欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (3): 603-612.doi: 10.3724/SP.J.1006.2024.33035

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米花序发育基因AFP1的定位及功能研究

薛明1(), 汪晨晨1, 姜露光2, 刘浩1, 张路遥1, 陈赛华1,*()   

  1. 1江苏省作物基因组学和分子育种重点实验室 / 植物功能基因组学教育部重点实验室 / 江苏省作物遗传生理重点实验室, 扬州大学农学院, 江苏扬州 225009
    2作物杂种优势与利用教育部重点实验室 / 国家玉米改良中心 / 中国农业大学农学院与生物技术学院, 北京 100193
  • 收稿日期:2023-05-26 接受日期:2023-09-13 出版日期:2024-03-12 网络出版日期:2023-10-08
  • 通讯作者: *陈赛华, E-mail: chensaihua@yzu.edu.cn
  • 作者简介:E-mail: mxue@yzu.edu.cn
  • 基金资助:
    江苏省种业振兴揭榜挂帅项目(JBGS[2021]002);江苏省重点研发计划项目(BE2022343)

Mapping and functional analysis of maize inflorescence development gene AFP1

XUE Ming1(), WANG Chen-Chen1, JIANG Lu-Guang2, LIU Hao1, ZHANG Lu-Yao1, CHEN Sai-Hua1,*()   

  1. 1Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
    2MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
  • Received:2023-05-26 Accepted:2023-09-13 Published:2024-03-12 Published online:2023-10-08
  • Contact: *E-mail: chensaihua@yzu.edu.cn
  • Supported by:
    Jiangsu Province Government(JBGS[2021]002);Key Research and Development Program of Jiangsu Province(BE2022343)

摘要:

玉米花序的正常发育是玉米产量的根本保证。鉴定和挖掘调控花序模式建成的基因和代谢通路将有助于揭示花序发育的分子机制, 为提高玉米产量提供理论指导。本研究从Mo17背景的EMS突变体库中筛选到一个玉米花序发育模式改变的材料, 命名为altered flower pattern 1 (afp1)表型鉴定结果发现, afp1雌穗产生一系列侧生分枝、且无花丝形成; 雄穗上侧生小穗数量显著增多。遗传学分析表明, afp1性状受一对隐性核基因控制。利用afp1与B73构建的F2分离群体进行连锁分析, 该基因被定位在第7号染色体分子标记M150~M176之间。利用该区间内新开发的14对多态性标记进行精细定位, afp1被限定在分子标记M1722和M1725间约300 kb的范围内, 其间包含一个已知调控玉米花序发育基因BD1 (Branched silkless1)。通过测序发现, afp1BD1发生一处C-T的变异, 引起BD1蛋白的第67位精氨酸(R)变为色氨酸(W), 该突变位于保守的功能域ERF/AP2上。对发育早期的野生型与afp1雌穗进行RNA-seq分析后发现, afp1相比野生型存在274个差异表达基因(differentially expressed genes, DEGs), 其中56.20%基因表达下调, 43.80%基因表达上调。通过KEGG分析发现, 差异表达基因富集到多种代谢通路, 其中富集到植物激素信号转导途径中的83.30%基因表达量都显著下调, 说明afp1可能通过影响激素信号从而改变花序发育模式。

关键词: 玉米, 花序发育, BD1, 激素信号转导

Abstract:

The normal development of maize inflorescence is the foundation of yield. Mining genes and metabolic pathways can reveal the molecular mechanism of inflorescence development, which will provide a theoretical guidance for maize yield improvement. In this study, a mutant with altered flower pattern 1 (named afp1) was screened from a Mo17 EMS mutant library. The afp1 mutant showed excrescent branches with no silk in the ear, while it increased the lateral spikelet number in the tassel. Genetic analysis revealed that the afp1 phenotype was controlled by a single recessive gene. The gene was initially restricted between M150 and M176 on chromosome 7 by linkage analysis in the afp1×B73 F2 population. It was further narrowed into a 300 kb region between M1722 and M1725 with 14 newly developed molecular markers. Within the mapping region, a known gene related to inflorescence development, BD1 (Branched silkless 1), was located. Due to a C-T mutation in afp1, the 67th conserved arginine (R) in the ERF/AP2 domain of the BD1 protein was altered into tryptophan (W). A total of 274 differentially expressed genes (DEGs) were identified between young ears in afp1 and the wild-type by RNA-seq. Among these genes, 56.20% were down-regulated and 43.80% were up-regulated, which were enriched in multiple metabolic pathways by KEGG analysis. Among them, 83.3% of DEGs in phytohormone signaling pathways were significantly down-regulated, suggesting that afp1 may modulate inflorescence development via a hormone-dependent pathway.

Key words: maize, inflorescence development, BD1, hormone signaling

表1

试验中使用的引物序列"

引物名称
Primer name
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
备注
Note
M150 GACATTCCGTCCTTGAAATC AGGGATCGGCGTTTGATG 图位克隆 Map-based cloning
M158 ATGACTCACGATGGGTATTG CCAAGCAGGTCAGGGTTC 图位克隆 Map-based cloning
M168 TCACGAGTCACGCGACAA GGAAGACGACAGCGAGGA 图位克隆 Map-based cloning
M1690 AGGAGTAGTAGCGGGTGG CACCTGATTTGTGCAAGGG 图位克隆 Map-based cloning
M1696 GTTGAGACGGCGACGACA AAGTGGAGGACGAAAGGA 图位克隆 Map-based cloning
M1702 GTATGGTTTGGGCGTTTG TGCTGGCAAGAATCCACT 图位克隆 Map-based cloning
M1705 CTTGTTTTGAGTTTGCTGCTTC TAACTGCTGGCTATGTCGAGC 图位克隆 Map-based cloning
M171 GTAGCGGCGGTGGAGAAT CCGTGGCTGACAAAGGGA 图位克隆 Map-based cloning
M1718 GCGTATGCGTCTTGGTTG TCGGCTTTAATACTTGCTATCT 图位克隆 Map-based cloning
M1721 GATTCTCGTAGAAGCGGACTG CTGGAGCAATGGCTGTCG 图位克隆 Map-based cloning
M1722 CTGTACATGTGCAGTGTCC TGCTACTGGTCGATCTATC 图位克隆 Map-based cloning
M1725 CGCCGCTGCTTTCTACTCAT TCAATCGTTTCTGGTGGG 图位克隆 Map-based cloning
M173 GCGTCGCTTTCGGGTCTT ATCGGCCTGAAATCGTGT 图位克隆 Map-based cloning
M176 AGGGTGGAACGGATAGGG TGTCGTGGCTGGCTCACT 图位克隆 Map-based cloning
BD1-promoter AGTGGGCCGATTGACGTTGC AATGCCGCTCCTTGGTCGTG 测序 Sequencing
BD1-gene TAAACAGCAGGGATCGGAAGA CAGGCCACCCAGCACTCA 测序 Sequencing
Zm00001d039958 ATTGATATGGCGTTCGCTGAG CTCGTTGTTGACCTCGTAGTGC 实时定量PCR qRT-PCR
Zm00001d014840 TCGTCACCGAGCAGTGGACC CGCCAAGGATGTCGCAGAA 实时定量PCR qRT-PCR
Zm00001d047736 GCCCGTCAACAAGGAGG GGAGTCGTGGGAGGAGATG 实时定量PCR qRT-PCR
Zm00001d007464 CTTGCCGAGCAGAGGAG TTCGTTGTTAGCAGGGAC 实时定量PCR qRT-PCR
Zm00001d037737 ACAACCATGAGCCACAA CAACTCCATTTCCCTTCT 实时定量PCR qRT-PCR
Zm00001d028216 GAGATTCAGCGCATCAAAG CAAAGCGTGGCTCAGTT 实时定量PCR qRT-PCR
Zm00001d049641 GTCACCGTCTTTGGCATCAG AGCAGCCTTGTCCTTGTCAGT 实时定量PCR qRT-PCR

图1

Mo17和afp1花序表型 (A): 玉米花序发育示意图。AM: 腋生分生组织; IM: 花序分生组织; SPM: 成对小穗分生组织; BM: 分支分生组织; SM: 小穗分生组织; FM小花分生组织; (B): 雌花花序[8]; (C): 雄性花序[8]; (D): Mo17雌穗; (E): 无苞叶的Mo17雌穗; (F): afp1雌穗; (G): 无苞叶的afp1雌穗; (H): Mo17雄穗及小花; (I): afp1雄穗及小花。"

表2

afp1突变位点的遗传分析"

群体
Population
总植株数
Total number
突变体植株数
Mutant plants
野生型植株数
Wild type plants
突变体/野生型(1:3)
Mutant plants/wild type plants (1:3)
χ2 χ2(0.05)
B73×afp1 F2 171 45 126 1:2.8 0.69 3.84

表3

SNP芯片检测数据分析"

样本
Sample
缺失数
Number of missing genotypes
缺失率
Missing rate (%)
杂合数
Number of heterogeneities
杂合率
Heterogeneity rate (%)
WM1 2865 4.6956 26,377 43.2304
WM2 3056 5.0086 26,126 42.819
MM1 2709 4.4399 26,426 43.3107
MM2 2826 4.6316 26,143 42.8468
Mo17 777 1.2735 4351 7.131
B73 243 0.3969 238 0.3888
afp1 1117 1.8307 5356 8.7782

图2

afp1精细定位及候选基因分析 (A): afp1精细定位; (B): BD1 (Branched silkless 1) 结构及突变位点。BD1基因突变的核苷酸及氨基酸位点, 红色方框为AP2/ERF结构域; (C): 玉米BD1、BD1B蛋白与其他6个物种BD1的AP2/ERF结构域序列比对。"

表4

Illumina测序数据组装概述"

样品
Sample
过滤后序列
Clean reads
Q20比例
Q20 (%)
Q30比例
Q30 (%)
GC含量
GC (%)
比对到基因组比例
Total mapping ratio (%)
单一位置序列比例
Unique mapping ratio (%)
CK1 48,448,700 96.84 91.62 55.74 86.61 84.16
CK2 71,004,610 96.79 91.57 56.21 85.73 83.44
CK3 53,127,902 96.76 91.46 55.26 86.03 83.73
601-1 51,585,326 96.85 91.74 55.60 85.41 82.82
601-4 56,660,540 96.67 91.24 55.40 85.29 82.75
600-3 57,037,362 96.81 91.59 55.13 85.51 83.17

图3

差异表达基因火山图及qRT-PCR分析 (A): 差异表达基因火山图; (B): qRT-PCR分析。"

图4

基于差异表达基因的KEGG分析"

表5

植物激素信号转导路径相关基因"

激素
Hormones
基因编号
Gene ID
差异倍数
log2 (Fold Change)
基因注释
Gene description
生长素信号 Auxin signaling Zm00001d039513 -1.33 生长素响应蛋白 Auxin-responsive protein IAA
Zm00001d043350 -6.38 生长素响应GH3基因家族 Auxin responsive GH3 gene family
水杨酸Salicylic acid Zm00001d018738 6.07 病害相关蛋白1 Pathogenesis-related protein 1
Zm00001d004966 -2.08 调节蛋白NPR1 Regulatory protein NPR1
Zm00001d010658 -5.12 转录因子TGA Transcription factor TGA
乙烯信号Ethylene signaling Zm00001d021687 -2.59 乙烯受体 Ethylene receptor

图5

差异表达基因分析 (A): 已报道参与SM和FM发育基因的表达量变化, FPKM (Fragments Per Kilobase of exon model per Million mapped fragments); (B): MADS-box家族基因的表达量显著变化; (C): 花序特异表达基因在afp1材料中的表达量变化; (D): 雌穗中低表达基因在afp1材料中的表达量变化。"

[1] 朱璨. 一个玉米花序发育突变体的鉴定与初步遗传分析. 华中农业大学硕士学位论文, 湖北武汉, 2017.
Zhu C. Identification and Primary Genetic Analysis of a Maize Inflorescence Mutant. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2017 (in Chinese with English abstract).
[2] Irish E E. Regulation of sex determination in maize. BioEassays, 1996, 18: 363-369.
[3] Vollbrecht E, Springer P S, Goh L, Buckler E S, Martienssen R. Architecture of floral branch systems in maize and related grasses. Nature, 2005, 436: 1119-1126.
[4] Kynast R G. Handbook of maize:its biology. Ann Bot, 2012, 109: 7-8.
[5] Zhang D, Yuan Z. Molecular control of grass inflorescence development. Annu Rev Plant Biol, 2014, 65: 553-578.
doi: 10.1146/annurev-arplant-050213-040104 pmid: 24471834
[6] Zhou L Z, Juranic M, Dresselhaus T. Germline development and fertilization mechanisms in maize. Mol Plant, 2017, 10: 389-401.
doi: 10.1016/j.molp.2017.01.012
[7] Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt R J. The control of spikelet meristem identity by the branched silkless1gene in maize. Science, 2002, 298: 1238-1241.
doi: 10.1126/science.1076920
[8] Laudencia-Chingcuanco D, Hake S. The indeterminate floral apex1 gene regulates meristem determinacy and identity in the maize inflorescence. Development, 2002, 129: 2629-2638.
doi: 10.1242/dev.129.11.2629 pmid: 12015291
[9] Chuck G, Meeley R, Hake S. Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1. Development, 2008, 135: 3013-3019.
doi: 10.1242/dev.024273
[10] Nicholas J. Kaplinsky M F. Combinatorial control of meristem identity in maize inflorescences. Development, 2003, 130: 1149-1158.
pmid: 12571106
[11] Tanaka W, Pautler M, Jackson D, Hirano H Y. Grass meristems II: inflorescence architecture, flower development and meristem fate. Plant Cell Physiol, 2013, 54: 313-324.
doi: 10.1093/pcp/pct016 pmid: 23378448
[12] 赵然, 蔡曼君, 杜艳芳, 张祖新. 玉米籽粒形成的分子生物学基础. 中国农业科学, 2019, 52: 3495-3506.
doi: 10.3864/j.issn.0578-1752.2019.20.001
Zhao R, Cai M J, Du Y F, Zhang Z X. Molecular basis of kernel development and kernel number in maize (Zea mays L.). Sci Agric Sin, 2019, 52: 3495-3506 (in Chinese with English abstract).
[13] Thompson B E, Bartling L, Whipple C, Hall D H, Sakai H, Schmidt R, Hake S. Bearded-ear encodes a MADS box transcription factor critical for maize floral development. Plant Cell, 2009, 21: 2578-2590.
doi: 10.1105/tpc.109.067751
[14] Bartlett M E, Williams S K, Taylor Z, DeBlasio S, Goldshmidt A, Hall D H, Schmidt R J, Jackson D P, Whipple C J. The maize PI/GLO ortholog Zmm16/sterile tassel silky ear1 interacts with the zygomorphy and sex determination pathways in flower development. Plant Cell, 2015, 27: 3081-3098.
doi: 10.1105/tpc.15.00679
[15] Barbara A, Ambrose D R, Ciceri P, Padilla C M, Yanofsky M F, Schmidt R J. Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell, 2000, 5: 569-579.
doi: 10.1016/s1097-2765(00)80450-5 pmid: 10882141
[16] Feng K, Hou X L, Xing G M, Liu J X, Duan A Q, Xu Z S, Li M Y, Zhuang J, Xiong A S. Advances in AP2/ERF super- family transcription factors in plant. Crit Rev Biotechnol, 2020, 40: 750-776.
doi: 10.1080/07388551.2020.1768509 pmid: 32522044
[17] 悦曼芳, 张春, 吴忠义. 植物转录因子AP2/ERF家族蛋白结构和功能的研究进展. 生物技术通报, 2022, 38(12): 11-26.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0432
Yue M F, Zhang C, Wu Z Y. Research progress in the structural and functional analysis of plant transcription factor AP2/ ERF protein family. Biotechnol Bull, 2022, 38(12): 11-26 (in Chinese with English abstract).
[18] Rood S B, Pharis R P, Major D J. Changes of endogenous gibberellin-like substances with sex reversal of the apical inflorescence of corn. Plant Physiol, 1980, 66: 793-796.
doi: 10.1104/pp.66.5.793 pmid: 16661527
[19] Young T E, Giesler-Lee J, Gallie D R. Senescence-induced expression of cytokinin reverses pistil abortion during maize flower development. Plant J, 2004, 38: 910-922.
doi: 10.1111/j.1365-313X.2004.02093.x pmid: 15165184
[20] Hartwig T, Chuck G S, Fujioka S, Klempien A, Weizbauer R, Potluri D P V, Choe S, Johal G S, Schulz B. Brassinosteroid control of sex determination in maize. Proc Natl Acad Sci USA, 2011, 108: 19814-19819.
doi: 10.1073/pnas.1108359108 pmid: 22106275
[21] Gallia M, Liu Q L, Moss B L, Malcomberc S, Li W, Gaines C, Federici S, Roshkovan J, Meeley R, Nemhauser J L, Gallavotti A. Auxin signaling modules regulate maize inflorescence architecture. Proc Natl Acad Sci USA, 2015, 112: 13372-13377.
doi: 10.1073/pnas.1516473112 pmid: 26464512
[22] Acosta I F, Laparra H, Romero S P, Schmelz E, Hamberg M, Mottinger J P, Moreno M A, Dellaporta S L. tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science, 2009, 323: 262-265.
doi: 10.1126/science.1164645 pmid: 19131630
[23] Zhao Y, Zhang Y Z, Wang L J, Wang X R, Xu W R, Gao X Y, Liu B S. Mapping and functional analysis of a maize silk less mutant sk-A7110. Front Plant Sci, 2018, 9: 1227.
doi: 10.3389/fpls.2018.01227 pmid: 30186299
[24] Mena M, Ambrose B A, Meeley R B, Briggs S P, Yanofsky M F, Schmidt R J. Diversification of C-function activity in maize flower development. Science, 1996, 274: 1537-1540.
doi: 10.1126/science.274.5292.1537 pmid: 8929416
[25] Strable J, Wallace J G, Unger-Wallace E, Briggs S, Bradbury P J, Buckler E S, Vollbrecht E. Maize YABBY genes drooping leaf1 and drooping leaf2 regulate plant architecture. Plant Cell, 2017, 29: 1622-1641.
doi: 10.1105/tpc.16.00477
[26] McSteen P. Hormonal regulation of branching in grasses. Plant Physiol, 2009, 149: 46-55.
doi: 10.1104/pp.108.129056 pmid: 19126694
[27] Ritter M K, Padilla C M, Schmidt R J. The maize mutant barren stalk1 is defective in axillary meristem development. Am J Bot, 2002, 89: 203-210.
doi: 10.3732/ajb.89.2.203
[28] Vollbrecht E, Reiser L, Hake S. Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene knotted1. Development, 2000, 127: 3161-3172.
doi: 10.1242/dev.127.14.3161 pmid: 10862752
[29] Dellaporta S L, Calderon-Urrea A. The sex determination process in maize. Science, 1994, 266: 1501-1505.
doi: 10.1126/science.7985019 pmid: 7985019
[30] Calderon-Urrea A, Dellaporta S L. Cell death and cell protection genes determine the fate of pistils in maize. Development, 1999: 435-441.
[31] Yin M, Ma H Y, Wang M J, Chu G, Liu Y H, Xu C M, Zhang X F, Wang D Y, Chen S. Transcriptome analysis of flowering regulation by sowing date in japonica rice (Oryza sativa L.). Sci Rep, 2021, 11: 15026.
doi: 10.1038/s41598-021-94552-3
[32] Yan P S, Li W L, Zhou E X, Xing Y, Li B, Liu J, Zhang Z H, Ding D, Fu Z Y, Xie H L, Tang J H. Integrating BSA-seq with RNA-seq reveals a novel fasciated ear5mutant in maize. Int J Mol Sci, 2023, 24: 1-18.
doi: 10.3390/ijms24010001
[33] Zhao D, Chen Z, Xu L, Zhang L J, Zou Q. Genome-wide analysis of the MADS-Box gene family in maize: gene structure, evolution, and relationships. Genes, 2021, 12: 1956.
doi: 10.3390/genes12121956
[34] Hayward A P, Moreno M A, Howard III T P, Hague J, Nelson K, Heffelfinger C, Romero S, Kausch A P, Glauser G, Acosta I F, Mottinger J P, Dellaporta S L. Control of sexuality by the sk1-encoded UDP-glycosyltransferase of maize. Sci Adv, 2016, 2: e1600991.
doi: 10.1126/sciadv.1600991
[1] 娄菲, 左怿平, 李萌, 代鑫萌, 王健, 韩金玲, 吴舒, 李向岭, 段会军. 有机肥替代部分化肥氮对糯玉米产量、品质及氮素利用的影响[J]. 作物学报, 2024, 50(4): 1053-1064.
[2] 岳海旺, 魏建伟, 刘朋程, 陈淑萍, 卜俊周. 基于GYT双标图分析对黄淮海生态区玉米品种综合评价[J]. 作物学报, 2024, 50(4): 836-856.
[3] 邹佳琪, 王仲林, 谭先明, 陈燎原, 杨文钰, 杨峰. 基于连续小波变换估测干旱胁迫下玉米籽粒产量[J]. 作物学报, 2024, 50(4): 1030-1042.
[4] 赵荣荣, 丛楠, 赵闯. 基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择[J]. 作物学报, 2024, 50(3): 721-733.
[5] 梁星伟, 杨文亭, 金雨, 胡莉, 傅小香, 陈先敏, 周顺利, 申思, 梁效贵. 玉米穗轴的颜色变化, 是偶然还是与农艺性状存在关联?——以历年国审普通品种为例[J]. 作物学报, 2024, 50(3): 771-778.
[6] 毛燕, 郑名敏, 牟成香, 谢吴兵, 唐琦. 渗透胁迫下玉米自然反义转录本cis-NATZmNAC48启动子的功能分析[J]. 作物学报, 2024, 50(2): 354-362.
[7] 马娟, 曹言勇. 玉米杂交群体产量性状及其特殊配合力全基因组关联分析[J]. 作物学报, 2024, 50(2): 363-372.
[8] 杨静蕾, 吴冰杰, 王安洲, 肖英杰. 基于多维组学数据的玉米农艺和品质性状预测研究[J]. 作物学报, 2024, 50(2): 373-382.
[9] 杨晨曦, 周文期, 周香艳, 刘忠祥, 周玉乾, 刘芥杉, 杨彦忠, 何海军, 王晓娟, 连晓荣, 李永生. 控制玉米株高基因PHR1的基因克隆[J]. 作物学报, 2024, 50(1): 55-66.
[10] 岳润清, 李文兰, 孟昭东. 转基因抗虫耐除草剂玉米自交系LG11的获得及抗性分析[J]. 作物学报, 2024, 50(1): 89-99.
[11] 宋旭东, 朱广龙, 张舒钰, 章慧敏, 周广飞, 张振良, 冒宇翔, 陆虎华, 陈国清, 石明亮, 薛林, 周桂生, 郝德荣. 长江中下游地区糯玉米花期耐热性鉴定及评价指标筛选[J]. 作物学报, 2024, 50(1): 172-186.
[12] 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264.
[13] 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88.
[14] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445.
[15] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .