欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (1): 89-99.doi: 10.3724/SP.J.1006.2024.33016

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

转基因抗虫耐除草剂玉米自交系LG11的获得及抗性分析

岳润清*(), 李文兰, 孟昭东   

  1. 山东省农业科学院玉米研究所 / 小麦玉米国家工程实验室 / 农业农村部黄淮海北部玉米生物学与遗传育种重点实验室, 山东济南250100
  • 收稿日期:2023-03-16 接受日期:2023-05-24 出版日期:2024-01-12 网络出版日期:2023-05-29
  • 通讯作者: *岳润清, E-mail: yuerunqing@126.com
  • 基金资助:
    泰山学者工程项目和财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-02-09)

Acquisition and resistance analysis of transgenic Maize Inbred Line LG11 with insect and herbicide resistance

YUE Run-Qing*(), LI Wen-Lan, MENG Zhao-Dong   

  1. Maize Research Institute, Shandong Academy of Agricultural Sciences / National Engineering Laboratory of Wheat and Maize / Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai Rivers Plain, Ministry of Agriculture and Rural Affairs, Jinan 250100, Shandong, China
  • Received:2023-03-16 Accepted:2023-05-24 Published:2024-01-12 Published online:2023-05-29
  • Contact: *E-mail: yuerunqing@126.com
  • Supported by:
    Taishan Scholars Program and China Agriculture Research System of MOF and MARA(CARS-02-09)

摘要:

虫害是影响我国玉米产量和品质的重要限制因子, 转Bt (Bacillus thuringiensis)基因玉米具有很好的抗虫性, 能有效减少化学杀虫剂的使用, 深受种植者欢迎。但是大面积持续种植转基因玉米, 会引发靶标害虫产生抗性, “多基因”策略是阻止或延缓靶标害虫抗性种群发生的主要治理策略之一。本课题组利用人工合成方法将Cry1Ab和Vip3Aa蛋白的主要结构域组合形成融合蛋白M2cryAb-vip3Aa, 这2种杀虫蛋白在进化上没有同源性且杀虫机理存在差别, 能有效降低靶标害虫产生抗性的几率。本研究拟通过转基因方法将m2cryAb-vip3Aabar基因串联导入受体材料, 并以骨干自交系昌7-2为回交亲本进行回交转育, 获得抗虫耐除草剂且拥有优良农艺性状的转基因玉米新材料, 并对抗虫性和耐除草剂抗性进行分析。研究结果将丰富现有的抗虫耐除草剂玉米种质资源, 并为玉米田间害虫防治和杂草治理提供新的解决方案。

关键词: m2cryAb-vip3Aa, bar, 转基因, 玉米

Abstract:

Insect pests are an important limiting factor affecting the yield and quality of maize. Bacillus thuringiensis transgenic maize has good insect resistance and can reduce the use of chemical insecticides effectively, which is very popular among growers. However, a large area of continuous planting of transgenic corn will lead to the resistance of target pests. “Multi-gene” strategy is one of the management strategies to prevent or delay the occurrence of resistant populations of target pests. The anti-insect vector constructed in this study is a fusion protein M2cryAb-vip3Aa formed by combining the main structural domains of Cry1Ab and Vip3Aa proteins using synthetic methods. These two insecticidal proteins had no evolutionary homology and different insecticidal mechanisms, which could effectively reduce the resistance probability of target pests. In this study, to obtain a new transgenic maize material with insect resistance and herbicide resistance and excellent agronomic traits, and analyze its insect resistance and herbicide resistance, m2cryAb-vip3Aa and bar genes were introduced into the recipient materials in series by transgenic method, and Chang 7-2, a backbone inbred line, was used as the backcross parent for backcross transfer. The results of this study enriches the existing germplasm resources of insect-resistant and herbicide-tolerant maize, and provides new solutions for pest control and weed control in maize fields.

Key words: m2cryAb-vip3Aa, bar, transgenic, maize (Zea mays L.)

表1

室内生物测定抗虫性评价标准"

抗虫性水平
Insect resistance level
幼虫校正死亡率y
Adjusted larval mortality y (%)
高抗High resistance y ≥ 90
抗Resistance 90 > y ≥ 60
中抗Medium resistance 60 > y ≥ 40
低抗Low resistance 40 > y ≥ 20
感Sensitivity 20 > y

图1

M2cryAb-vip3Aa蛋白的结构域预测"

图2

转化体LG11目的基因的PCR检测 A: m2cryAb-vip3Aa基因, 目标条带预期大小958 bp; B: bar基因, 目标条带预期大小506 bp。M: DL2000 DNA marker; N: 纯水; 1: 阳性对照质粒; 2: 阴性对照(含昌7-2)基因组DNA; 3: BC4F2代转化体LG11基因组DNA; 4: BC5F2代转化体LG11基因组DNA; 5~6: 同载体其他转化体基因组DNA。"

图3

目的基因m2cryAb-vip3Aa和bar的Southern杂交结果 A: 目的基因m2cryAb-vip3Aa的Hind III酶切杂交图谱; B: 目的基因m2cryAb-vip3Aa的BamH I酶切杂交图谱; C: 目的基因bar的Hind III酶切杂交图谱; D: 目的基因bar的BamH I酶切杂交图谱。M: DNA marker, 大小标注在旁; CK: 阴性对照(含昌7-2); 1: 阳性对照质粒; 2: BC4F2代转化体LG11基因组DNA; 3: BC5F1代转化体LG11基因组DNA; 4: BC5F2代转化体LG11基因组DNA。"

表2

转化体LG11外源基因的表达模式分析"

检测基因
Gene name
生育期
Growth stage
组织
Tissue
BC5F2代LG11
BC5F2 transformation LG11
昌7-2
Chang 7-2
m2cryAb-vip3Aa 苗期Seedling stage 根Root 36.43±7.42 c
茎Stem 38.73±3.30 b
叶Leaf 70.01±9.19 a
吐丝期Silking stage 根Root 2.38±0.05 f 未检出Not detected
茎Stem 1.11±0.07 g 未检出Not detected
成熟期Maturity stage 根Root 2.77±10.56 e
叶Leaf 1.08±0.07 g
籽粒Kernel 10.06±1.77 d
bar 苗期Seedling stage 根Root 2.86±1.15 a
茎Stem 2.74±0.35 a
叶Leaf 1.51±0.62 b
吐丝期Silking stage 根Root 0.24±0.01 b 未检出Not detected
成熟期Maturity stage 根Root 1.41±0.49 b

图4

玉米心叶期叶片和玉米花丝对玉米螟室内生测结果(接虫后5 d) A: 昌7-2心叶期叶片; B: LG11心叶期叶片; C: 昌7-2花丝; D: LG11花丝。"

表3

玉米螟和草地贪夜蛾室内生测"

靶标害虫
Target pest
材料
Material name
叶片Leaf 花丝Silk
死亡率
Mortality rate (%)
校正死亡率
Adjusted mortality rate (%)
抗性
Resistance
死亡率
Mortality
rate
(%)
校正死亡率
Adjusted mortality
rate (%)
抗性
Resistance
玉米螟
Ostrinia
ubilalis
BC5F2代LG11
BC5F2 transformation LG11
100.00±0.00 a 100.00 高抗
High resistance
100.00±0.00 a 100.00 高抗
High resistance
昌7-2
Chang 7-2
10.00±1.50 b 7.50±4.80 b
草地贪夜蛾
Spodoptera frugiperda
BC5F2代LG11
BC5F2 transformation LG11
97.50±5.00 a 97.44 高抗
High resistance
100.0±0.0 a 100.00 高抗
High resistance
昌7-2
Chang 7-2
2.50±0.50 b 7.50±5.00 b

表4

LG11对玉米螟的田间抗性鉴定"

