欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (1): 126-137.doi: 10.3724/SP.J.1006.2024.34045

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

棉花AP2/ERF转录因子GhTINY2负调控植株抗盐性的功能分析

肖胜华1,2,*(), 陆妍1(), 李安子1, 覃耀斌1, 廖铭静1, 闭兆福1, 卓柑锋1, 朱永红2, 朱龙付2,*()   

  1. 1广西大学农学院 / 亚热带农业生物资源保护与利用国家重点实验室, 广西南宁 530000
    2华中农业大学 / 作物遗传改良国家重点实验室, 湖北武汉 430000
  • 收稿日期:2023-03-06 接受日期:2023-06-29 出版日期:2024-01-12 网络出版日期:2023-07-21
  • 通讯作者: *肖胜华, E-mail: shxiao@gxu.edu.cn; 朱龙付, E-mail: lfzhu@mail.hzau.edu.cn
  • 作者简介:肖胜华, E-mail: shxiao@gxu.edu.cn; 陆妍, E-mail: 714675568@qq.com

    **同等贡献

  • 基金资助:
    广西大学高层次人才科研启动基金项目(A3310051044);广西大学农学院科研发展金项目(EE101711)

Function analysis of an AP2/ERF transcription factor GhTINY2 in cotton negatively regulating salt tolerance

XIAO Sheng-Hua1,2,*(), LU Yan1(), LI An-Zi1, QIN Yao-Bin1, LIAO Ming-Jing1, BI Zhao-Fu1, ZHUO Gan-Feng1, ZHU Yong-Hong2, ZHU Long-Fu2,*()   

  1. 1State Key Laboratory of Conservation and Utilization of Agro-Biological Resources in Subtropical Region / College of Agriculture, Guangxi University, Nanning 530000, Guangxi, China
    2State Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430000, Hubei, China
  • Received:2023-03-06 Accepted:2023-06-29 Published:2024-01-12 Published online:2023-07-21
  • Contact: *E-mail: shxiao@gxu.edu.cn; E-mail: lfzhu@mail.hzau.edu.cn
  • About author:**Contributed equally to this study
  • Supported by:
    Initial Scientific Research Fund of High-level Personnel in Guangxi University(A3310051044);Guangxi University Agricultural College Research Development Fund(EE101711)

摘要:

棉花属于相对耐盐作物, 但高盐胁迫同样会造成棉花产量和纤维品质的大幅下降。深入挖掘抗盐基因并解析棉花响应盐胁迫的分子机理, 对加快棉花抗盐遗传改良育种进程具有重要意义。本研究从棉花响应盐胁迫的转录组数据中鉴定到一个受盐诱导极显著下调表达的AP2/ERF转录因子GhTINY2, 并分析了GhTINY2超表达拟南芥的抗盐表型和各生理指标。结果显示, 在盐胁迫下, GhTINY2超表达植株的种子萌发率显著下降; 脯氨酸、可溶性糖、叶绿素含量等均显著减少; 多个盐胁迫响应基因显著下调表达; 因而表现出更为严重的叶片萎蔫枯黄表型。通过分析GhTINY2超表达拟南芥中的RNA-seq数据, 发现差异表达基因(DEGs)富集到叶绿素代谢、刺激响应等生物过程中, 且DEGs均呈下调表达趋势。此外, 在棉花中通过病毒诱导的基因沉默(VIGS)试验沉默GhTINY2后, TRV:GhTINY2植株在盐胁迫下叶绿素和脯氨酸含量显著增加, 从而增强了棉花的抗盐性。综上, GhTINY2是棉花中一个负调控盐胁迫抗性的重要基因, 未来将有望通过现代基因工程技术利用GhTINY2创制耐盐棉花材料。

关键词: 棉花, GhTINY2, 盐胁迫, 转录因子, 转基因

Abstract:

Cotton is a relatively salt-tolerant crop, but high salt stress leads to a significant decline in cotton yield and fiber quality. Mining the genes involved in salt-tolerance and illuminating the molecular mechanisms that underlie this resistance is of great importance in cotton breeding programs. Here, we identified an AP2/ERF transcription factor GhTINY2 in the transcriptome database from cotton treated with salt, and the relative expression level of GhTINY2 was reduced by salt. Subsequently, the salt-resistant phenotype and physiological indicators of the GhTINY2-overexpression Arabidopsis were analyzed. The results revealed that the GhTINY2-overexpression Arabidopsis had a significant decrease in seed germination rate, the content of proline, soluble sugar, and chlorophyll under salt stress, leading to more severe leaf wilting compared with WT. RNA-seq data from GhTINY2-transgenic Arabidopsis revealed that differentially expressed genes (DEGs) were enriched in a series of biological processes, including chlorophyll metabolism and response to stimulus, and the relative expression level of these DEGs significantly was down-regulated. Moreover, the silence of GhTINY2 in cotton through Virus-induced gene silencing (VIGS) assay showed that TRV:GhTINY2 had a significant increase in chlorophyll and proline content, leading to improved salt tolerance compare with TRV:00. In conclusion, these findings suggest that GhTINY2 was an important gene in cotton that negatively regulated salt stress resistance, and it was expected to create salt-tolerant cotton materials using GhTINY2 gene by modern genetic engineering technology in the future.

Key words: cotton, GhTINY2, salt stress, transcription factor, transgenic

表1

本研究所使用的引物信息表"

引物名称Primer name 引物序列Primer sequence (5°-3°)
GhUB7-F GAAGGCATTCCACCTGACCAAC
GhUB7-R CTTGACCTTCTTCTTCTTGTGCTTG
AtACTIN2-F AAATCACAGCACTTGCACCAAGC
AtACTIN2-R GGCCTTGGAGATCCACATCTGC
AtP5CS2-F ATGATCTTATTTATGTTCTGC
AtP5CS2-R CACTATCTTCCGTCACTAT
AtP5CS1-F ACCAGAAGCACGGTCATTC
AtP5CS1-R CCATCTGAGAATCTTGTG
AtProDH2-F AAGTGTCAGCATCACAAC
AtProDH2-R CACGAAGAAATCATCAC
AtRD20-F GATGGAATCGTCTATCCTTGGG
AtRD20-R ACTGGGACATACCTTCCTTCGG
AtRD22-F CCCATTCCCAACTCTCTCCAT
AtRD22-R GACCTTTTCCGCTGCCAAC
AtRD26-F ATGGGTCGTCATCGTCTTCTTC
AtRD26-R GAAACGCATCGTAACCACCG
TRV:GhTINY2-F GCGTGAGCTCGGTACCGGAGGAGCTGAGCCAGATAGTG
TRV:GhTINY2-R GCCTCCATGGGGATCCCTAGAAATTTTGACCTATCCATGCTA
GhTINY2-F CATCTTCATCGTTGTCGTCCTCA
GhTINY2-R CAGTTTTCTTCGTAATACCAAGGCAT

图1

GhTINY2受NaCl和ABA诱导的表达模式 A: GhTINY2受NaCl诱导的表达热图, 红色表示基因高表达、白色表示基因低表达。B~C: RT-qPCR检测GhTINY2受NaCl (B)和ABA (C)诱导后的表达量。星号代表显著差异(**, P < 0.01, 采用t检验)。"

图2

GhTINY2抑制盐胁迫下的拟南芥种子萌发 A: GhTINY2超表达拟南芥种子在含NaCl和不含NaCl的培养基中萌发2周的表型。B~C: 统计GhTINY2超表达拟南芥种子在不含NaCl (B)和含NaCl (C)培养基中的萌发率。标尺为1 cm, 星号代表显著差异(**, P < 0.01, 采用t检验)。"

图3

GhTINY2负调控拟南芥的盐胁迫抗性 A: GhTINY2超表达拟南芥在含NaCl营养土中的生长表型。B: GhTINY2超表达拟南芥在盐胁迫下的存活率。C: GhTINY2超表达拟南芥离体叶片的失水率。星号代表显著差异(**: P < 0.01, 采用t检验)。"

图4

盐胁迫下GhTINY2超表达拟南芥的各生理指标含量的测定 A~D: GhTINY2超表达拟南芥在盐胁迫下MDA (A)、可溶性糖(B)、脯氨酸(C)和叶绿素(D)含量的测定。星号代表显著差异(**: P < 0.01, 采用t检验)。"

图5

GhTINY2超表达拟南芥的RNA-seq分析 A: GhTINY2超表达拟南芥RNA-seq数据中的差异表达基因火山图。B~C: GhTINY2超表达拟南芥差异表达基因的KEGG富集 (B)和GO分类(C)。"

图6

GhTINY2超表达拟南芥中差异表达基因热图 热图中的数字表示GhTINY2-OE相较于WT的差异表达基因下调倍数。"

图7

GhTINY2超表达拟南芥中盐胁迫响应基因的表达分析 A~B: 在正常条件和盐胁迫条件下, WT和GhTINY2超表达拟南芥中盐胁迫标志基因(A)和脯氨酸合成/降解基因(B)的表达水平。星号代表显著差异(*: P < 0.05; **: P < 0.01, 采用t检验)。"

图8

在棉花中沉默GhTINY2可增强盐胁迫抗性 A: RT-qPCR检测GhTINY2的沉默效果。TRV:00表示空载体对照棉花植株, TRV:GhTINY2表示GhTINY2沉默后的棉花植株。B: TRV:00和TRV:GhTINY2棉花植株的抗盐表型。C~D: 在盐胁迫下TRV:00和TRV:GhTINY2植株叶片中叶绿素(C)和脯氨酸(D)含量。星号代表显著差异(**: P < 0.01, 采用t检验)。"

[1] 白静. 新疆棉花高产栽培与病虫害防治技术. 种子科技, 2022, 40(12): 22-24.
Bai J. High yield cultivation and pest control technology of cotton in Xinjiang. Seed Sci Technol, 2022, 40(12): 22-24. (in Chinese with English abstract)
[2] Sun K, Mehari T G, Fang H, Han J, Huo X, Zhang J, Chen Y, Wang D, Zhuang Z, Ditta A, Khan M K R, Zhang J, Wang K, Wang B. Transcriptome, proteome and functional characterization reveals salt stress tolerance mechanisms in upland cotton (Gossypium hirsutum L.). Front Plant Sci, 2023, 14: 1092616.
doi: 10.3389/fpls.2023.1092616
[3] 阿不都热依木·艾西热甫. 浅谈新疆土壤盐渍化的现状及形成原因. 建筑工程技术与设计, 2015, (19): 1661.
Aixirepu A. The present situation and causes of soil salinization in Xinjiang were discussed. Arch Eng Technol Design, 2015, (19): 1661. (in Chinese with English abstract)
[4] Guo J, Lu X, Tao Y, Guo H, Min W. Comparative ion omics and metabolic responses and adaptive strategies of cotton to salt and alkali stress. Front Plant Sci, 2022, 13: 871387.
doi: 10.3389/fpls.2022.871387
[5] 严青青, 张巨松, 李星星, 王燕提. 盐碱胁迫对海岛棉种子萌发及幼苗根系生长的影响. 作物学报, 2019, 45: 100-110.
doi: 10.3724/SP.J.1006.2019.84067
Yan Q Q, Zhang J S, Li X X, Wang Y T. Effects of salinity stress on seed germination and root growth of seedlings in island cotton. Acta Agron Sin, 2019, 45: 100-110. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.84067
[6] Franco-Zorrilla J M, López-Vidriero I, Carrasco J L, Godoy M, Vera P, Solano R. DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc Natl Acad Sci USA, 2014, 111: 2367-2372.
doi: 10.1073/pnas.1316278111 pmid: 24477691
[7] Zhao Y Y, Yang Z E, Ding Y P, Liu L S, Han X, Zhan J J, Wei X, Diao Y Y, Qin W Q, Wang P, Liu P P, Sajjad M, Zhang X L, Ge X Y.Over-expression of an R2R3 MYB gene, GhMYB73, increases tolerance to salt stress in transgenic Arabidopsis. Plant Sci, 2019, 286: 28-36.
[8] Long L, Yang W W, Liao P, Guo Y W, Kumar A, Gao W. Transcriptome analysis reveals differentially expressed ERF transcription factors associated with salt response in cotton. Plant Sci, 2019, 281: 72-81.
doi: S0168-9452(18)31484-5 pmid: 30824063
[9] He X, Zhu L F, Xu L, Guo W F, Zhang X L. GhATAF1, a NAC transcription factor, confers abiotic and biotic stress responses by regulating phytohormonal signaling networks. Plant Cell Rep, 2016, 35: 2167-2179.
doi: 10.1007/s00299-016-2027-6 pmid: 27432176
[10] 何昕.棉花多逆境响应基因的挖掘和功能验证. 华中农业大学博士学位论文, 湖北武汉, 2016.
He X. Isolation and Characterization of Genes in Cotton Responsive to Multiple Stresses. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2016. (in Chinese with English abstract)
[11] Hao D, Ohme-Takagi M, Sarai A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J Biol Chem, 1998, 273: 26857-26861.
doi: 10.1074/jbc.273.41.26857 pmid: 9756931
[12] Lee S Y, Hwang E Y, Seok H Y, Tarte V N, Jeong M S, Jang S B, Moon Y H. Arabidopsis AtERF71/HRE2 functions as transcriptional activator via cis-acting GCC box or DRE/CRT element and is involved in root development through regulation of root cell expansion. Plant Cell Rep, 2015, 34: 223-231.
doi: 10.1007/s00299-014-1701-9
[13] Zhuang J, Li M Y, Wu B, Liu Y J, Xiong A S. Arg156 in the AP2-domain exhibits the highest binding activity among the 20 Individuals to the GCC box in BnaERF-B3-hy15, a mutant ERF transcription factor from Brassica napus. Front Plant Sci, 2016, 7: 1603.
[14] Feng K, Hou X L, Xing G M, Liu J X, Duan A Q, Xu Z S, Li M Y, Zhuang J, Xiong A S. Advances in AP2/ERF super-family transcription factors in plant. Crit Rev Biotechnol, 2020, 40: 750-776.
doi: 10.1080/07388551.2020.1768509 pmid: 32522044
[15] Zhou Y, Xia H, Li X J, Hu R, Chen Y, Li X B. Overexpression of a cotton gene that encodes a putative transcription factor of AP2/EREBP family in Arabidopsis affects growth and development of transgenic plants. PLoS One, 2013, 8: e78635.
doi: 10.1371/journal.pone.0078635
[16] Hu Y, Wang Y, Liu X, Li J. Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Res, 2004, 14: 8-15.
doi: 10.1038/sj.cr.7290197
[17] Agarwal P K, Gupta K, Lopato S, Agarwal P. Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance. J Exp Bot, 2017, 68: 2135-2148.
doi: 10.1093/jxb/erx118 pmid: 28419345
[18] 朱永红. GhTINY2在棉花抗黄萎病及非生物逆境中的功能研究. 华中农业大学硕士学位论文, 湖北武汉, 2018.
Zhu Y H. Functional Characteriaztion of GhTINY2 in Cotton responsive to Verticillium dahliae and abiotic stress. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2018. (in Chinese with English abstract)
[19] 肖胜华.转录因子MYB4WRKY41TINY2调控棉花木质素代谢与免疫反应的功能解析. 华中农业大学博士学位论文, 湖北武汉, 2021.
Xiao S H.Functional Characterization of Transcription Factors MYB4, WRKY41 and TINY2 in Cotton Lignin Metabolism and Immune Responses. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2021. (in Chinese with English abstract)
[20] Gao W, Long L, Zhu L F, Xu L, Gao W H, Sun L Q, Liu L L, Zhang X L. Proteomic and virus-induced gene silencing (VIGS) analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae. Mol Cell Proteomics, 2013, 12: 3690-3703.
[21] Heath R L, Packer L. Reprint of: photoperoxidation in isolated chloroplasts I. kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys, 2022, 726: 109248.
doi: 10.1016/j.abb.2022.109248
[22] Bates L S, Waldren R P, Teare I D. Rapid determination of free proline for water-stress studies. Plant Soil, 1973, 39: 205-207.
doi: 10.1007/BF00018060
[23] 王学奎, 黄见良. 植物生理生化实验原理和技术(第3版). 北京: 高等教育出版社, 2015. pp 1-324.
Wang X K, Huang J L. Principles and Techniques of Plant Physiological and Biochemical Experiments, 3rd edn. Beijing: Higher Education Press, 2015. pp 1-324. (in Chinese)
[24] 沈建霖.拟南芥丙酮酸转运体AtMPC1介导植物干旱胁迫响应机制研究. 山东大学博士学位论文, 山东泰安, 2018.
Shen J L.The Mechanism Investigation of Arabidopsis Mitochondrial Pyruvate Carrier 1 in Plant Drought Response. PhD Dissertation of Shandong University, Tai’an, Shandong, China, 2018. (in Chinese with English abstract)
[25] Singh M, Kumar J, Singh S, Singh V P, Prasad S M. Roles of Osmo protectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Bio-Technol, 2015, 14: 407-426.
[26] Anderssen S, Naômé A, Jadot C, Brans A, Tocquin P, Rigali S. AURTHO: Autoregulation of transcription factors as facilitator of cis-acting element discovery. Biochim Biophys Acta Gene Regul Mech, 2022, 1865: 194847.
doi: 10.1016/j.bbagrm.2022.194847
[27] Xiao S H, Hu Q, Zhang X J, Si H, Liu S M, Chen L, Chen K, Berne S, Yuan D J, Lindsey K, Zhang X L, Zhu L F. Orchestration of plant development and defense by indirect crosstalk of salicylic acid and brassinosteorid signaling via transcription factor GhTINY2. J Exp Bot, 2021, 72: 4721-4743.
doi: 10.1093/jxb/erab186
[28] Tang Y, Liu K, Zhang J, Li X, Xu K, Zhang Y, Qi J, Yu D, Wang J, Li C. JcDREB2, a physic nut AP2/ERF gene, alters plant growth and salinity stress responses in transgenic rice. Front Plant Sci, 2017, 8: 306.
doi: 10.3389/fpls.2017.00306 pmid: 28321231
[29] Qu Y, Nong Q, Jian S, Lu H, Zhang M, Xia K. An AP2/ERF gene, HuERF1, from Pitaya (Hylocereus undatus) positively regulates salt tolerance. Int J Mol Sci, 2020, 21: 4586.
doi: 10.3390/ijms21134586
[30] Fang X, Ma J, Guo F, Qi D, Zhao M, Zhang C, Wang L, Song B, Liu S, He S, Liu Y, Wu J, Xu P, Zhang S. The AP2/ERF GmERF113 positively regulates the drought response by activating GmPR10-1 in soybean. Int J Mol Sci, 2022, 23: 8159.
doi: 10.3390/ijms23158159
[31] Zhang T, Tang Y, Luan Y, Cheng Z, Wang X, Tao J, Zhao D. Herbaceous peony AP2/ERF transcription factor binds the promoter of the tryptophan decarboxylase gene to enhance high- temperature stress tolerance. Plant Cell Environ, 2022, 45: 2729-2743.
doi: 10.1111/pce.v45.9
[32] Feng X, Feng P, Yu H L, Yu X Y, Sun Q, Liu S Y, Minh T N, Chen J, Wang D, Zhang Q, Cao L, Zhou C M, Li Q, Xiao J L, Zhong S H, Wang A X, Wang L J, Pan H Y, Ding X D. GsSnRK1 interplays with transcription factor GsERF7 from wild soybean to regulate soybean stress resistance. Plant Cell Environ, 2020, 43: 11921211.
[33] Schmidt R, Mieulet D, Hubberten H M, Obata T, Hoefgen R, Fernie A R, Fisahn J, Segundo B S, Guiderdoni E, Schippers J H, Mueller-Roeber B. Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell, 2013, 25: 2115-2131.
doi: 10.1105/tpc.113.113068
[34] Wang L Q, Qin L P, Liu W J, Zhang D Y, Wang Y C. A novel ethylene-responsive factor from Tamarix hispida, ThERF1, is a GCC-box- and DRE-motif binding protein that negatively modulates abiotic stress tolerance in Arabidopsis. Physiol Plant, 2014, 152: 84-97.
[35] Liu D F, Chen X J, Liu J Q, Ye J C, Guo Z J. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J Exp Bot, 2012, 63: 3899-3911.
doi: 10.1093/jxb/ers079
[36] Xiang Y, Tang N, Du H, Ye H Y, Xiong L Z. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol, 2008, 148: 1938-1952.
doi: 10.1104/pp.108.128199 pmid: 18931143
[37] Yu T F, Liu Y, Fu J D, Ma J, Fang Z W, Chen J, Zheng L, Lu Z W, Zhou Y B, Chen M, Xu Z S, Ma Y Z. The NF-Y-PYR module integrates the abscisic acid signal pathway to regulate plant stress tolerance. Plant Biotechnol J, 2021, 19: 2589-2605.
doi: 10.1111/pbi.v19.12
[38] Khan I U, Ali A, Khan H A, Baek D, Park J, Lim C J, Zareen S, Jan M, Lee S Y, Pardo J M, Kim W Y, Yun D J.PWR/HDA9/ ABI4 complex epigenetically regulates ABA dependent drought stress tolerance in Arabidopsis. Front Plant Sci, 2020, 11: 623.
[39] 甘甜甜.转录组和蛋白组联合分析解析杂交桑耐盐机制. 西北农林科技大学博士学位论文, 陕西杨凌, 2022.
Gan T T. Combined Transcriptome and Proteome Analysis Reveals the Salt Tolerance Mechanism of Hybrid Mulberry. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2022. (in Chinese with English abstract)
[40] Teige M, Scheikl E, Eulgem T, Dóczi R, Ichimura K, Shinozaki K, Dangl J L, Hirt H. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell, 2004, 15: 141-152.
[41] Tang Z Y, Cao X Y, Zhang Y P, Jiang J, Qiao D R, Xu H, Cao Y. Two splice variants of the DsMEK1 mitogen-activated protein kinase kinase (MAPKK) are involved in salt stress regulation in Dunaliella salina in different ways. Biotechnol Biof, 2020, 13: 147.
[42] Liang Y Q, Li X S, Yang R R, Gao B, Yao J X, Oliver M J, Zhang D Y. BaDBL1, a unique DREB gene from desiccation tolerant moss Bryum argenteum, confers osmotic and salt stress tolerances in transgenic Arabidopsis. Plant Sci, 2021, 313: 111047.
doi: 10.1016/j.plantsci.2021.111047
[43] Gallego-Giraldo L, Jikumaru Y, Kamiya Y, Tang Y, Dixon RA. Selective lignin downregulation leads to constitutive defense response expression in alfalfa (Medicago sativa L.). New Phytol, 2011, 190: 627-639.
doi: 10.1111/j.1469-8137.2010.03621.x pmid: 21251001
[44] Hu Q, Min L, Yang X Y, Jin S X, Zhang L, Li Y Y, Ma Y Z, Qi X W, Li D Q, Liu H B, Lindsey K, Zhu L F, Zhang X L. Laccase GhLac1 modulates broad-spectrum biotic stress tolerance via manipulating phenylpropanoid pathway and jasmonic acid synthesis. Plant Physiol, 2018, 176: 1808-1823.
doi: 10.1104/pp.17.01628 pmid: 29229698
[45] Xiao S H, Hu Q, Shen J L, Liu S M, Yang Z G, Chen K, Klosterman S J, Javornik B, Zhang X L, Zhu L F. GhMYB4 downregulates lignin biosynthesis and enhances cotton resistance to Verticillium dahliae. Plant Cell Rep, 2021, 40: 735-751.
doi: 10.1007/s00299-021-02672-x pmid: 33638657
[1] 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293.
[2] 李志坤, 贾文华, 朱伟, 刘伟, 马宗斌. 氮肥和缩节胺对棉花纤维产量及品质时间分布的影响[J]. 作物学报, 2024, 50(2): 514-528.
[3] 李艳, 方宇辉, 王永霞, 彭超军, 华夏, 齐学礼, 胡琳, 许为钢. 不同磷胁迫处理转OsPHR2小麦的转录组学分析[J]. 作物学报, 2024, 50(2): 340-353.
[4] 郭家鑫, 叶扬, 郭慧娟, 闵伟. 盐碱胁迫对棉花叶片蛋白质组的影响及差异性分析[J]. 作物学报, 2024, 50(1): 219-236.
[5] 杨闯, 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝. 甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建[J]. 作物学报, 2024, 50(1): 237-250.
[6] 岳润清, 李文兰, 孟昭东. 转基因抗虫耐除草剂玉米自交系LG11的获得及抗性分析[J]. 作物学报, 2024, 50(1): 89-99.
[7] 上官小霞, 杨琴莉, 李换丽. 基于CRISPR/Cas9的棉花GhbHLH71基因编辑突变体的分析[J]. 作物学报, 2024, 50(1): 138-148.
[8] 谭志新, 谢留伟, 李洪戈, 李芳军, 田晓莉, 李召虎. 基于AHP-隶属函数法的棉花子叶期耐低钾能力鉴定[J]. 作物学报, 2024, 50(1): 199-208.
[9] 孙尚文, 束红梅, 杨长琴, 张国伟, 王晓婧, 孟亚利, 王友华, 刘瑞显. 低温下环丙酸酰胺调控棉花内源激素促进噻苯隆脱叶的机制[J]. 作物学报, 2024, 50(1): 187-198.
[10] 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88.
[11] 刘韬奋, 罗单, 张启鹏, 孙圆圆, 李培松, 田景山, 张旺锋, 向导, 张亚黎, 杨明凤, 勾玲. 乙烯利催熟对机采棉铃重和纤维品质的影响[J]. 作物学报, 2024, 50(1): 209-218.
[12] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445.
[13] 莫广玲, 余陈静, 梁艳兰, 周定港, 罗俊, 王莫, 阙友雄, 黄宁, 凌辉. 甘蔗ScbHLH13基因的RT-PCR克隆与功能分析[J]. 作物学报, 2023, 49(9): 2485-2497.
[14] 徐扬, 张岱, 康涛, 温赛群, 张冠初, 丁红, 郭庆, 秦斐斐, 戴良香, 张智猛. 盐胁迫对花生幼苗离子动态及耐盐基因表达的影响[J]. 作物学报, 2023, 49(9): 2373-2384.
[15] 代书桃, 朱灿灿, 马小倩, 秦娜, 宋迎辉, 魏昕, 王春义, 李君霞. 谷子HAK/KUP/KT钾转运蛋白家族全基因组鉴定及其对低钾和高盐胁迫的响应[J]. 作物学报, 2023, 49(8): 2105-2121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .