作物学报 ›› 2024, Vol. 50 ›› Issue (2): 354-362.doi: 10.3724/SP.J.1006.2024.33013
毛燕1,*(), 郑名敏1, 牟成香1, 谢吴兵2, 唐琦2
MAO Yan1,*(), ZHENG Ming-Min1, MOU Cheng-Xiang1, XIE Wu-Bing2, TANG Qi2
摘要:
前期研究发现自然反义转录本cis-NATZmNAC48可负调控干旱响应基因ZmNAC48, 为了进一步探索cis- NATZmNAC48的功能, 本研究以cis-NATZmNAC48 cDNA序列、ZmNAC48蛋白质编码序列检索玉米B73参考基因组, 获取基因上游启动子序列, 并利用PlantCARE[
[1] | Magali L, Patrice D, Gert T, Kathleen M, Yves M, Yves V D P, Pierre R, Stephane R. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327. |
[2] | Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res, 1999, 27: 297-300. |
[3] | Hrishikesh U, Lingaraj S, Sanjib K P. Molecular Physiology of Osmotic Stress in Plants. Berlin, Germany: Springer, 2013 [2023-06-05]. doi: 10.1007/978-81-322-0807-5. |
[4] |
Lapidot M, Pilpel Y. Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms. EMBO Rep, 2006, 7: 1216-1222.
pmid: 17139297 |
[5] | Borsani O, Zhu J, Verslues P E, Sunkar R, Zhu J K. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 2005, 123: 1279-1291. |
[6] |
Zhao X, Li J, Lian B, Gu H, Li Y, Qi Y. Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA. Nat Commun, 2018, 9: 5056.
doi: 10.1038/s41467-018-07500-7 |
[7] |
Fang J, Zhang F, Wang H, Wang W, Zhao F, Li Z, Sun C, Chen F, Xu F, Chang S, Wu L, Bu Q, Wang P, Xie J, Chen F, Huang Y, Zhang Y, Zhu X, Han B, Deng X, Chu C. Ef-cd locus shortens rice maturity duration without yield penalty. Proc Natl Acad Sci USA, 2019, 116: 18717-18722.
doi: 10.1073/pnas.1815030116 pmid: 31451662 |
[8] | Fedaka H, Palusinskaa M, Krzycczmonika K, Brzezniak L, Yatusevich R, Pietras Z, Kaczanowski S, Swiezewski S. Control of seed dormancy in Arabidopsis by a cis-acting noncoding antisense transcript. Proc Natl Acad Sci USA, 2016, 113: E7846-E7855. |
[9] |
Fedaka H, Palusinskaa M, Krzyczmonika K, Brzezniaka L, Yatusevicha R, Pietrasa Z, Szymon K B, Szymon S. Antisense transcription represses Arabidopsis seed dormancy QTL DOG1 to regulate drought tolerance. EMBO Rep, 2017, 18: 2186-2196.
doi: 10.15252/embr.201744862 pmid: 29030481 |
[10] |
Zubko E, Merer P. A natural antisense transcript of the Petunia hybrida Sho gene suggests a role for an antisense mechanism in cytokinin regulation. Plant J, 2007, 52: 1131-1139.
doi: 10.1111/tpj.2007.52.issue-6 |
[11] |
Mehdi J D S, Cécile L, Christophe R, Qingya S, Yves P. A rice cis-natural antisense RNA acts as a translational enhancer for its cognate mRNA and contributes to phosphate homeostasis and plant fitness. Plant Cell, 2013, 25: 4166-4182.
doi: 10.1105/tpc.113.116251 |
[12] |
Mao Y, Xu J, Wang Q, Li G, Tang X, Liu T, Feng X, Wu F, Li M, Xie W B, Lu Y L. A natural antisense transcript acts as a negative regulator for the maize drought stress response gene ZmNAC48. J Exp Bot, 2021, 72: 2790-2806.
doi: 10.1093/jxb/erab023 |
[13] |
Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743.
doi: 10.1046/j.1365-313x.1998.00343.x pmid: 10069079 |
[14] |
Gruntman E, Qi Y, Slotkin R K, Roeder T, Martienssen R A, Sachidanandam R. Kismeth: analyzer of plant methylation states through bisulfite sequencing. BMC Bioinform, 2008, 9: 371.
doi: 10.1186/1471-2105-9-371 |
[15] |
Xu J, Wang Q, Freeling M, Zhang X, Xu Y, Mao Y, Tang X, Wu F K, Lan H, Cao M J, Rong T Z, Damon L, Lu Y L. Natural antisense transcripts are significantly involved in regulation of drought stress in maize. Nucleic Acids Res, 2017, 45: 5126-5141.
doi: 10.1093/nar/gkx085 pmid: 28175341 |
[16] |
Narusaka Y, Nakashima K, Shinwari Z K, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J, 2003, 34: 137-148.
doi: 10.1046/j.1365-313X.2003.01708.x |
[17] |
Nakashima K, Fujita Y, Katsura K, Maruyama K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. Plant Mol Biol, 2006, 60: 51-68.
pmid: 16463099 |
[18] |
Rushton P J, Somssich I E, Ringler P, Shen Q J. WRKY transcription factors. Trends Plant Sci, 2010, 15: 247-258.
doi: 10.1016/j.tplants.2010.02.006 pmid: 20304701 |
[19] | Hiroshi A, Kazuko Y S, Takeshi U, Toshisuke I, Daijiro H, Kazuo S. Role of Arabidopsis MYC and MYB homologs in drought and abscisic acid-regulated gene expression. Plant Cell, 1997, 9: 1859-1868. |
[20] | Krebs J E. 江松敏译. Lewin基因X (中文版). 北京: 科学出版社, 2013. pp 588-612. |
Krebs J E. Jiang S M, trans trans. Lewin Genes X. Beijing: Science Press, 2013. pp 588-612 (in Chinese). | |
[21] |
Smith J, Sen S, Weeks R J, Eccles M R, Chatterjee A. Promoter DNA hypermethylation and paradoxical gene activation. Trends Cancer, 2020, 6: 392-406.
doi: S2405-8033(20)30067-4 pmid: 32348735 |
[22] |
Zhou Z, Liu C, Qin M, Li W, Hou J, Shi X, Dai Z, Yao W, Tian B, Lei Z, Li Y, Wu Z. Promoter DNA hypermethylation of TaGli-gamma-2.1 positively regulates gluten strength in bread wheat. J Adv Res, 2022, 36: 163-173.
doi: 10.1016/j.jare.2021.06.021 |
[23] |
Fei Y, Xue Y, Du P, Yang S, Deng X. Expression analysis and promoter methylation under osmotic and salinity stress of TaGAPC1 in wheat (Triticum aestivum L.). Protoplasma, 2017, 254: 987-996.
doi: 10.1007/s00709-016-1008-5 |
[1] | 赵荣荣, 丛楠, 赵闯. 基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择[J]. 作物学报, 2024, 50(3): 721-733. |
[2] | 梁星伟, 杨文亭, 金雨, 胡莉, 傅小香, 陈先敏, 周顺利, 申思, 梁效贵. 玉米穗轴的颜色变化,是偶然还是与农艺性状存在关联? ——以历年国审普通品种为例 [J]. 作物学报, 2024, 50(3): 771-778. |
[3] | 薛明, 汪晨晨, 姜露光, 刘浩, 张路遥, 陈赛华. 玉米花序发育基因AFP1的定位及功能研究[J]. 作物学报, 2024, 50(3): 603-612. |
[4] | 马娟, 曹言勇. 玉米杂交群体产量性状及其特殊配合力全基因组关联分析[J]. 作物学报, 2024, 50(2): 363-372. |
[5] | 杨静蕾, 吴冰杰, 王安洲, 肖英杰. 基于多维组学数据的玉米农艺和品质性状预测研究[J]. 作物学报, 2024, 50(2): 373-382. |
[6] | 杨晨曦, 周文期, 周香艳, 刘忠祥, 周玉乾, 刘芥杉, 杨彦忠, 何海军, 王晓娟, 连晓荣, 李永生. 控制玉米株高基因PHR1的基因克隆[J]. 作物学报, 2024, 50(1): 55-66. |
[7] | 岳润清, 李文兰, 孟昭东. 转基因抗虫耐除草剂玉米自交系LG11的获得及抗性分析[J]. 作物学报, 2024, 50(1): 89-99. |
[8] | 宋旭东, 朱广龙, 张舒钰, 章慧敏, 周广飞, 张振良, 冒宇翔, 陆虎华, 陈国清, 石明亮, 薛林, 周桂生, 郝德荣. 长江中下游地区糯玉米花期耐热性鉴定及评价指标筛选[J]. 作物学报, 2024, 50(1): 172-186. |
[9] | 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264. |
[10] | 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88. |
[11] | 左春阳, 李亚玮, 李焱龙, 金双侠, 朱龙付, 张献龙, 闵玲. 陆地棉漆酶基因家族成员表达模式分析[J]. 作物学报, 2023, 49(9): 2344-2361. |
[12] | 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330. |
[13] | 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445. |
[14] | 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343. |
[15] | 白岩, 高婷婷, 卢实, 郑淑波, 路明. 近四十年来我国玉米大品种的历史沿革与发展趋势[J]. 作物学报, 2023, 49(8): 2064-2076. |
|