材料
Material name
心叶期Heart leaf stage 吐丝期Silking stage
食叶级别
Level of leaf feeding
虫害级别
Level of pest infestation
抗性级别
Resistance
雌穗被害级别
Level of female panicle damage
抗性级别
Resistance
BC5F2代LG11
BC5F2 transformation LG11
1.33±0.24 b 1 高抗
High resistance
1.40±0.06 b 高抗
High resistance
昌7-2
Chang 7-2
7.73±0.31 a 7
Sensitivity
6.50±0.71 a
Sensitivity

图5

花丝接玉米螟和草地贪夜蛾后的穗期抗虫效果 A: 昌7-2接玉米螟; B: LG11接玉米螟; C: 昌7-2接草地贪夜蛾; D: LG11接草地贪夜蛾。"

表5

LG11对草地贪夜蛾的田间抗性鉴定"

材料
Material
心叶期Heart leaf stage 吐丝期Silking stage
食叶级别
Level of leaf feeding
虫害级别
Level of pest infestation
抗性级别
Resistance
雌穗被害级别
Level of female
panicle damage
抗性级别
Resistance
BC5F2代LG11
BC5F2 transformation LG11
1.09±0.09 b 1 高抗
High resistance
1.41±0.41 b 高抗
High resistance
昌7-2
Chang 7-2
7.83±0.24 a 7
Sense
6.20±0.57 a
Sense

图6

喷施草铵膦1周后LG11和对照昌7-2的耐受性 A: 0倍剂量下昌7-2; B: 1倍剂量下昌7-2; C: 0倍剂量下LG11; D: 1倍剂量下LG11; E: 2倍剂量下LG11; F: 4倍剂量下LG11。"

表6

BC5F2代LG11对草铵膦除草剂耐受性"

药后时间
Time after herbicide spraying
材料
Material
剂量(倍)
Dose (times)
成苗率
Planting rate (%)
受害率
Damage rate (%)
株高
Plant height (cm)
1 week 昌7-2
Chang 7-2
0.00 b 100.00±0.00 a
100.00±0.00 a 0.00 c 66.80±1.73 b
LG11 100.00±0.00 a 0.00 c 74.80±2.25 a
100.00±0.00 a 0.00 c 76.07±2.04 a
100.00±0.00 a 4.57±3.64 b 69.40±2.80 ab
100.00±0.00 a 4.69±2.15 b 74.27±3.45 a
2 weeks 昌7-2
Chang 7-2
0.00 b 100.00±0.00 a
100.00±0.00 a 0.00 b 105.60±3.50 b
LG11 100.00±0.00 a 0.00 b 113.87±0.23 a
100.00±0.00 a 0.00 b 116.07±3.52 a
100.00±0.00 a 0.00 b 113.47±1.22 ab
100.00±0.00 a 0.00 b 114.33±5.03 a
4 weeks 昌7-2
Chang 7-2
0.00 b 100.00±0.00 a
100.00±0.00 a 0.00 b 165.60±1.40 a
LG11 100.00±0.00 a 0.00 b 163.93±2.01 a
100.00±0.00 a 0.00 b 161.13±1.68 a
100.00±0.00 a 0.00 b 164.13±0.76 a
100.00±0.00 a 0.00 b 163.20±1.22 a
[1] 韩长赋. 玉米论略. 农业经济问题, 2012, 33(6): 4-9.
Han C F. On the strategy of corn industry. Issues Agric Econ, 2012, 33(6): 4-9. (in Chinese with English abstract)
[2] 李婷婷, 李文娟. 我国玉米空间格局演变及其影响因素研究进展. 中国农业资源与区划, 2021, 42(2): 87-95.
Li T T, Li W J. Research progress on the evolution of maize spatial pattern and its influencing factors in China. Chin J Agric Resour Region Plan, 2021, 42(2): 87-95. (in Chinese with English abstract)
[3] 刘万才, 刘振东, 黄冲, 陆明红, 刘杰, 杨清坡. 近10年农作物主要病虫害发生危害情况的统计和分析. 植物保护, 2016, 42(5): 1-9.
Liu W C, Liu Z D, Huang C, Lu M H, Liu J, Yang Q P. Statistics and analysis of crop yield losses caused by main diseases and insect pests in recent 10 years. Plant Prot, 2016, 42(5): 1-9. (in Chinese with English abstract)
[4] 姜玉英, 刘万才, 黄冲, 陆明红, 刘杰, 杨清坡. 2018全国农作物重大病虫害发生趋势预报. 中国植保导刊, 2018, 38(2): 26-31.
Jiang Y Y, Liu W C, Huang C, Lu M H, Liu J, Yang Q P. Occurrence trend forecast of major diseases and insect pests of grain crops in China in 2018. China Plant Prot, 2018, 38(2): 26-31. (in Chinese with English abstract)
[5] 王振营, 王晓鸣. 我国玉米病虫害发生现状、趋势与防控对策. 植物保护, 2019, 45(1): 1-11.
Wang Z Y, Wang X M. Current status and management strategies for corn pests and diseases in China. Plant Prot, 2019, 45(1): 1-11. (in Chinese with English abstract)
[6] 张玉池, 王晓蕾, 徐文蓉, 刘琪, 相世刚, 戴伟民, 强胜, 宋小玲. 国内外抗除草剂基因专利的分析. 杂草学报, 2017, 35(2): 1-22.
Zhang Y C, Wang X L, Xu W R, Liu Q, Xiang S G, Dai W M, Qiang S, Song X L. Analysis on the patents of herbicide resistance gene at home and abroad. Weed Sci, 2017, 35(2): 1-22. (in Chinese with English abstract)
[7] 纪逸媚.转基因抗虫作物的安全性研究. 福建农林大学硕士学位论文, 福建福州, 2014.
Ji Y M. Safety of Transgenic Insect-resistant Crops. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2014.
[8] 黎裕, 王天宇. 玉米转基因技术研发与应用现状及展望. 玉米科学, 2018, 26(2): 1-15.
Li Y, Wang T Y. Germplasm enhancement in maize: advances and prospects. J Maize Sci, 2018, 26(2): 1-15. (in Chinese with English abstract)
[9] ISAAA. Global status of commercialized biotech/GM crops in 2018: Biotech crops continue to help meet the challenges of increased population and climate change. The International Service for the Acquisition of Agri-biotech Applications, 2018. Brief 54.
[10] Farias J R, Andow D A, Horikoshi R J, Sorgatto R J, Fresia P, Santos A C, Omoto C. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot, 2014, 64: 150-158.
doi: 10.1016/j.cropro.2014.06.019
[11] Omoto C, Bernardi O, Salmeron E, Rodrigo J, Patrick S. Field-evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil. Pest Manag Sci, 2015, 72: 1727-1736.
doi: 10.1002/ps.2016.72.issue-9
[12] 王月琴, 何康来, 王振营. 靶标害虫对Bt玉米的抗性发展和治理策略. 应用昆虫学报, 2019, 56: 12-23.
