欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (2): 354-362.doi: 10.3724/SP.J.1006.2024.33013

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

渗透胁迫下玉米自然反义转录本cis-NATZmNAC48启动子的功能分析

毛燕1,*(), 郑名敏1, 牟成香1, 谢吴兵2, 唐琦2   

  1. 1成都师范学院, 四川成都 611130
    2四川农业大学玉米研究所, 四川成都 611130
  • 收稿日期:2023-03-05 接受日期:2023-09-13 出版日期:2024-02-12 网络出版日期:2023-09-27
  • 通讯作者: *毛燕, E-mail: 2469018993@qq.com
  • 作者简介:E-mail: 2469018993@qq.com
  • 基金资助:
    四川省自然科学基金项目(2022NSFSC0152)

Function analysis of the promoter of natural antisense transcript cis- NATZmNAC48 in maize under osmotic stress

MAO Yan1,*(), ZHENG Ming-Min1, MOU Cheng-Xiang1, XIE Wu-Bing2, TANG Qi2   

  1. 1Chengdu Normal University, Chengdu 611130, Sichuan, China
    2Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
  • Received:2023-03-05 Accepted:2023-09-13 Published:2024-02-12 Published online:2023-09-27
  • Contact: *E-mail: 2469018993@qq.com
  • Supported by:
    General Project of Natural Science Foundation of Sichuan Province(2022NSFSC0152)

摘要:

前期研究发现自然反义转录本cis-NATZmNAC48可负调控干旱响应基因ZmNAC48, 为了进一步探索cis- NATZmNAC48的功能, 本研究以cis-NATZmNAC48 cDNA序列、ZmNAC48蛋白质编码序列检索玉米B73参考基因组, 获取基因上游启动子序列, 并利用PlantCARE[1]和New PLACE[2]预测启动子调控元件, 发现cis-NATZmNAC48ZmNAC48启动子序列中除含有CAAT-box, TATA-box等基本元件外, 还含有激素响应元件以及转录因子结合元件等。构建cis-NATZmNAC48ZmNAC48启动子融合GUS的表达载体, 并通过花序侵染法获得转基因拟南芥。分析GUS染色和GUS酶活性发现, Procis-NATZmNAC48:GUS和ProZmNAC48:GUS转基因拟南芥根、茎、叶中均有GUS表达, 且渗透胁迫处理后Procis-NATZmNAC48:GUS转基因拟南芥中GUS 基因的表达量和GUS酶活性显著降低, 而ProZmNAC48:GUS转基因拟南芥中GUS基因的表达量和GUS酶活性显著增加, 可见cis-NATZmNAC48ZmNAC48启动子均响应渗透胁迫。DNA甲基化是影响启动子活性的调控事件之一, 本研究通过分析cis-NATZmNAC48启动子区域DNA甲基化情况, 发现在cis-NATZmNAC48序列前400~1000 bp存在DNA甲基化修饰, 渗透胁迫处理后, 该甲基化区域甲基化富集情况发生了显著的变化, 但发生显著性变化的甲基化位点并未在顺式调控元件上。这些结果为后续cis-NATZmNAC48的调控分析奠定了重要的基础。

关键词: 玉米, 自然反义转录本, 启动子, 渗透胁迫

Abstract:

Previous studies indicate that natural antisense transcript, cis-NATZmNAC48, acts as a negative regulator for maize drought stress response gene ZmNAC48. To further characterize the function of cis-NATZmNAC48, we used cis-NATZmNAC48 cDNA sequence and ZmNAC48 protein coding sequence to retrieve maize B73 reference genome and obtain the upstream promoter. PlantCARE and New PLACE were used to predict promoter regulatory elements, which revealed that the promoter of cis-NATZmNAC48 and ZmNAC48 contained not only CAAT-box, TATA-box, and other basic elements, but also hormone response elements and transcription factor binding element. Plant expression vectors of GUS fusion with cis-NATZmNAC48 and ZmNAC48 promoters were constructed and transgenic Arabidopsis thaliana was obtained by infecting inflorescences. GUS staining analysis showed that Procis-NATZmNAC48:GUS and ProZmNAC48:GUS was expressed in roots, stems, and leaves of Arabidopsis thaliana. After osmotic stress treatment, the relative expression level of GUS gene and GUS enzyme activity of Procis-NATZmNAC48:GUS transgenic Arabidopsis were significantly decreased and increased significantly in ProZmNAC48:GUS transgenic Arabidopsis, which indicating that both cis-NATZmNAC48 and ZmNAC48 promoters responded to osmotic stress. DNA methylation was one of the regulatory events that affected promoter activity. In this study, we found that DNA methylation modification existed in the promoter region of cis-NATZmNAC48. After osmotic stress treatment, the methylation enrichment changed significantly, but the methylation sites with significant changes were not in the cis-regulatory elements. These results laid an important basis for the analysis of cis-NATZmNAC48 regulation.

Key words: maize, natural antisense transcript, promoter, osmotic stress

表1

本研究所用引物"

引物名称
Primer name
用途
Function
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
PNA-1F/1R Cis-NATZmNAC48启动子序列扩增
Amplification of the promoter in
cis-NATZmNAC48
TATGGTTAGGCCCACTACTAG GTACGTGCCGGCTGGCCAC
PNS-1F/1R ZmNAC48启动子序列扩增
Amplification of the promoter in ZmNAC48
ATGCAACCCTGGTTATGTGCT TGTCCCCAAAGAAATTCCTTT
pCAMBIA1391-Cis-NATZmNAC48 Cis-NATZmNAC48启动子序列载体构建
Construction of cis-NATZmNAC48 promoter
vector
tgggcccggcgcgccaagcttTATGGTTAGGCCCACTACTAG TCTTAGAATTCCCGGGGATCCGTACGTGCCGGCTGGCCAC
pCAMBIA1391- ZmNAC48 ZmNAC48启动子序列载体构建
Construction of ZmNAC48 promoter vector
tgggcccggcgcgccaagcttATGCAACCCTGGTTATGTGCT TCTTAGAATTCCCGGGGATCCTGTCCCCAAAGAAATTCCTTT
3F/4R Cis-NATZmNAC48启动子甲基化检测
Detected the methylation of cis-NATZmNAC48
promoter
ATTGGGGATATATAGAAATTTTGTATATAA CAAAAAAACGACACTTGATAAATACCCTC
1F/1R ZmNAC48启动子甲基化检测
Detected the methylation of ZmNAC48
promoter
GGATGAATTATTTATATTTAGTTTTT ACCTACCTCCTACCAATTTAACACA

表2

Cis-NATZmNAC48 启动子中主要顺式调控元件"

调控元件
Regulatory elements
数量
Number
功能
Function
TATA-box 8 转录起始位点-30核心启动子元件 Core promoter element around -30 of transcription start
CAAT-box 9 启动子和增强子区的一般顺式作用元件Common cis-acting element in promoter and enhancer regions
A-box 1 顺式作用调控元件 Cis-acting regulatory element
Box 4 1 光响应元件 Part of a conserved DNA module involved in light responsivenes
ACE 1 光响应元件 Cis-acting element involved in light responsiveness
G-box 3 光响应元件 Cis-acting regulatory element involved in light responsiveness
TGACG-motif 3 茉莉酸甲酯响应元件 Cis-acting regulatory element involved in the MeJA-responsiveness
TGA-element 1 生长素响应元件 Auxin-responsive element
CGTCA-motif 1 茉莉酸甲酯响应元件 Cis-acting regulatory element involved in the MeJA-responsiveness
ABRE 8 脱落酸响应元件 Cis-acting element involved in the abscisic acid responsiveness
W box 1 WRKY转录因子结合位点 Binding site of WRKY
CCGTCC motif 2 诱导应答元件
These elements appear to be necessary but not sufficient for elicitor-or light-mediated PAL gene activation
AAGAA-motif 2
Unnamed__1 1
Unnamed__4 4
STRE 1

表3

ZmNAC48启动子中顺式调控元件"

调控元件
Regulatory elements
数量
Number
功能
Function
TATA-box 10 转录起始位点-30核心启动子元件 Core promoter element around -30 of transcription start
CAAT-box 8 启动子和增强子区的一般顺式作用元件Common cis-acting element in promoter and enhancer regions
3-AF3 binding site 1 保守DNA序列 Part of a conserved DNA module array (CMA3)
O2-site 1 玉米醇溶蛋白代谢 Cis-acting regulatory element involved in zein metabolism regulation
NON-box 1 分生组织特异表达 Cis-acting regulatory element related to meristem specific activation
GA-motif 1 光响应元件 Part of a light responsive element
TCCC-motif 1 光响应元件 Part of a light responsive element
ARE 1 厌氧诱导元件 Cis-acting regulatory element essential for the anaerobic induction
TGACG-motif 4 茉莉酸甲酯响应元件 Cis-acting regulatory element involved in the MeJA-responsiveness
CGTCA-motif 1 茉莉酸甲酯响应元件 Cis-acting regulatory element involved in the MeJA-responsiveness
MBS 1 MYB结合位点涉及干旱诱导 MYB binding site involved in drought-inducibility
Myb-binding site 6 MYB结合位点 MYB binding site
Myc 1
Unnamed__4 6
STRE 2

图1

Cis-NATZmNAC48和ZmNAC48启动子功能分析 A~C: ProZmNAC48:GUS和Procis-NATZmNAC48:GUS转基因拟南芥中GUS染色, GUS表达量及GUS酶活。CK表示将14 d大小的拟南芥放于1/2 MS液体培养基中生长6 h; 20% PEG-6000表示将14 d大小的拟南芥放于含20% PEG-6000 1/2 MS液体培养基中生长6 h。WT表示野生型拟南芥哥伦比亚0型。显著性分析采用t检验, **表示P < 0.01。"

图2

Cis-NATZmNAC48和ZmNAC48启动子区域DNA甲基化 A: cis-NATZmNAC48启动子区域DNA甲基化。B: ZmNAC48启动子区域DNA甲基化。CK表示玉米材料正常的营养液中生长的玉米材料, 20% PEG-6000表示在含有20% PEG-6000营养液中处理24 h。"

图3

Cis-NATZmNAC48和ZmNAC48启动子区域DNA甲基化分析 A~E: 用BSP检测玉米耐旱自交系AC7643和干旱敏感自交系AC7729/TZSRWB中cis-NATZmNAC48启动子区域DNA甲基化情况。F: 用BSP检测ZmNAC48启动子区域DNA甲基化情况。CK表示对照, 20% PEG-6000表示用20% PEG-6000处理玉米材料6 h。红色线条表示甲基化类型GC, 绿色线条表示甲基化类型CHG, 蓝色线条表示甲基化类型CHH。显著性分析采用卡方检验, **表示P < 0.01。图A~B, D~F中所用到的单克隆个数分别为: 50、44、29、29和11。"

图4

Cis-NATZmNAC48 启动子甲基化区域顺式元件预测 红色箭头所指位置为胁迫处理后DNA甲基化发生显著性变化的位点。图中前面4个箭头所在位置是渗透胁迫处理后, 玉米自交系AC7643中检测到的甲基化富集发生显著变化的位点, 最后1个箭头所在位置是AC7729/TZSRWB中检测到的甲基化富集发生显著变化的位点。"

[1] Magali L, Patrice D, Gert T, Kathleen M, Yves M, Yves V D P, Pierre R, Stephane R. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327.
[2] Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res, 1999, 27: 297-300.
[3] Hrishikesh U, Lingaraj S, Sanjib K P. Molecular Physiology of Osmotic Stress in Plants. Berlin, Germany: Springer, 2013 [2023-06-05]. doi: 10.1007/978-81-322-0807-5.
[4] Lapidot M, Pilpel Y. Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms. EMBO Rep, 2006, 7: 1216-1222.
pmid: 17139297
[5] Borsani O, Zhu J, Verslues P E, Sunkar R, Zhu J K. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 2005, 123: 1279-1291.
[6] Zhao X, Li J, Lian B, Gu H, Li Y, Qi Y. Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA. Nat Commun, 2018, 9: 5056.
doi: 10.1038/s41467-018-07500-7
[7] Fang J, Zhang F, Wang H, Wang W, Zhao F, Li Z, Sun C, Chen F, Xu F, Chang S, Wu L, Bu Q, Wang P, Xie J, Chen F, Huang Y, Zhang Y, Zhu X, Han B, Deng X, Chu C. Ef-cd locus shortens rice maturity duration without yield penalty. Proc Natl Acad Sci USA, 2019, 116: 18717-18722.
doi: 10.1073/pnas.1815030116 pmid: 31451662
[8] Fedaka H, Palusinskaa M, Krzycczmonika K, Brzezniak L, Yatusevich R, Pietras Z, Kaczanowski S, Swiezewski S. Control of seed dormancy in Arabidopsis by a cis-acting noncoding antisense transcript. Proc Natl Acad Sci USA, 2016, 113: E7846-E7855.
[9] Fedaka H, Palusinskaa M, Krzyczmonika K, Brzezniaka L, Yatusevicha R, Pietrasa Z, Szymon K B, Szymon S. Antisense transcription represses Arabidopsis seed dormancy QTL DOG1 to regulate drought tolerance. EMBO Rep, 2017, 18: 2186-2196.
doi: 10.15252/embr.201744862 pmid: 29030481
[10] Zubko E, Merer P. A natural antisense transcript of the Petunia hybrida Sho gene suggests a role for an antisense mechanism in cytokinin regulation. Plant J, 2007, 52: 1131-1139.
doi: 10.1111/tpj.2007.52.issue-6
[11] Mehdi J D S, Cécile L, Christophe R, Qingya S, Yves P. A rice cis-natural antisense RNA acts as a translational enhancer for its cognate mRNA and contributes to phosphate homeostasis and plant fitness. Plant Cell, 2013, 25: 4166-4182.
doi: 10.1105/tpc.113.116251
[12] Mao Y, Xu J, Wang Q, Li G, Tang X, Liu T, Feng X, Wu F, Li M, Xie W B, Lu Y L. A natural antisense transcript acts as a negative regulator for the maize drought stress response gene ZmNAC48. J Exp Bot, 2021, 72: 2790-2806.
doi: 10.1093/jxb/erab023
[13] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743.
doi: 10.1046/j.1365-313x.1998.00343.x pmid: 10069079
[14] Gruntman E, Qi Y, Slotkin R K, Roeder T, Martienssen R A, Sachidanandam R. Kismeth: analyzer of plant methylation states through bisulfite sequencing. BMC Bioinform, 2008, 9: 371.
doi: 10.1186/1471-2105-9-371
[15] Xu J, Wang Q, Freeling M, Zhang X, Xu Y, Mao Y, Tang X, Wu F K, Lan H, Cao M J, Rong T Z, Damon L, Lu Y L. Natural antisense transcripts are significantly involved in regulation of drought stress in maize. Nucleic Acids Res, 2017, 45: 5126-5141.
doi: 10.1093/nar/gkx085 pmid: 28175341
[16] Narusaka Y, Nakashima K, Shinwari Z K, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J, 2003, 34: 137-148.
doi: 10.1046/j.1365-313X.2003.01708.x
[17] Nakashima K, Fujita Y, Katsura K, Maruyama K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. Plant Mol Biol, 2006, 60: 51-68.
pmid: 16463099
[18] Rushton P J, Somssich I E, Ringler P, Shen Q J. WRKY transcription factors. Trends Plant Sci, 2010, 15: 247-258.
doi: 10.1016/j.tplants.2010.02.006 pmid: 20304701
[19] Hiroshi A, Kazuko Y S, Takeshi U, Toshisuke I, Daijiro H, Kazuo S. Role of Arabidopsis MYC and MYB homologs in drought and abscisic acid-regulated gene expression. Plant Cell, 1997, 9: 1859-1868.
[20] Krebs J E. 江松敏译. Lewin基因X (中文版). 北京: 科学出版社, 2013. pp 588-612.
Krebs J E. Jiang S M, trans trans. Lewin Genes X. Beijing: Science Press, 2013. pp 588-612 (in Chinese).
[21] Smith J, Sen S, Weeks R J, Eccles M R, Chatterjee A. Promoter DNA hypermethylation and paradoxical gene activation. Trends Cancer, 2020, 6: 392-406.
doi: S2405-8033(20)30067-4 pmid: 32348735
[22] Zhou Z, Liu C, Qin M, Li W, Hou J, Shi X, Dai Z, Yao W, Tian B, Lei Z, Li Y, Wu Z. Promoter DNA hypermethylation of TaGli-gamma-2.1 positively regulates gluten strength in bread wheat. J Adv Res, 2022, 36: 163-173.
doi: 10.1016/j.jare.2021.06.021
[23] Fei Y, Xue Y, Du P, Yang S, Deng X. Expression analysis and promoter methylation under osmotic and salinity stress of TaGAPC1 in wheat (Triticum aestivum L.). Protoplasma, 2017, 254: 987-996.
doi: 10.1007/s00709-016-1008-5
[1] 赵荣荣, 丛楠, 赵闯. 基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择[J]. 作物学报, 2024, 50(3): 721-733.
[2] 梁星伟, 杨文亭, 金雨, 胡莉, 傅小香, 陈先敏, 周顺利, 申思, 梁效贵. 玉米穗轴的颜色变化,是偶然还是与农艺性状存在关联? ——以历年国审普通品种为例 [J]. 作物学报, 2024, 50(3): 771-778.
[3] 薛明, 汪晨晨, 姜露光, 刘浩, 张路遥, 陈赛华. 玉米花序发育基因AFP1的定位及功能研究[J]. 作物学报, 2024, 50(3): 603-612.
[4] 马娟, 曹言勇. 玉米杂交群体产量性状及其特殊配合力全基因组关联分析[J]. 作物学报, 2024, 50(2): 363-372.
[5] 杨静蕾, 吴冰杰, 王安洲, 肖英杰. 基于多维组学数据的玉米农艺和品质性状预测研究[J]. 作物学报, 2024, 50(2): 373-382.
[6] 杨晨曦, 周文期, 周香艳, 刘忠祥, 周玉乾, 刘芥杉, 杨彦忠, 何海军, 王晓娟, 连晓荣, 李永生. 控制玉米株高基因PHR1的基因克隆[J]. 作物学报, 2024, 50(1): 55-66.
[7] 岳润清, 李文兰, 孟昭东. 转基因抗虫耐除草剂玉米自交系LG11的获得及抗性分析[J]. 作物学报, 2024, 50(1): 89-99.
[8] 宋旭东, 朱广龙, 张舒钰, 章慧敏, 周广飞, 张振良, 冒宇翔, 陆虎华, 陈国清, 石明亮, 薛林, 周桂生, 郝德荣. 长江中下游地区糯玉米花期耐热性鉴定及评价指标筛选[J]. 作物学报, 2024, 50(1): 172-186.
[9] 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264.
[10] 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88.
[11] 左春阳, 李亚玮, 李焱龙, 金双侠, 朱龙付, 张献龙, 闵玲. 陆地棉漆酶基因家族成员表达模式分析[J]. 作物学报, 2023, 49(9): 2344-2361.
[12] 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330.
[13] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445.
[14] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
[15] 白岩, 高婷婷, 卢实, 郑淑波, 路明. 近四十年来我国玉米大品种的历史沿革与发展趋势[J]. 作物学报, 2023, 49(8): 2064-2076.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .