhang C, Wu M X, Li X, Jiang Z L, Lin R X, Guo J L, Que Y X. Genome-wide identification of NAC transcription factors ATAF subfamily in Saccharum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar. Acta Agron Sin, 2023, 49: 46-61 (in Chinese with English abstract). | |
[24] |
张旭, 凌辉, 刘峰, 黄宁, 王玲, 毛花英, 李聪娜, 汤翰臣, 苏炜华, 苏亚春, 阙友雄. 一个甘蔗IId类WRKY转录因子基因的克隆和表达分析. 中国农业科学, 2018, 51: 4409-4423.
doi: 10.3864/j.issn.0578-1752.2018.23.002 |
Zhang X, Ling H, Liu F, Huang N, Wang L, Mao H Y, Li C N, Tang H C, Su W H, Su Y C, Que Y X. Cloning and expression analysis of a IId sub-group WRKY transcription factor gene from sugarcane. Sci Agric Sin, 2018, 51: 4409-4423. (in Chinese with English abstract) | |
[25] | 杜翠翠, 吴明星, 张雅婷, 谢婉婕, 张积森, 王恒波. 甘蔗割手密种糖转运蛋白基因SsSWEET11的克隆与功能分析. 作物学报, 2023, 51: 1-12. |
Du C C, Wu M X, Zhang Y T, Xie W J, Zhang J S, Wang H B. Cloning and functional analysis of sucrose transporter protein SsSWEET11 gene in sugarcane (Saccharum spontaneum L.). Acta Agron Sin, 2023, 51: 1-12. (in Chinese with English abstract) | |
[26] |
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[27] |
苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析. 作物学报, 2021, 47: 1275-1296.
doi: 10.3724/SP.J.1006.2021.04192 |
Su Y C, Li C N, Su W H, You C H, Cen G L, Zhang C, Ren Y J, Que Y X. Identification of thaumatin-like protein family in Saccharum spontaneum and functional analysis of its homologous gene in sugarcane cultivar. Acta Agron Sin, 2021, 47: 1275-1296. (in Chinese with English abstract) | |
[28] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[29] |
Liu F, Huang N, Wang L, Ling H, Sun T, Ahmad W, Muhammad K, Guo J, Xu L, Gao S, Que Y, Su Y. A novel L-ascorbate peroxidase 6 gene, ScAPX6, plays an important role in the regulation of response to biotic and abiotic stresses in sugarcane. Front Plant Sci, 2017, 8: 2262.
doi: 10.3389/fpls.2017.02262 |
[30] | 申娟娟. 本氏烟响应黑暗胁迫的多组学分析. 郑州大学硕士学位论文. 河南郑州, 2021. |
Shen J J. Muti-Omics Analysis of Nicotiana bethamiana in response to Dark Stress. MS Thesis of Zhengzhou University, Zhengzhou, Henan, China, 2021 (in Chinese with English abstract). | |
[31] |
Brogue K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais C J, Broglie R. Transgenic plants with enhanced resistance to the fungal pathogen. Science, 1991, 254: 1194-1197.
doi: 10.1126/science.254.5035.1194 pmid: 17776411 |
[32] |
李钰卓, 刘柯, 袁璐, 曹丽雯, 王挺进, 甘苏生, 陈利萍. 菜薹BrNAP克隆及其在采后叶片衰老中的功能分析. 园艺学报, 2021, 48(1): 60-72.
doi: 10.16420/j.issn.0513-353x.2020-0295 |
Li Y Z, Liu K, Yuan L, Cao L W, Wang T J, Gan S S, Chen L P. Cloning and functional analyses of BrNAP in postharvest leaf senescence in Chinese flowering cabbage. Acta Hortic Sin, 2021, 48(1): 60-72. (in Chinese with English abstract) | |
[33] |
Chen N, Goodwin P H, Hsiang T. The role of ethylene during the infection of Nicotiana tabacum by Colletotrichum destructivum. J Exp Bot, 2003, 54: 2449-2456.
pmid: 14565949 |
[34] | 朱丽萍, 于壮, 邹翠霞, 李秋莉. 植物逆境相关启动子及功能. 遗传, 2010, 32: 229-234. |
Zhu L P, Yu Z, Zou C X, Li Q L. Plant stress-inducible promoters and their function. Hereditas, 2010, 32: 229-234. (in Chinese with English abstract) | |
[35] | 李钰卓. 菜心BrNAP基因的克隆及其在采后叶片衰老中的功能研究. 浙江大学硕士学位论文, 浙江杭州, 2020. |
Li J Z. Cloning and Functional Analyses of BrNAP in Postharvest Leaf Senescence in Chinese Flowering Cabbage. MS Thesis of Zhejiang University, Hangzhou, Zhejiang, China, 2020. (in Chinese with English abstract) | |
[36] |
He Y, Tang W, Swain J, Green A, Jack T, Gan S. Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiol, 2001, 126: 707-716.
pmid: 11402199 |
[37] |
Ming R, VanBuren R, Wai C M, Tang H, Schatz M C, Bowers J E, Lyons E, Wang M L, Chen J, Biggers E, Zhang J, Huang L, Zhang L, Miao W, Zhang J, Ye Z, Miao C, Lin Z, Wang H, Zhou H, Yim W C, Priest H D, Zheng C, Woodhouse M, Edger P P, Guyot R, Guo H B, Guo H, Zheng G, Singh R, Sharma A, Min X, Zheng Y, Lee H, Gurtowski J, Sedlazeck F J, Harkess A, McKain M R, Liao Z, Fang J, Liu J, Zhang X, Zhang Q, Hu W, Qin Y, Wang K, Chen L Y, Shirley N, Lin Y R, Liu L Y, Hernandez A G, Wright C L, Bulone V, Tuskan G A, Heath K, Zee F, Moore P H, Sunkar R, Leebens-Mack J H, Mockler T, Bennetzen J L, Freeling M, Sankoff D, Paterson A H, Zhu X, Yang X, Smith J A C, Cushman J C, Paull R E, Yu Q. The pineapple genome and the evolution of CAM photosynthesis. Nat Genet, 2015, 47: 1435-1442.
doi: 10.1038/ng.3435 pmid: 26523774 |
[38] | 李捷. 水稻NAP转录因子在非生物胁迫调控中的功能分析. 上海师范大学硕士学位论文, 上海, 2013. |
Li J. Characterization of NAC Family Transcription Factor OsNAP Conferring Abiotic Stress in Rice. MS Thesis of Shanghai Normal University, Shanghai, China, 2013. (in Chinese with English abstract) | |
[39] |
Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F, Jones T, Zhu X, Bowers J, Wai C M, Zheng C, Shi Y, Chen S, Xu X, Yue J, Nelson D R, Huang L, Li Z, Xu H, Zhou D, Wang Y, Hu W, Lin J, Deng Y, Pandey N, Mancini M, Zerpa D, Nguyen J K, Wang L, Yu L, Xin Y, Ge L, Arro J, Han J O, Chakrabarty S, Pushko M, Zhang W, Ma Y, Ma P, Lyu M, Chen F, Zheng G, Xu J, Yang Z, Deng F, Chen X, Liao Z, Zhang X, Lin Z, Lin H, Yan H, Kuang Z, Zhong W, Liang P, Wang G, Yuan Y, Shi J, Hou J, Lin J, Jin J, Cao P, Shen Q, Jiang Q, Zhou P, Ma Y, Zhang X, Xu R, Liu J, Zhou Y, Jia H, Ma Q, Qi R, Zhang Z, Fang J, Fang H, Song J, Wang M, Dong G, Wang G, Chen Z, Ma T, Liu H, Dhungana S R, Huss S E, Yang X, Sharma A, Trujillo J H, Martinez M C, Hudson M, Riascos J J, Schuler M, Chen L Q, Braun D M, Li L, Yu Q, Wang J, Wang K, Schatz M C, Heckerman D, Van Sluys M A, Souza G M, Moore P H, Sankoff D, Van Buren R, Paterson A H, Nagai C, Ming R. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet, 2018, 50: 1565-1573.
doi: 10.1038/s41588-018-0237-2 |
[40] |
D’Hont A, Ison D, Alix K, Roux C, Glaszmann J C. Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome, 1998, 41: 221-225.
doi: 10.1139/g98-023 |
[41] |
Zhang Q, Qi Y, Pan H, Tang H, Wang G, Hua X, Wang Y, Lin L, Li Z, Li Y, Yu F, Yu Z, Huang Y, Wang T, Ma P, Dou M, Sun Z, Wang Y, Wang H, Zhang X, Yao W, Wang Y, Liu X, Wang M, Wang J, Deng Z, Xu J, Yang Q, Liu Z, Chen B, Zhang M, Ming R, Zhang J. Genomic insights into the recent chromosome reduction of autopolyploid sugarcane Saccharum spontaneum. Nat Genet, 2022, 54: 885-896.
doi: 10.1038/s41588-022-01084-1 pmid: 35654976 |
[42] | Torregrosa L. A putative NAP homolog specifically expressed during grapevine flower and berry development. Vitis, 2005, 45: 51-52. |
[43] | Fan K, Bibi N, Gan S, Li F, Yuan S, Ni M, Wang M, Shen H, Wang X. A novel NAP member GhNAP is involved in leaf senescence in Gossypium hirsutum. J Exp Bot, 2015, 66: 4669-4682. |
[44] |
Wang Z, Dane F. NAC (NAM/ATAF/CUC) transcription factors in different stresses and their signaling pathway. Acta Physiol Plant, 2013, 35: 1397-1408.
doi: 10.1007/s11738-012-1195-4 |
[45] |
Lu P L, Chen N Z, An R, Su Z, Qi B S, Ren F, Chen J, Wang X C. A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol, 2007, 63: 289-305.
doi: 10.1007/s11103-006-9089-8 |
[46] |
Peng H, Cheng H Y, Chen C, Yu X W, Yang J N, Gao W R, Shi Q H, Zhang H, Li J G, Ma H. A NAC transcription factor gene of chickpea (Cicer arietinum), CarNAC3, is involved in drought stress response and various developmental processes. J Plant Physiol, 2009, 166: 1934-1945.
doi: 10.1016/j.jplph.2009.05.013 |
[47] |
Li D M, Wang J H, Peng S L, Zhu G F, Lyu F B. Molecular cloning and characterization of two novel NAC genes from Mikania micrantha (Asteraceae). Genet Mol Res, 2012, 11: 4383-4401.
doi: 10.4238/2012.September.19.3 pmid: 23079980 |
[48] |
Zhang K, Xia X, Zhang Y, Gan S S. An ABA-regulated and Golgi-localized protein phosphatase controls water loss during leaf senescence in Arabidopsis. Plant J, 2012, 69: 667-678.
doi: 10.1111/tpj.2012.69.issue-4 |
[49] |
Zhang K, Gan S S. An abscisic acid-AtNAP transcription factor- SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves. Plant Physiol, 2012, 158: 961-969.
doi: 10.1104/pp.111.190876 |
[1] | 田春艳, 边芯, 郎荣斌, 俞华先, 桃联安, 安汝东, 董立华, 张钰, 经艳芬. 甘蔗3个育种性状与SSR标记的关联分析及优异等位变异发掘[J]. 作物学报, 2024, 50(2): 310-324. |
[2] | 杜翠翠, 吴明星, 张雅婷, 谢婉婕, 张积森, 王恒波. 甘蔗割手密种糖转运蛋白基因SsSWEET11的克隆与功能分析[J]. 作物学报, 2023, 49(9): 2385-2397. |
[3] | 莫广玲, 余陈静, 梁艳兰, 周定港, 罗俊, 王莫, 阙友雄, 黄宁, 凌辉. 甘蔗ScbHLH13基因的RT-PCR克隆与功能分析[J]. 作物学报, 2023, 49(9): 2485-2497. |
[4] | 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432. |
[5] | 玉泉馨, 杨宗桃, 张海, 程光远, 周营栓, 焦文迪, 曾康, 罗廷绪, 黄国强, 张木清, 徐景升. 甘蔗VAMP相关蛋白ScPVA12与甘蔗花叶病毒P3N-PIPO的互作研究[J]. 作物学报, 2023, 49(9): 2472-2484. |
[6] | 万夷曼, 肖圣慧, 白依超, 范佳音, 王琰, 吴长艾. 谷子毛状根诱导方法的建立与优化[J]. 作物学报, 2023, 49(7): 1758-1768. |
[7] | 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784. |
[8] | 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响[J]. 作物学报, 2023, 49(6): 1616-1629. |
[9] | 王劲松, 白歌, 张艳慧, 申甜雨, 董二伟, 焦晓燕. 长期不同施肥处理对高粱花后叶片衰老、抗氧化酶活性及产量的影响[J]. 作物学报, 2023, 49(3): 845-855. |
[10] | 杨晓祎, 王慧慧, 张艳雯, 侯典云, 张红晓, 康国章, 胥华伟. 利用CRISPR/Cas9探究水稻OsPIN5c基因功能[J]. 作物学报, 2023, 49(2): 354-364. |
[11] | 潘洁明, 田绍锐, 梁艳兰, 朱宇林, 周定港, 阙友雄, 凌辉, 黄宁. 甘蔗PIN-LIKES基因家族的鉴定与表达分析[J]. 作物学报, 2023, 49(2): 414-425. |
[12] | 肖健, 韦星璇, 杨尚东, 卢文, 谭宏伟. 间作西瓜对甘蔗产量效益和根际土壤理化性质及微生态的影响[J]. 作物学报, 2023, 49(2): 526-538. |
[13] | 杨宗桃, 焦文迪, 张海, 张克闽, 程光远, 罗廷绪, 曾康, 周营栓, 徐景升. 甘蔗谷胱甘肽硫转移酶ScGSTF1与P3N-PIPO互作应答甘蔗花叶病毒侵染的研究[J]. 作物学报, 2023, 49(10): 2665-2676. |
[14] | 沈庆庆, 王天菊, 王俊刚, 张树珍, 赵雪婷, 何丽莲, 李富生. 割手密转录因子SsWRKY1提高甘蔗品种抗旱能力的功能鉴定[J]. 作物学报, 2023, 49(10): 2654-2664. |
[15] | 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析[J]. 作物学报, 2023, 49(1): 46-61. |
|