作物学报 ›› 2024, Vol. 50 ›› Issue (3): 603-612.doi: 10.3724/SP.J.1006.2024.33035
薛明1(), 汪晨晨1, 姜露光2, 刘浩1, 张路遥1, 陈赛华1,*()
XUE Ming1(), WANG Chen-Chen1, JIANG Lu-Guang2, LIU Hao1, ZHANG Lu-Yao1, CHEN Sai-Hua1,*()
摘要:
玉米花序的正常发育是玉米产量的根本保证。鉴定和挖掘调控花序模式建成的基因和代谢通路将有助于揭示花序发育的分子机制, 为提高玉米产量提供理论指导。本研究从Mo17背景的EMS突变体库中筛选到一个玉米花序发育模式改变的材料, 命名为altered flower pattern 1 (afp1)。表型鉴定结果发现, afp1雌穗产生一系列侧生分枝、且无花丝形成; 雄穗上侧生小穗数量显著增多。遗传学分析表明, afp1性状受一对隐性核基因控制。利用afp1与B73构建的F2分离群体进行连锁分析, 该基因被定位在第7号染色体分子标记M150~M176之间。利用该区间内新开发的14对多态性标记进行精细定位, afp1被限定在分子标记M1722和M1725间约300 kb的范围内, 其间包含一个已知调控玉米花序发育基因BD1 (Branched silkless1)。通过测序发现, afp1的BD1发生一处C-T的变异, 引起BD1蛋白的第67位精氨酸(R)变为色氨酸(W), 该突变位于保守的功能域ERF/AP2上。对发育早期的野生型与afp1雌穗进行RNA-seq分析后发现, afp1相比野生型存在274个差异表达基因(differentially expressed genes, DEGs), 其中56.20%基因表达下调, 43.80%基因表达上调。通过KEGG分析发现, 差异表达基因富集到多种代谢通路, 其中富集到植物激素信号转导途径中的83.30%基因表达量都显著下调, 说明afp1可能通过影响激素信号从而改变花序发育模式。
[1] | 朱璨. 一个玉米花序发育突变体的鉴定与初步遗传分析. 华中农业大学硕士学位论文, 湖北武汉, 2017. |
Zhu C. Identification and Primary Genetic Analysis of a Maize Inflorescence Mutant. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2017 (in Chinese with English abstract). | |
[2] | Irish E E. Regulation of sex determination in maize. BioEassays, 1996, 18: 363-369. |
[3] | Vollbrecht E, Springer P S, Goh L, Buckler E S, Martienssen R. Architecture of floral branch systems in maize and related grasses. Nature, 2005, 436: 1119-1126. |
[4] | Kynast R G. Handbook of maize:its biology. Ann Bot, 2012, 109: 7-8. |
[5] |
Zhang D, Yuan Z. Molecular control of grass inflorescence development. Annu Rev Plant Biol, 2014, 65: 553-578.
doi: 10.1146/annurev-arplant-050213-040104 pmid: 24471834 |
[6] |
Zhou L Z, Juranic M, Dresselhaus T. Germline development and fertilization mechanisms in maize. Mol Plant, 2017, 10: 389-401.
doi: 10.1016/j.molp.2017.01.012 |
[7] |
Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt R J. The control of spikelet meristem identity by the branched silkless1gene in maize. Science, 2002, 298: 1238-1241.
doi: 10.1126/science.1076920 |
[8] |
Laudencia-Chingcuanco D, Hake S. The indeterminate floral apex1 gene regulates meristem determinacy and identity in the maize inflorescence. Development, 2002, 129: 2629-2638.
doi: 10.1242/dev.129.11.2629 pmid: 12015291 |
[9] |
Chuck G, Meeley R, Hake S. Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1. Development, 2008, 135: 3013-3019.
doi: 10.1242/dev.024273 |
[10] |
Nicholas J. Kaplinsky M F. Combinatorial control of meristem identity in maize inflorescences. Development, 2003, 130: 1149-1158.
pmid: 12571106 |
[11] |
Tanaka W, Pautler M, Jackson D, Hirano H Y. Grass meristems II: inflorescence architecture, flower development and meristem fate. Plant Cell Physiol, 2013, 54: 313-324.
doi: 10.1093/pcp/pct016 pmid: 23378448 |
[12] |
赵然, 蔡曼君, 杜艳芳, 张祖新. 玉米籽粒形成的分子生物学基础. 中国农业科学, 2019, 52: 3495-3506.
doi: 10.3864/j.issn.0578-1752.2019.20.001 |
Zhao R, Cai M J, Du Y F, Zhang Z X. Molecular basis of kernel development and kernel number in maize (Zea mays L.). Sci Agric Sin, 2019, 52: 3495-3506 (in Chinese with English abstract). | |
[13] |
Thompson B E, Bartling L, Whipple C, Hall D H, Sakai H, Schmidt R, Hake S. Bearded-ear encodes a MADS box transcription factor critical for maize floral development. Plant Cell, 2009, 21: 2578-2590.
doi: 10.1105/tpc.109.067751 |
[14] |
Bartlett M E, Williams S K, Taylor Z, DeBlasio S, Goldshmidt A, Hall D H, Schmidt R J, Jackson D P, Whipple C J. The maize PI/GLO ortholog Zmm16/sterile tassel silky ear1 interacts with the zygomorphy and sex determination pathways in flower development. Plant Cell, 2015, 27: 3081-3098.
doi: 10.1105/tpc.15.00679 |
[15] |
Barbara A, Ambrose D R, Ciceri P, Padilla C M, Yanofsky M F, Schmidt R J. Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell, 2000, 5: 569-579.
doi: 10.1016/s1097-2765(00)80450-5 pmid: 10882141 |
[16] |
Feng K, Hou X L, Xing G M, Liu J X, Duan A Q, Xu Z S, Li M Y, Zhuang J, Xiong A S. Advances in AP2/ERF super- family transcription factors in plant. Crit Rev Biotechnol, 2020, 40: 750-776.
doi: 10.1080/07388551.2020.1768509 pmid: 32522044 |
[17] |
悦曼芳, 张春, 吴忠义. 植物转录因子AP2/ERF家族蛋白结构和功能的研究进展. 生物技术通报, 2022, 38(12): 11-26.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0432 |
Yue M F, Zhang C, Wu Z Y. Research progress in the structural and functional analysis of plant transcription factor AP2/ ERF protein family. Biotechnol Bull, 2022, 38(12): 11-26 (in Chinese with English abstract). | |
[18] |
Rood S B, Pharis R P, Major D J. Changes of endogenous gibberellin-like substances with sex reversal of the apical inflorescence of corn. Plant Physiol, 1980, 66: 793-796.
doi: 10.1104/pp.66.5.793 pmid: 16661527 |
[19] |
Young T E, Giesler-Lee J, Gallie D R. Senescence-induced expression of cytokinin reverses pistil abortion during maize flower development. Plant J, 2004, 38: 910-922.
doi: 10.1111/j.1365-313X.2004.02093.x pmid: 15165184 |
[20] |
Hartwig T, Chuck G S, Fujioka S, Klempien A, Weizbauer R, Potluri D P V, Choe S, Johal G S, Schulz B. Brassinosteroid control of sex determination in maize. Proc Natl Acad Sci USA, 2011, 108: 19814-19819.
doi: 10.1073/pnas.1108359108 pmid: 22106275 |
[21] |
Gallia M, Liu Q L, Moss B L, Malcomberc S, Li W, Gaines C, Federici S, Roshkovan J, Meeley R, Nemhauser J L, Gallavotti A. Auxin signaling modules regulate maize inflorescence architecture. Proc Natl Acad Sci USA, 2015, 112: 13372-13377.
doi: 10.1073/pnas.1516473112 pmid: 26464512 |
[22] |
Acosta I F, Laparra H, Romero S P, Schmelz E, Hamberg M, Mottinger J P, Moreno M A, Dellaporta S L. tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science, 2009, 323: 262-265.
doi: 10.1126/science.1164645 pmid: 19131630 |
[23] |
Zhao Y, Zhang Y Z, Wang L J, Wang X R, Xu W R, Gao X Y, Liu B S. Mapping and functional analysis of a maize silk less mutant sk-A7110. Front Plant Sci, 2018, 9: 1227.
doi: 10.3389/fpls.2018.01227 pmid: 30186299 |
[24] |
Mena M, Ambrose B A, Meeley R B, Briggs S P, Yanofsky M F, Schmidt R J. Diversification of C-function activity in maize flower development. Science, 1996, 274: 1537-1540.
doi: 10.1126/science.274.5292.1537 pmid: 8929416 |
[25] |
Strable J, Wallace J G, Unger-Wallace E, Briggs S, Bradbury P J, Buckler E S, Vollbrecht E. Maize YABBY genes drooping leaf1 and drooping leaf2 regulate plant architecture. Plant Cell, 2017, 29: 1622-1641.
doi: 10.1105/tpc.16.00477 |
[26] |
McSteen P. Hormonal regulation of branching in grasses. Plant Physiol, 2009, 149: 46-55.
doi: 10.1104/pp.108.129056 pmid: 19126694 |
[27] |
Ritter M K, Padilla C M, Schmidt R J. The maize mutant barren stalk1 is defective in axillary meristem development. Am J Bot, 2002, 89: 203-210.
doi: 10.3732/ajb.89.2.203 |
[28] |
Vollbrecht E, Reiser L, Hake S. Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene knotted1. Development, 2000, 127: 3161-3172.
doi: 10.1242/dev.127.14.3161 pmid: 10862752 |
[29] |
Dellaporta S L, Calderon-Urrea A. The sex determination process in maize. Science, 1994, 266: 1501-1505.
doi: 10.1126/science.7985019 pmid: 7985019 |
[30] | Calderon-Urrea A, Dellaporta S L. Cell death and cell protection genes determine the fate of pistils in maize. Development, 1999: 435-441. |
[31] |
Yin M, Ma H Y, Wang M J, Chu G, Liu Y H, Xu C M, Zhang X F, Wang D Y, Chen S. Transcriptome analysis of flowering regulation by sowing date in japonica rice (Oryza sativa L.). Sci Rep, 2021, 11: 15026.
doi: 10.1038/s41598-021-94552-3 |
[32] |
Yan P S, Li W L, Zhou E X, Xing Y, Li B, Liu J, Zhang Z H, Ding D, Fu Z Y, Xie H L, Tang J H. Integrating BSA-seq with RNA-seq reveals a novel fasciated ear5mutant in maize. Int J Mol Sci, 2023, 24: 1-18.
doi: 10.3390/ijms24010001 |
[33] |
Zhao D, Chen Z, Xu L, Zhang L J, Zou Q. Genome-wide analysis of the MADS-Box gene family in maize: gene structure, evolution, and relationships. Genes, 2021, 12: 1956.
doi: 10.3390/genes12121956 |
[34] |
Hayward A P, Moreno M A, Howard III T P, Hague J, Nelson K, Heffelfinger C, Romero S, Kausch A P, Glauser G, Acosta I F, Mottinger J P, Dellaporta S L. Control of sexuality by the sk1-encoded UDP-glycosyltransferase of maize. Sci Adv, 2016, 2: e1600991.
doi: 10.1126/sciadv.1600991 |
[1] | 娄菲, 左怿平, 李萌, 代鑫萌, 王健, 韩金玲, 吴舒, 李向岭, 段会军. 有机肥替代部分化肥氮对糯玉米产量、品质及氮素利用的影响[J]. 作物学报, 2024, 50(4): 1053-1064. |
[2] | 岳海旺, 魏建伟, 刘朋程, 陈淑萍, 卜俊周. 基于GYT双标图分析对黄淮海生态区玉米品种综合评价[J]. 作物学报, 2024, 50(4): 836-856. |
[3] | 邹佳琪, 王仲林, 谭先明, 陈燎原, 杨文钰, 杨峰. 基于连续小波变换估测干旱胁迫下玉米籽粒产量[J]. 作物学报, 2024, 50(4): 1030-1042. |
[4] | 赵荣荣, 丛楠, 赵闯. 基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择[J]. 作物学报, 2024, 50(3): 721-733. |
[5] | 梁星伟, 杨文亭, 金雨, 胡莉, 傅小香, 陈先敏, 周顺利, 申思, 梁效贵. 玉米穗轴的颜色变化, 是偶然还是与农艺性状存在关联?——以历年国审普通品种为例[J]. 作物学报, 2024, 50(3): 771-778. |
[6] | 毛燕, 郑名敏, 牟成香, 谢吴兵, 唐琦. 渗透胁迫下玉米自然反义转录本cis-NATZmNAC48启动子的功能分析[J]. 作物学报, 2024, 50(2): 354-362. |
[7] | 马娟, 曹言勇. 玉米杂交群体产量性状及其特殊配合力全基因组关联分析[J]. 作物学报, 2024, 50(2): 363-372. |
[8] | 杨静蕾, 吴冰杰, 王安洲, 肖英杰. 基于多维组学数据的玉米农艺和品质性状预测研究[J]. 作物学报, 2024, 50(2): 373-382. |
[9] | 杨晨曦, 周文期, 周香艳, 刘忠祥, 周玉乾, 刘芥杉, 杨彦忠, 何海军, 王晓娟, 连晓荣, 李永生. 控制玉米株高基因PHR1的基因克隆[J]. 作物学报, 2024, 50(1): 55-66. |
[10] | 岳润清, 李文兰, 孟昭东. 转基因抗虫耐除草剂玉米自交系LG11的获得及抗性分析[J]. 作物学报, 2024, 50(1): 89-99. |
[11] | 宋旭东, 朱广龙, 张舒钰, 章慧敏, 周广飞, 张振良, 冒宇翔, 陆虎华, 陈国清, 石明亮, 薛林, 周桂生, 郝德荣. 长江中下游地区糯玉米花期耐热性鉴定及评价指标筛选[J]. 作物学报, 2024, 50(1): 172-186. |
[12] | 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264. |
[13] | 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88. |
[14] | 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445. |
[15] | 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343. |
|