Wang Y Q, He K L, Wang Z Y. Evolution of resistance to transgenic Bacillus thuringiensis maize in pest insects and a strategy for managing this. Chin J Appl Entomol, 2019, 56: 12-23. (in Chinese with English abstract)
[13] Bates S L, Zhao J Z, Roush R T, Shelton A M. Insect resistance management in GM crops: past, present and future. Nat Biotechnol, 2005, 23: 57-62.
pmid: 15637622
[14] 李东阳, 肖冰, 王晨尧, 杨现明, 梁晋刚, 吴孔明. 转基因抗虫耐除草剂玉米瑞丰125 Cry1Ab/Cry2Aj杀虫蛋白的时空表达分析. 生物技术通报, 2023, 39(1): 31-39.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0339
Li D Y, Xiao B, Wang C Y, Yang X M, Liang J G, Wu K M. Spatio-temporal expression of Cry1Ab/Cry2Aj insecticidal protein in genetically modified maize Ruifeng 125 with stacked insect and herbicide resistance traits. Biotechnol Bull, 2023, 39(1): 31-39. (in Chinese with English abstract)
[15] Tan S, Evans R, Singh B. Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops. Amino Acids, 2006, 30: 195-204.
doi: 10.1007/s00726-005-0254-1 pmid: 16547651
[16] Que Q D, Chilton M D, de Fontes C M, He C K, Nuccio M, Zhu T, Wu Y X, Chen J S, Shi L. Trait stacking in transgenic crops: challenges and opportunities. GM Crops, 2010, 1: 220-229.
doi: 10.4161/gmcr.1.4.13439 pmid: 21844677
[17] Hutchison W D, Burkness E C, Mitchell P D, Moon R D, Leslie T W, Fleischer S J, Abrahamson M, Hamilton K L, Steffey K L, Gray M E, Hellmich R L, Kaster L V, Hunt T E, Wright R J, Pecinovsky K, Rabaey T L, Flood B R, Raun E S. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science, 2010, 330: 222-225.
doi: 10.1126/science.1190242 pmid: 20929774
[18] Tabashnik B E. Communal benefits of transgenic corn. Science, 330: 189-190.
doi: 10.1126/science.1196864
[19] Van Rensburg J. First report of field resistance by the stem borer, Busseola fusca (Fuller) to Bt-transgenic maize. South Afr J Plant Soil, 2007, 24: 147-151.
[20] Gassmann A J, Carrière Y, Tabashnik B E. Fitness costs of insect resistance to Bacillus thuringiensis. Annu Rev Entomol, 2009, 54: 147-163.
doi: 10.1146/annurev.ento.54.110807.090518 pmid: 19067630
[21] Chen M, Shelton A, Ye G Y. Insect-resistant genetically modified rice in China: from research to commercialization. Annu Rev Entomol, 2011, 56: 81-101.
doi: 10.1146/annurev-ento-120709-144810 pmid: 20868281
[1] 毛燕, 郑名敏, 牟成香, 谢吴兵, 唐琦. 渗透胁迫下玉米自然反义转录本cis-NATZmNAC48启动子的功能分析[J]. 作物学报, 2024, 50(2): 354-362.
[2] 马娟, 曹言勇 . 玉米杂交群体产量性状及其特殊配合力全基因组关联分析[J]. 作物学报, 2024, 50(2): 363-372.
[3] 杨静蕾, 吴冰杰, 王安洲, 肖英杰. 基于多维组学数据的玉米农艺和品质性状预测研究[J]. 作物学报, 2024, 50(2): 373-382.
[4] 李艳, 方宇辉, 王永霞, 彭超军, 华夏, 齐学礼, 胡琳, 许为钢. 不同磷胁迫处理转OsPHR2小麦的转录组学分析[J]. 作物学报, 2024, 50(2): 340-353.
[5] 杨晨曦, 周文期, 周香艳, 刘忠祥, 周玉乾, 刘芥杉, 杨彦忠, 何海军, 王晓娟, 连晓荣, 李永生. 控制玉米株高基因PHR1的基因克隆[J]. 作物学报, 2024, 50(1): 55-66.
[6] 肖胜华, 陆妍, 李安子, 覃耀斌, 廖铭静, 闭兆福, 卓柑锋, 朱永红, 朱龙付. 棉花AP2/ERF转录因子GhTINY2负调控植株抗盐性的功能分析[J]. 作物学报, 2024, 50(1): 126-137.
[7] 宋旭东, 朱广龙, 张舒钰, 章慧敏, 周广飞, 张振良, 冒宇翔, 陆虎华, 陈国清, 石明亮, 薛林, 周桂生, 郝德荣. 长江中下游地区糯玉米花期耐热性鉴定及评价指标筛选[J]. 作物学报, 2024, 50(1): 172-186.
[8] 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264.
[9] 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88.
[10] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445.
[11] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
[12] 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330.
[13] 白岩, 高婷婷, 卢实, 郑淑波, 路明. 近四十年来我国玉米大品种的历史沿革与发展趋势[J]. 作物学报, 2023, 49(8): 2064-2076.
[14] 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087.
[15] 王娟, 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明, 何春梅. 一个新的玉米Miniature1基因等位突变体的鉴定与遗传分析[J]. 作物学报, 2023, 49(8): 2088-2096.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .