欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (3): 590-602.doi: 10.3724/SP.J.1006.2024.31034

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦胚芽鞘长度QTL定位和GWAS分析

郝倩琳1(), 杨廷志1, 吕新茹1, 秦慧敏1, 王亚林1, 贾晨飞1, 夏先春2, 马武军1, 徐登安1,*()   

  1. 1青岛农业大学农学院, 山东青岛 266109
    2中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2023-05-18 接受日期:2023-09-13 出版日期:2024-03-12 网络出版日期:2023-09-27
  • 通讯作者: *徐登安, E-mail: xudengan200@126.com
  • 作者简介:E-mail: haoqianlin_0211@163.com
  • 基金资助:
    青岛农业大学高层次人才科研启动基金(663/1122023);山东省自然科学基金项目(ZR202103020229);国家自然科学基金青年科学基金项目(32101733)

QTL mapping and GWAS analysis of coleoptile length in bread wheat

HAO Qian-Lin1(), YANG Ting-Zhi1, LYU Xin-Ru1, QIN Hui-Min1, WANG Ya-Lin1, JIA Chen-Fei1, XIA Xian-Chun2, MA Wu-Jun1, XU Deng-An1,*()   

  1. 1College of Agronomy, Qingdao Agricultural University, Qingdao 266109, Shandong, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2023-05-18 Accepted:2023-09-13 Published:2024-03-12 Published online:2023-09-27
  • Contact: *E-mail: xudengan200@126.com
  • Supported by:
    High-level Talents Project of Qingdao Agricultural University(663/1122023);Shandong Provincial Natural Science Foundation(ZR202103020229);National Natural Science Foundation of China(32101733)

摘要:

在干旱条件下, 小麦(Triticum aestivum L.)适当深播可提高出苗率, 胚芽鞘长度决定了小麦播种的最大深度, 因此培育长胚芽鞘小麦品种至关重要。为了挖掘控制小麦胚芽鞘长度相关的数量性状位点(quantitative trait loci, QTL), 本研究以275份豆麦/石4185重组自交系(recombinant inbred lines, RIL)群体和186份自然群体为材料, 根据90K SNP芯片的分型结果, 利用3个环境下小麦胚芽鞘长度表型数据进行QTL鉴定。采用完备区间作图法(inclusive composite interval mapping, ICIM)在RIL群体中鉴定到2个稳定的QTL位点, 分别位于4BS (30.17~40.59 Mb)和6BL (700.08~703.53 Mb)染色体上, 解释表型变异率(PVE)分别为26.29%~28.46%和4.16%~4.36%; 全基因组关联分析(GWAS)采用混合线性模型(Mixed linear model, MLM)方法, 共鉴定到36个稳定的QTL位点, 分别位于1A (3)、1B (3)、1D (2)、2A (1)、3A (2)、3B (2)、4B (11)、5A (1)、5B (3)、6B (4)、7A (2)、7B (2)染色体上, 在3个环境中重复检测到的显著关联位点有7个, 其中3个位点与已报道的位点重叠或邻近, 其他4个位点推测为新位点, 分别位于1A (499.03 Mb)、3A (73.06 Mb)、4B (648.74~648.87 Mb)、7A (36.31 Mb)染色体上, 预测了5个候选基因(TraesCS1A03G0748300Rht1TraesCS4B03G0110000TraesCS4B03G0112200TraesCS7A03G0146600)。在两个群体中均鉴定到位于4BS (30.17~40.59 Mb)染色体上的主效QTL位点, 该位点的候选基因Rht1已被证实能降低小麦胚芽鞘长度。该研究结果为挖掘控制小麦胚芽鞘长度的基因以及胚芽鞘长度相关性状分子标记辅助选择育种奠定了基础。

关键词: 小麦, 胚芽鞘长度, QTL定位, 全基因组关联分析

Abstract:

Under drought conditions, the emergence rate of wheat (Triticum aestivum L.) can be improved by proper deep sowing. The maximum sowing depth of wheat is determined by the length of the coleoptile, so it is very important to cultivate wheat varieties with long coleoptile. In this study, a recombinant inbred line (RIL) population consisting of 275 lines derived from the cross of Doumai and Shi 4185, and 186 natural population materials were used as the experimental materials. Genotyping results of 90K SNP chip were used to identify QTL for wheat coleoptile length in three different environments. The results showed that two stable QTL sites were identified by inclusive composite interval mapping in the RIL population. The two QTL located on Chromosome 4BS (30.17-40.59 Mb) and 6BL (700.08-703.53 Mb), respectively, and explained 26.29%-28.46% and 4.16%- 4.36% of the phenotypic variance, respectively. A total of 36 stable QTL were identified in the genome-wide association study (GWAS) using the mixed linear model. They were located on Chromosome 1A (3), 1B (3), 1D (2), 2A (1), 3A (2), 3B (2), 4B (11), 5A (1), 5B (3), 6B (4), 7A (2), and 7B (2), respectively. Seven significant association loci were repeatedly detected in the three environments, three of which overlapped or were adjacent to reported loci, and the other four loci were presumed to be new loci. They were located on Chromosomes 1A (499.03 Mb), 3A (73.06 Mb), 4B (648.74-648.87 Mb), and 7A (36.31 Mb), respectively. Five candidate genes (TraesCS1A03G0748300, Rht1, TraesCS4B03G0110000, TraesCS4B03G0112200, and TraesCS7A03G0146600) were predicted. A major QTL locus on Chromosome 4BS (30.17-40.59 Mb) was identified in both RIL and natural populations, and the candidate gene Rht1 at this locus had been shown to reduce the length of wheat coleoptile. The results of this study lay a foundation for the identification of genes controlling the length of coleoptile in wheat and the maker-assisted selection breeding.

Key words: wheat, coleoptile length, QTL mapping, GWAS

表1

豆麦/石4185 RIL群体亲本及其275个家系胚芽鞘长度基本统计数据"

环境
Environment
亲本 Parents RIL家系 RIL lines
豆麦
Doumai
石4185
Shi 4185
最小值
Min.
最大值
Max.
均值
Mean
标准差
SD
变异系数
CV (%)
E1 5.41 4.49 2.88 6.33 4.32 0.57 13.31
E2 5.65 4.57 3.23 6.16 4.29 0.56 13.06
E3 5.16 4.54 3.10 6.21 4.27 0.58 13.50
BLUE 5.40 4.54 3.14 6.20 4.29 0.55 12.76

图1

亲本(石4185和豆麦)幼苗图"

图2

豆麦/石4185 RIL群体亲本及其275个家系胚芽鞘长度频数分布图 E1、E2、E3分别代表2020-2021青岛、2021-2022青岛、2020-2021新乡3个环境下收获种子测定的胚芽鞘长度。"

表2

豆麦/石4185 RIL群体亲本及其275个家系胚芽鞘长度在不同环境间相关性分析及广义遗传力"

环境
Environment
相关系数 Correlation coefficient 广义遗传力
H2
E1 E2 E3
E1 1 0.92
E2 0.89** 1
E3 0.80** 0.88** 1

图3

豆麦/石4185 RIL群体胚芽鞘长度QTL 图示连锁图谱仅展示了区间内的部分标记。位于4BS染色体的“绿色革命”基因Rht1未用于构建连锁图谱, 其在图谱上位置为根据基因及附近标记在中国春参考基因组IWGSC RefSeq v2.1 (http://www.wheatgenome.org/[40])上物理位置的示意。"

表3

豆麦/石4185 RIL群体中定位到的胚芽鞘长度QTL"

数量性状位点a
QTL a
环境
Environment
侧翼标记
Flanking marker
物理区间b
Physiol interval (Mb) b
LOD值c
LOD value c
贡献率
PVE (%)
加性效应
Add
QCL.qau-4BS E1 IWA102-IWB54814 30.17-40.59 18.43 27.84 0.32
E2 IWA102-IWB54814 30.17-40.59 15.51 26.29 0.30
E3 IWA102-IWB54814 30.17-40.59 16.99 26.66 0.31
BLUE IWA102-IWB54814 30.17-40.59 19.32 28.46 0.31
QCL.qau-6BL E1 IWB19986-IWB35852 702.16-703.53 3.15 4.16 -0.12
E3 IWB63870-IWB19986 700.08-702.16 3.02 4.36 -0.12
BLUE IWB19986-IWB35852 702.16-703.53 15.03 20.97 -0.25

表4

186份自然群体材料胚芽鞘长度统计分析"

环境
Environment
均值
Mean
标准差
SD
变异系数
CV (%)
相关系数 Correlation coefficient 遗传力
H2
E1 E2 E3
E1 3.98 0.55 13.74 1 0.91
E2 4.01 0.56 14.07 0.94** 1
E3 4.03 0.57 14.25 0.93** 0.93** 1
BLUE 4.01 0.55 13.70

图4

186份自然群体材料胚芽鞘长度频数分布图 E1、E2、E3分别代表2020-2021青岛、2021-2022青岛、2020-2021新乡3个环境下收获种子测定的胚芽鞘长度。"

图5

本研究中186份自然群体材料亲缘关系和群体结构 A: 亲缘关系; B: 主成分分析; C: 邻接进化树。"

表5

基于MLM模型在至少2个环境下检测到的CL关联位点"

环境a
Environment a
标记名称
Marker name
基因型b
Allele b
物理位置c
Physical position (Mb) c
P最小值d
P-value min. d
P最大值d
P-value max. d
E1/BLUE IWB30674 G/A 1A:48.36 1.59E-04 3.16E-05
E1/E2/E3/BLUE IWB50788 G/A 1A:499.03 6.07E-04 1.40E-04
E3/BLUE IWA7871 G/A 1A:505.76 5.98E-04 1.23E-04
E1/E3/BLUE IWB21039 G/A 1B:30.67 9.25E-04 1.99E-04
E3/BLUE IWB53874 G/A 1B:588.25 2.83E-04 2.28E-04
E3/BLUE IWB74028 G/A 1B:690.58 8.03E-04 7.03E-04
E1/BLUE IWB18554 G/A 1D:42.77 1.00E-03 4.68E-04
E1/BLUE IWA830 G/A 1D:43.07 1.00E-03 4.68E-04
E1/E2/BLUE IWB64018 G/A 2A:757.65 3.83E-04 1.30E-05
E2/E3/BLUE IWB2733 G/A 3A:72.88 8.60E-04 6.15E-04
E1/E2/E3/BLUE IWB53051 G/A 3A:73.06 5.40E-04 1.52E-04
E1/E2/E3/BLUE IWB24605 G/A 3B:19.95 2.26E-04 1.17E-04
E1/BLUE IWB39644 G/A 3B:75.98 7.11E-04 5.20E-04
E1/E2/E3/BLUE IWB49875 G/A 4B:24.28 8.57E-04 5.50E-05
E1/E2/E3/BLUE IWB70449 G/A 4B:40.43 7.36E-04 9.01E-05
E1/E2/E3/BLUE IWB54814 G/A 4B:40.59 3.42E-05 7.35E-06
E1/BLUE IWA6850 G/A 4B:40.76 9.74E-04 8.55E-04
E1/E3/BLUE IWB4719 G/A 4B:40.77 5.04E-04 1.79E-04
E1/E3/BLUE IWB25737 G/A 4B:41.02 5.55E-04 2.55E-04
E1/BLUE IWB40899 G/A 4B:574.98 7.29E-04 5.86E-04
E1/BLUE IWB59718 G/A 4B:577.08 8.58E-04 8.18E-04
E1/BLUE IWB71859 G/A 4B:578.54 9.42E-04 7.17E-04
E1/E2/E3/BLUE IWB53155 G/A 4B:648.74 3.86E-04 5.06E-05
E1/E2/E3/BLUE IWB42023 G/A 4B:648.87 5.14E-04 6.61E-05
E1/E3 IWB35845 G/A 5A:710.07 5.69E-04 5.66E-04
E1/BLUE IWA6527 G/A 5B:211.64 7.49E-04 2.81E-04
E1/BLUE IWB71849 G/A 5B:607.90 9.62E-04 2.43E-04
E/E2 IWB63425 G/A 5B:75.60 9.64E-04 9.60E-04
E2/E3 IWB62054 G/A 6B:123.26 7.01E-04 6.74E-04
E2/BLUE IWB56800 G/A 6B:128.10 6.75E-04 4.32E-04
E2/E3 IWB68130 G/A 6B:146.70 9.96E-04 5.02E-04
E2/E3 IWB65561 G/A 6B:683.94 8.99E-04 7.31E-04
E2/E3 IWB22879 G/A 7A:31.41 7.50E-04 5.52E-04
E1/E2/E3/BLUE IWB11001 G/A 7A:36.31 8.74E-04 4.53E-05
E3/BLUE IWB72566 G/A 7B:203.84 9.80E-04 4.88E-04
E1/E3/BLUE IWB11945 G/A 7B:204.38 7.06E-04 1.98E-04

图6

186份自然群体材料胚芽鞘长度全基因组关联分析 A: 基于混合线性模型下胚芽鞘长度BLUE值曼哈顿图, X轴代表小麦21条染色体上的SNP标记, Y轴代表-log10 (P-value)值; B: 基于混合线性模型下胚芽鞘长度BLUE值Q-Q图, X轴代表经过负常数对数转换的期望P值; Y轴代表经过负常数对数转换观察到的P值。"

表6

CL关联位点候选基因"

标记名称
Marker name
标记物理位置a
Position (Mb) a
基因名称b
Gene name b
基因物理位置c
Position (Mb) c
同源基因d
Homologs d
基因功能
Gene function
IWB50788 1A:499.03 1A03G0748300 1A:496.71 OsEXP4[48] Alpha-expansin OsEXPA4
IWB70449 4B:40.43 Rht1 4B:33.61 DELLA protein
IWB54814 4B:40.59 4B03G0110000 4B:42.02 AT5G39760[50] Zinc finger homeodomain protein
IWB54814 4B:40.59 4B03G0112200 4B:43.56 AT1G09570[51] Phytochrome A
IWB11001 7A:36.31 7A03G0146600 7A:32.23 AT5G13320[52] Auxin-responsive GH3 protein
[1] 何中虎, 庄巧生, 程顺和, 于振文, 赵振东, 刘旭. 中国小麦产业发展与科技进步. 农学学报, 2018, 8(1): 107-114.
doi: 10.11923/j.issn.2095-4050.cjas2018-1-107
He Z H, Zhuang Q S, Cheng S H, Yu Z W, Zhao Z D, Liu X. Wheat production and technology improvement in China. J Agric Sci, 2018, 8(1): 107-114 (in Chinese with English abstract).
[2] 霍治军. 胚芽鞘在小麦抗旱性鉴定中的作用研究. 广西农学报, 2016, 31(3): 8-12.
Huo Z J. Study on the role between the change of coleoptiles and drought-resistance in wheat. J Guangxi Agric, 2016, 31(3): 8-12 (in Chinese with English abstract).
[3] Rebetzke G J, Ellis M H, Bonnett D G, Richards R A. Molecular mapping of genes for coleoptile growth in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2007, 114: 1173-1183.
doi: 10.1007/s00122-007-0509-1 pmid: 17294164
[4] Singh K, Khanna-Chopra R. Physiology and QTL analysis of coleoptile length, a trait for drought tolerance in wheat. J Plant Biol, 2010, 37: 1-9.
[5] Yu J, Bai G. Mapping quantitative trait loci for long coleoptile in Chinese wheat landrace Wangshuibai. Crop Sci, 2010, 50: 43-50.
doi: 10.2135/cropsci2009.02.0065
[6] Schillinger W F U A, Donaldson E, Allan R E, Jones S S. Winter wheat seedling emergence from deep sowing depths. Agron J, 1998, 90: 582-586.
doi: 10.2134/agronj1998.00021962009000050002x
[7] Rebetzke G J, Richards R A, Fettell N A, Long M, Condon A G, Forrester R I, Botwright T L. Genotypic increases in coleoptile length improves stand establishment, vigour and grain yield of deep-sown wheat. Field Crops Res, 2007, 100: 10-23.
doi: 10.1016/j.fcr.2006.05.001
[8] 潘前颖, 文学飞, 潘田园, 史引红, 潘田雨, 潘幸来. 小麦胚芽鞘与耐深播抗旱研究进展. 干旱地区农业研究, 2012, 30(3): 51-57.
Pan Q Y, Wen X F, Pan T Y, Shi Y H, Pan T Y, Pan X L. Wheat coleoptile and emergence vigor and drought-resistance. Agric Res Arid Areas, 2012, 30(3): 51-57 (in Chinese).
[9] Blackburn A, Sidhu G, Schillinger W F, Skinner D, Gill K. QTL mapping using GBS and SSR genotyping reveals genomic regions controlling wheat coleoptile length and seedling emergence. Euphytica, 2021, 217: 45.
doi: 10.1007/s10681-021-02778-z
[10] Rebetzke G J, Verbyla A P, Verbyla K L, Morell M K, Cavanagh C R. Use of a large multiparent wheat mapping population in genomic dissection of coleoptile and seedling growth. Plant Biotechnol J, 2014, 12: 219-230.
doi: 10.1111/pbi.12130 pmid: 24151921
[11] Whan B R W. The emergence of semidwarf and standard wheats, and its association with coleoptile length. Aust J Exp Biol Med Sci, 1976, 16: 411-416.
[12] Rebetzke G J, Richards R A, Sirault X R R, Morrison A D. Genetic analysis of coleoptile length and diameter in wheat. Aust J Agric Res, 2004, 55: 733.
doi: 10.1071/AR04037
[13] Spielmeyer W, Hyles J, Joaquim P, Azanza F, Bonnett D, Ellis M E, Moore C, Richards R A. A QTL on chromosome 6A in bread wheat (Triticum aestivum) is associated with longer coleoptiles, greater seedling vigor and final plant height. Theor Appl Genet, 2007, 115: 59-66.
doi: 10.1007/s00122-007-0540-2 pmid: 17429602
[14] Singh K, Shukla S, Kadam S, Semwal V K, Singh N K, Khanna-Chopra R. Genomic regions and underlying candidate genes associated with coleoptile length under deep sowing conditions in a wheat RIL population. J Plant Biochem Biotechnol, 2015, 24: 324-330.
doi: 10.1007/s13562-014-0277-3
[15] Li G, Xu X, Bai G, Carver B F, Hunger R, Bonman J M, Kolmer J, Dong H. Genome-wide association mapping reveals novel QTL for seedling leaf rust resistance in a worldwide collection of winter wheat. Plant Genome, 2016, 9: 1-12.
[16] Ellis M H, Rebetzke G J, Chandler P, Bonnett D, Spielmeyer W, Richards R A. The effect of different height reducing genes on the early growth of wheat. Functional Plant Biol, 2004, 31: 583-589.
doi: 10.1071/FP03207
[17] Li P J, Chen P, Wu J, Zhang C, Chu D, See G, Brown-Guedira G, Zemetra R, Souza E. Quantitative trait loci analysis for the effect of Rht-Bl dwarfing gene on coleoptile length and seedling root length and number of bread wheat. Crop Sci, 2011, 51: 2561-2568.
doi: 10.2135/cropsci2011.03.0116
[18] Alam M, Kashif M, Easterly A C, Wang F, Boehm J D, Baenziger P S. Coleoptile length comparison of three winter small grain cereals adapted to the great plains. Cereal Res Commun, 2022, 50: 127-136.
doi: 10.1007/s42976-021-00151-3
[19] Botwright T L, Rebetzke G J, Condon A G, Richards R A. Influence of the gibberellin-sensitive Rht8 dwarfing gene on leaf epidermal cell dimensions and early vigour in wheat (Triticum aestivum L.). Ann Bot, 2005, 95: 631-639.
doi: 10.1093/aob/mci069
[20] Bai G, Das M K, Carver B F, Xu X, Krenzer E G. Covariation for microsatellite marker alleles associated with Rht8 and coleoptile length in winter wheat. Crop Sci, 2004, 44: 1187-1194.
doi: 10.2135/cropsci2004.1187
[21] Xiong H, Zhou C, Fu M, Guo H, Xie Y, Zhao L, Gu J, Zhao S, Ding Y, Li Y, Zhang J, Wang K, Li X, Liu L. Cloning and functional characterization of Rht8, a “Green Revolution” replacement gene in wheat. Mol Plant, 2022, 15: 373-376.
doi: 10.1016/j.molp.2022.01.014
[22] Tian X, Xia X, Xu D, Liu Y, Xie L, Hassan M A, Song J, Li F, Wang D, Zhang Y, Hao Y, Li G, Chu C, He Z, Cao S. Rht24b, an ancient variation of TaGA2ox-A9, reduces plant height without yield penalty in wheat. New Phytol, 2022, 233: 738-750.
doi: 10.1111/nph.v233.2
[23] Borrill P, Mago R, Xu T, Ford B, Williams S J, Derkx A, Bovill W D, Hyles J, Bhatt D, Xia X, MacMillan C, White R, Buss W, Molnár I, Walkowiak S, Olsen O, Doležel J, Pozniak C J, Spielmeyer W. An autoactive NB-LRR gene causes Rht13 dwarfism in wheat. Proc Natl Acad Sci USA, 2022, 119: e2085092177.
[24] Abdolshahi R, Foroodi-Safat S, Mokhtarifar K, Ataollahi R, Moud A M, Kazemipour A, Pourseyedi S, Rahmani A. Challenges of breeding for longer coleoptile in bread wheat (Triticum aestivum L.). Genet Resour Crop Evol, 2021, 68: 1517-1527.
doi: 10.1007/s10722-020-01081-5
[25] 袁倩倩, 李卓坤, 田纪春, 韩淑晓. 不同水分胁迫下小麦胚芽鞘和胚根长度的QTL分析. 作物学报, 2011, 37: 294-301.
doi: 10.3724/SP.J.1006.2011.00294
Yuan Q Q, Li Z K, Tian J C, Han S X. QTL mapping for coleoptile length and radicle length in wheat under different simulated moisture stresses. Acta Agron Sin, 2011, 37: 294-301 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2011.00294
[26] Zhang H, Cui F, Wang H. Detection of quantitative trait loci (QTLs) for seedling traits and drought tolerance in wheat using three related recombinant inbred line (RIL) populations. Euphytica, 2014, 196: 313-330.
doi: 10.1007/s10681-013-1035-7
[27] Ma J, Lin Y, Tang S, Duan S, Wang Q, Wu F, Li C, Jiang X, Zhou K, Liu Y. A genome-wide association study of coleoptile length in different Chinese wheat landraces. Front Plant Sci, 2020, 11: 677.
doi: 10.3389/fpls.2020.00677 pmid: 32582239
[28] Sidhu J S, Singh D, Gill H S, Brar N K, Qiu Y, Halder J, Al Tameemi R, Turnipseed B, Sehgal S K. Genome-wide association study uncovers novel genomic regions associated with coleoptile length in hard winter wheat. Front Genet, 2020, 10: 1345.
doi: 10.3389/fgene.2019.01345
[29] Wei N, Zhang S, Liu Y, Wang J, Wu B, Zhao J, Qiao L, Zheng X, Wang J, Zheng J. Genome-wide association study of coleoptile length with Shanxi wheat. Front Plant Sci, 2022, 13: 1016551.
doi: 10.3389/fpls.2022.1016551
[30] Xu D, Hao Q, Yang T, Lyu X, Qin H, Wang Y, Jia C, Liu W, Dai X, Zeng J, Zhang H, He Z, Xia X, Cao S, Ma W. Impact of “Green Revolution” gene Rht-B1b on coleoptile length of wheat. Front Plant Sci, 2023, 14: 1147019.
doi: 10.3389/fpls.2023.1147019
[31] 唐斯. 中国小麦地方品种胚芽鞘生长动态的关联分析. 四川农业大学硕士学位论文, 四川成都, 2019. pp 10-13.
Tang S. Correlation Analysis of Coleoptile Growth Dynamics of Local Wheat Varieties in China. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2019. pp 10-13 (in Chinese with English abstract).
[32] Yin C, Li H, Li S, Xu L, Zhao Z, Wang J. Genetic dissection on rice grain shape by the two-dimensional image analysis in one japonica × indica population consisting of recombinant inbred lines. Theor Appl Genet, 2015, 128: 1969-1986.
doi: 10.1007/s00122-015-2560-7
[33] Holland J B, Nyquist W E, Cervantes Martínez C T. Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev, 2002, 22: 9-12.
[34] Wen W, He Z, Gao F, Liu J, Jin H, Zhai S, Qu Y, Xia X. A high-density consensus map of common wheat integrating four mapping populations scanned by the 90K SNP array. Front Plant Sci, 2017, 8: 1389.
doi: 10.3389/fpls.2017.01389 pmid: 28848588
[35] Meng L, Li H, Zhang L, Wang J. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001
[36] Li H, Ye G, Wang J. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361-374.
doi: 10.1534/genetics.106.066811 pmid: 17110476
[37] Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown Guedira G, Korol A, Akhunova A R, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards K J, Hayden M, Akhunov E. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J, 2014, 12: 787-796.
doi: 10.1111/pbi.2014.12.issue-6
[38] Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829
[39] Yu J, Pressoir G, Briggs W H, Vroh Bi I, Yamasaki M, Doebley J F, Mcmullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E S. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203-208.
doi: 10.1038/ng1702 pmid: 16380716
[40] Zhu T, Wang L, Rimbert H, Rodriguez J C, Deal K R, De Oliveira R, Choulet F, Keeble Gagnère G, Tibbits J, Rogers J, Eversole K, Appels R, Gu Y Q, Mascher M, Dvorak J, Luo M C. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. Plant J, 2021, 107: 303-314.
doi: 10.1111/tpj.v107.1
[41] Yang C, Ma B, He S, Xiong Q, Duan K, Yin C, Chen H, Lu X, Chen S, Zhang J. MAOHUZI6/ETHYLENE INSENSITIVE3- LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice. Plant Physiol, 2015, 169: 148-165.
doi: 10.1104/pp.15.00353
[42] Ma B, He S, Duan K, Yin C, Chen H, Yang C, Xiong Q, Song Q, Lu X, Chen H, Zhang W, Lu T, Chen S, Zhang J. Identification of rice ethylene-response mutants and characterization of MHZ7/ OsEIN2 in distinct ethylene response and yield trait regulation. Mol Plant, 2013, 6: 1830-1848.
doi: 10.1093/mp/sst087
[43] Ma B, Yin C, He S, Lu X, Zhang W, Lu T, Chen S, Zhang J S. Ethylene-induced inhibition of root growth requires abscisic acid function in rice (Oryza sativa L.) seedlings. PLoS Genet, 2014, 10: e1004701.
doi: 10.1371/journal.pgen.1004701
[44] Christians M J, Robles L M, Zeller S M, Larsen P B. The eer5 mutation, which affects a novel proteasome-related subunit, indicates a prominent role for the COP9 signalosome in resetting the ethylene-signaling pathway in Arabidopsis. Plant J, 2008, 55: 467-477.
doi: 10.1111/tpj.2008.55.issue-3
[45] Zhang Y, Gong S, Li Q, Sang Y, Yang H. Functional and signaling mechanism analysis of rice CRYPTOCHROME 1. Plant J, 2006, 46: 971-983.
doi: 10.1111/j.1365-313X.2006.02753.x pmid: 16805731
[46] Zeng Y, Schotte S, Trinh H K, Verstraeten I, Li J, Van de Velde E, Vanneste S, Geelen D. Genetic dissection of light-regulated adventitious root induction in Arabidopsis thaliana hypocotyls. IJMS, 2022, 23: 5301.
[47] Stawska M, Oracz K. PhyB and HY5 are involved in the blue light-mediated alleviation of dormancy of Arabidopsis seeds possibly via the modulation of expression of genes related to light, GA, and ABA. IJMS, 2019, 20: 5882.
[48] Choi D, Lee Y, Cho H, Kende H. Regulation of expansion gene expression affects growth and development in transgenic rice plants. Plant Cell, 2003, 15: 1386-1398.
doi: 10.1105/tpc.011965
[49] Zdanio M, Boron A K, Balcerowicz D, Schoenaers S, Markakis M N, Mouille G, Pintelon I, Suslov D, Gonneau M, Höfte H, Vissenberg K. The proline-rich family protein EXTENSIN33 is required for etiolated Arabidopsis thaliana hypocotyl growth. Plant Cell Physiol, 2020, 61: 1191-1203.
doi: 10.1093/pcp/pcaa049
[50] Jiang H, Peng K, Hsu T, Chiou Y, Hsieh H. Arabidopsis FIN219/JAR1 interacts with phytochrome A under far-red light and jasmonates in regulating hypocotyl elongation via a functional demand manner. PLoS Genet, 2023, 19: e1010779.
doi: 10.1371/journal.pgen.1010779
[51] Perrella G, Davidson M L H, O Donnell L, Nastase A, Herzyk P, Breton G, Pruneda-Paz J L, Kay S A, Chory J, Kaiserli E. ZINC-FINGER interactions mediate transcriptional regulation of hypocotyl growth in Arabidopsis. Proc Natl Acad Sci USA, 2018, 115: 4503-4511.
doi: 10.1073/pnas.1718099115 pmid: 29686058
[52] Murphy K, Balow K, Lyon S R, Jones S S. Response to selection, combining ability and heritability of coleoptile length in winter wheat. Euphytica, 2008, 164: 709-718.
doi: 10.1007/s10681-008-9692-7
[53] Zhang N, Pan R Q, Liu J J, Zhang X L, Su Q N, Cui F, Zhao C H, Song L Q, Ji J, Li J M. QTL for sensitivity of seedling height to exogenous GA3 and their effects on adult plant height in common wheat. Cereal Res Commun, 2018, 46: 412-423.
doi: 10.1556/0806.46.2018.021
[54] Francki M G, Stainer G S, Walker E, Rebetzke G J, Stefanova K T, French R J. Phenotypic evaluation and genetic analysis of seedling emergence in a global collection of wheat genotypes (Triticum aestivum L.) under limited water availability. Front Plant Sci, 2021, 12: 796176.
doi: 10.3389/fpls.2021.796176
[55] Nagel M, Navakode S, Scheibal V, Baum M, Nachit M, Röder M S, Börner A. The genetic basis of durum wheat germination and seedling growth under osmotic stress. Biol Plant, 2014, 58: 681-688.
doi: 10.1007/s10535-014-0436-3
[56] Rebetzke G J, Appels R, Morrison A D, Richards R A, McDonald G, Ellis M H, Spielmeyer W, Bonnett D G. Quantitative trait loci on chromosome 4B for coleoptile length and early vigour in wheat (Triticum aestivum L.). Aust J Agric Res, 2001, 52: 1221.
doi: 10.1071/AR01042
[57] Lin Q, Gong J, Zhang Z, Meng Z, Wang J, Wang S, Sun J, Gu X, Jin Y, Wu T, Yan N, Wang Y, Kai L, Jiang J, Qi S. The Arabidopsis thaliana trehalose-6-phosphate phosphatase gene AtTPPI regulates primary root growth and lateral root elongation. Front Plant Sci, 2023, 13: 1088278.
doi: 10.3389/fpls.2022.1088278
[1] 张力岚, 杨军, 王让剑. 茶树橙花叔醇和芳樟醇樱草糖苷含量全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(4): 871-886.
[2] 张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响[J]. 作物学报, 2024, 50(4): 981-990.
[3] 许乃银, 金石桥, 晋芳, 刘丽华, 徐剑文, 刘丰泽, 任雪贞, 孙全, 许栩, 庞斌双. 基于SNP标记的小麦品种遗传相似度及其检测准确度分析[J]. 作物学报, 2024, 50(4): 887-896.
[4] 黄宏胜, 张馨月, 居辉, 韩雪. 大气CO2浓度升高背景下冬小麦冠层光谱特征和地上生物量估算[J]. 作物学报, 2024, 50(4): 991-1003.
[5] 王添宁, 冯雅岚, 琚吉浩, 吴毅, 张均, 马超. 小麦及其祖先物种GRF转录因子家族鉴定与表达分析[J]. 作物学报, 2024, 50(4): 897-913.
[6] 齐学礼, 李莹, 李春盈, 韩留鹏, 赵明忠, 张建周. 基于转录组探究外源水杨酸对条锈菌侵染小麦幼苗的缓解效应及差异表达基因分析[J]. 作物学报, 2024, 50(4): 1080-1090.
[7] 张月, 王志慧, 淮东欣, 刘念, 姜慧芳, 廖伯寿, 雷永. 花生含油量的遗传基础与QTL定位研究进展[J]. 作物学报, 2024, 50(3): 529-542.
[8] 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632.
[9] 赵荣荣, 丛楠, 赵闯. 基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择[J]. 作物学报, 2024, 50(3): 721-733.
[10] 琚吉浩, 马超, 王添宁, 吴毅, 董钟, 方美娥, 陈钰姝, 张均, 付国占. 小麦TaPOD家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(3): 779-792.
[11] 张宝华, 刘佳静, 田晓, 田旭钊, 董阔, 武郁洁, 肖凯, 李小娟. 小麦TaSPX1基因的克隆、表达及耐低氮逆境的功能研究[J]. 作物学报, 2024, 50(3): 576-589.
[12] 范子培, 李龙, 史雨刚, 孙黛珍, 李超男, 景蕊莲. 小麦TabHLH112-2B基因克隆及每穗小穗数相关功能标记开发[J]. 作物学报, 2024, 50(2): 403-413.
[13] 马娟, 曹言勇. 玉米杂交群体产量性状及其特殊配合力全基因组关联分析[J]. 作物学报, 2024, 50(2): 363-372.
[14] 张康, 聂志刚, 王钧, 李广. 温度升高下APSIM模型春小麦籽粒生长参数敏感性分析及优化[J]. 作物学报, 2024, 50(2): 464-477.
[15] 谭丹, 陈家婷, 郜钰, 张晓军, 李欣, 闫贵云, 李锐, 陈芳, 常利芳, 张树伟, 郭慧娟, 畅志坚, 乔麟轶. 小麦穗型相关生长素通路基因发掘及TaARF23-A与小穗数关联分析[J]. 作物学报, 2024, 50(2): 506-513.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .