欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (4): 991-1003.doi: 10.3724/SP.J.1006.2024.31041

• 耕作栽培·生理生化 • 上一篇    下一篇

大气CO2浓度升高背景下冬小麦冠层光谱特征和地上生物量估算

黄宏胜(), 张馨月, 居辉, 韩雪()   

  1. 中国农业科学院农业环境与可持续发展研究所, 北京 100081
  • 收稿日期:2023-06-25 接受日期:2023-10-23 出版日期:2024-04-12 网络出版日期:2023-11-16
  • 通讯作者: * 韩雪, E-mail: hanxue@caas.cn
  • 作者简介:E-mail: 82101215240@caas.cn
  • 基金资助:
    国家重点研发计划项目(2019YFA0607403);中国农业科学院科技创新工程农业绿色低碳科学中心专项项目和中央级公益性科研院所基本科研业务费(CAAS-CSGLCA-202301);中国农业科学院科技创新工程农业绿色低碳科学中心专项项目和中央级公益性科研院所基本科研业务费(BSRF202202)

Spectral characteristics of winter wheat canopy and estimation of aboveground biomass under elevated atmospheric CO2 concentration

HUANG Hong-Sheng(), ZHANG Xin-Yue, JU Hui, HAN Xue()   

  1. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2023-06-25 Accepted:2023-10-23 Published:2024-04-12 Published online:2023-11-16
  • Contact: * E-mail: hanxue@caas.cn
  • Supported by:
    National Key Research and Development Program of China(2019YFA0607403);Special Project of Agricultural Green Low-carbon Science Center of Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences, and the Basic Scientific Research Business Expenses of Central-level Public Welfare Research Institutes(CAAS-CSGLCA-202301);Special Project of Agricultural Green Low-carbon Science Center of Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences, and the Basic Scientific Research Business Expenses of Central-level Public Welfare Research Institutes(BSRF202202)

摘要:

本研究旨在探究大气CO2浓度升高对冬小麦全生育时期冠层光谱特征的影响, 并基于筛选的敏感波段建立地上生物量(AGB)与光谱参数的定量关系。为此, 在2021—2022年的冬小麦生长季, 利用开放式CO2富集系统(Mini-FACE), 设定大气CO2浓度(ACO2, (420±20) μL L-1)和高CO2浓度(ECO2, (550±20) μL L-1)两个处理水平, 分析了高CO2浓度下光谱特征变化, 基于连续投影算法(SPA)、逐步多元线性回归(SMLR)和偏最小二乘法回归(PLSR)筛选AGB敏感波段并构建估算模型。结果表明: CO2浓度升高使冬小麦拔节期和开花期AGB显著增加。红边和近红边反射率及红边面积在拔节期增加, 在开花期和灌浆期降低, 蓝边、黄边和红边位置在不同生育时期均发生移动; AGB的敏感光谱波段主要分布在红边和近红边区域, CO2浓度升高缩小了AGB敏感波段范围, 但不影响AGB的估算; AGB的SMLR和PLSR模型均取得了较高的估算精度(R2>0.8), 其中SMLR模型中的R799′、Dy、SDy和PRI等特征参数与AGB显著相关, R2为0.866。PLSR模型(R2>0.9)在估算精度和稳定性上优于SMLR模型。本研究可为未来高CO2浓度下冬小麦生长发育的遥感监测提供理论基础和技术方法。

关键词: CO2浓度升高, 冬小麦, 地上生物量, 冠层光谱特征, 回归分析

Abstract:

The objective of this study is to investigate the effect of elevated atmospheric CO2 concentration on the canopy spectral characteristics of winter wheat during the whole growth period and to establish quantitative relationships between above-ground biomass (AGB) and spectral parameters based on the screened sensitive bands. For this purpose, during the winter wheat growing season of 2021-2022, two treatment levels of atmospheric CO2 concentration (ACO2, (420±20) μL L-1) and elevated CO2 concentration (ECO2, (550±20) μL L-1) were set based on the Free Atmospheric CO2 Enrichment System (Mini-FACE), and the changes of spectral features were analyzed under elevated CO2 concentration. AGB sensitive bands were screened and the estimation models of AGB were constructed based on the successive projections algorithm (SPA), stepwise multiple linear regression (SMLR), and partial least squares regression (PLSR). The results showed that elevated CO2 concentration significantly increased AGB in winter wheat at jointing and anthesis stages. The red-edge reflectance, near red edge reflectance, and red-edge area increased at jointing stage and decreased at anthesis and maturity stages. The positions of the blue-edge, yellow-edge, and red-edge were shifted at different growth stages. The sensitive spectral bands of AGB are mainly distributed in the red-edge and near red-edge bands, and the elevated CO2 concentration narrows the range of the sensitive bands of AGB, but does not affect the estimation of AGB. The SMLR and PLSR models of AGB both achieved high estimation accuracy (R2 > 0.8), where the characteristic parameters such as R799', Dy, SDy, and PRI in the SMLR model were significantly correlated with AGB, with an R2 of 0.866. The PLSR model (R2 > 0.9) outperformed the SMLR model in terms of estimation accuracy and stability. This study can provide the theoretical basis and technical methods for the remote sensing monitoring of winter wheat growth and development under elevated CO2 concentration in the future.

Key words: elevated CO2 concentration, winter wheat, above ground biomass, canopy spectral features, regression analysis

表1

植被指数的定义及计算公式"

植被指数
Vegetation index
名称
Name
计算公式
Calculation formula
参考文献
References
ARI-1 花青素反射率指数-1
Anthocyanin reflectance index 1
1/R550-1/R700 [21]
ARI-2 花青素反射率指数-2
Anthocyanin reflectance index 2
R800×(1/R550-1/R700) [22]
ARVI 大气阻抗植被指数
Atmospherically resistant regetation Index
(R810-(2×R680-R480))/(R810+(2×R680-R480)) [23]
EVI 增强植被指数
Enhanced vegetation index
(2.5×(R782-R675))/(R782+6×R675-7.5×R445+1) [24]
mND705 改进红边归一化植被指数
Modified red edge normalized difference vegetation index
(R750-R705)/(R750+R705-2×R445) [25]
NDVI 归一化植被指数
Normalized difference vegetation index
(R750-R550)/(R750+R550) [26]
NDVI705 红边归一化植被指数
Red edge normalized difference vegetation index
(R750-R705)/(R750+R705) [27]
PRI 光化学植被指数
Photochemical reflectance index
(R570-R531)/(R570+R531) [28]
PSRI 植物衰老反射率指数
Plant senescence reflectance index
(R680-R500)/R750 [28]
SR 比值植被指数
Simple ratio index
R985/R745 [28]

表2

光谱特征参数的定义及说明"

光谱特征参数
Spectral
characteristics parameters
名称
Name
说明
Illustration
Rx x nm处的冠层光谱反射率。
Canopy spectral reflectance at x nm.
Rx' x nm处的冠层光谱反射率的一阶微分。
First order differentiation of canopy spectral reflectance at x nm.
AR 红边反射率平均值
Average red edge reflectance
冠层光谱680~760 nm波段的平均值。
Mean values of the 680-760 nm band of the canopy spectrum.
Rg 绿峰反射率
Green peak reflectance
冠层光谱510~560 nm波段内最大光谱反射率值。
Maximum spectral reflectance values in the 510-560 nm band of the canopy spectrum.
λg 绿峰位置
Green peak location
冠层光谱510~560 nm波段内最大光谱反射率对应的位置。
Location of maximum spectral reflectance in the 510-560 nm band of the canopy spectrum.
Db 蓝边幅值
Blue edge amplitude
冠层光谱490~530 nm波段内一阶微分的最大值。
Maximum value of the first order differential in the 490-530 nm band of the canopy spectrum.
λb 蓝边位置
Blue edge location
冠层光谱490~530nm波段内一阶微分最大值对应波长的位置。
Location of the first order differential maximum in the 490-530 nm band of the canopy spectrum.
Dy 黄边幅值
Yellow edge amplitude
冠层光谱560~640 nm波段内一阶微分的最大值。
Maximum value of the first-order differential in the 560-640 nm band of the canopy spectrum.
λy 黄边位置
Yellow edge location
冠层光谱560~640 nm波段内一阶微分最大值对应波长的位置。
Location of the first order differential maximum in the 560-640 nm band of the canopy spectrum.
Dr 红边幅值
Red edge amplitude
冠层光谱680~760 nm波段内一阶微分的最大值。
Maximum value of the first order differential in the 680-760 nm band of the canopy spectrum.
λr 红边位置
Red edge location
冠层光谱680~760 nm波段内一阶微分最大值对应波长的位置。
Location of the first order differential maximum in the 680-760 nm band of the canopy spectrum.
SDb 蓝边面积
Blue edge area
蓝边反射率一阶微分曲线围成的面积。
Area enclosed by the first order differential curve of blue edge reflectance.
SDy 黄边面积
Yellow edge area
黄边范围内一阶微分波所包围的面积。
Area enclosed by the first order differential curve of yellow edge reflectance.
SDr 红边面积
Red edge area
红边范围内一阶微分波所包围的面积。
Area enclosed by the first order differential curve of red edge reflectance.
SDr/SDb 红边与蓝边面积的比值。
Ratio of the red edge area to the blue edge area.
SDr/SDy 红边与黄边面积的比值。
Ratio of the red edge area to the yellow edge area.
(SDr-SDb)/ (SDr+SDb) (红边面积-蓝边面积)/(红边面积+蓝边面积)。
(Red edge area-Blue edge area)/(Red edge area + Blue edge area).
(SDr-SDy)/ (SDr+SDy) (红边面积-黄边面积)/(红边面积+黄边面积)。
(Red edge area-Yellow edge area)/(Red edge area+Yellow edge area).

图1

不同浓度CO2对冬小麦地上生物量的影响 ACO2表示大气二氧化碳浓度, ECO2表示升高二氧化碳浓度。误差线表示标准差。“NS”表示在同一生育时期不同处理间差异未达到显著水平(P > 0.05)。“*”表示在同一生育时期不同处理间差异达到显著水平(P < 0.05)"

图2

不同CO2浓度下冬小麦全生育期冠层光谱反射率"

表3

不同CO2浓度下冬小麦光谱特征参数表"

光谱特征参数
Spectral characteristics parameter
CO2 拔节期
Jointing
开花期
Anthesis
灌浆期
Grain filling
AR ACO2 16.17±2.77 16.25±1.68 16.76±1.66
ECO2 18.05±2.41* 15.53±1.24 17.20±1.85
Rg ACO2 5.62±1.06 3.72±0.30 6.53±1.16
ECO2 6.23±1.11 3.82±0.76 7.09±1.85
λg ACO2 552.92±1.67 552.50±0.52 558.08±2.11
ECO2 550.58±2.40 552.58±0.67 558.58±1.88
Db ACO2 0.10±0.02 0.08±0.01 0.09±0.01
ECO2 0.13±0.05* 0.08±0.01 0.09±0.02
λb ACO2 521.92±0.51 521.42±0.51 519.00±0.60
ECO2 522.33±0.78 523.00±0.74* 520.42±0.51*
Dy ACO2 -0.07±0.01 -0.05±0.01 -0.03±0.02
ECO2 -0.07±0.01 -0.05±0.01 -0.02±0.03
λy ACO2 568.33±0.98 568.83±0.39 592.08±2.92*
ECO2 568.25±1.29 568.58±0.67 581.83±1.80
Dr ACO2 0.69±0.16 0.96±0.11 0.59±0.12*
ECO2 0.76±0.16 0.87±0.09 0.46±0.10
λr ACO2 729.25±0.75 734.92±0.67 727.17±0.94
ECO2 728.67±0.65 736.50±0.67* 729.92±0.79*
SDb ACO2 2.14±0.38 1.55±0.21 2.34±0.38
ECO2 2.43±0.46 1.59±0.31 2.44±0.55
SDy ACO2 1.88±0.40 1.63±0.26 0.97±0.35
ECO2 2.02±0.50 1.61±0.22 1.08±0.41
SDr ACO2 29.10±1.44 39.08±1.67* 24.44±1.79*
ECO2 32.68±1.61* 35.90±1.26 22.59±1.95
SDr/SDb ACO2 13.70±2.72 25.30±2.07 10.67±2.68
ECO2 13.63±2.75 23.34±5.03 9.66±2.83
SDr/SDy ACO2 15.49±1.43 24.11±1.92 26.68±4.75
ECO2 16.55±2.18 22.66±3.49 23.39±8.22

表4

冬小麦地上生物量偏最小二乘法回归描述统计分析"

CO2 训练组 Train group 测试组Test group
NComps CV Adj CV X-Var (%) Y-Var (%) R2 Adj R2 RMSE P
ACO2 6 0.289 0.285 99.09 98.16 0.939 0.933 217.3 <0.01
ECO2 6 0.472 0.466 99.11 98.74 0.894 0.877 115.4 <0.01

图3

基于两种方法下的冬小麦地上生物量重要的敏感光谱波段"

表5

冬小麦地上生物量连续投影算法+逐步多元线性回归描述统计分析"


Group
CO2 样品数
Sample number
敏感光谱波段
Sensitive spectral bands
R2 Adj R2 RMSE Max VIF P
训练组Train ACO2 24 R682, R727, R771, R985, R1078, R1083, R1100 0.967 0.953 175.8 20.755 <0.01
ECO2 24 R678, R711, R757, R972, R1060 0.855 0.815 302.8 12.958 <0.01
测试组
Test
ACO2 12 0.932 0.925 174.0 <0.01
ECO2 12 0.806 0.787 243.3 <0.01

图4

光谱参数与地上生物量的相关性系数 *表示在0.05概率水平差异显著。"

表6

地上生物量逐步多元线性回归模型"

回归方式
Regression method
分组
Groupings
自变量
Independent variable
回归方程
Regression equation
R2 Adj R2 RMSE Max vif P
CR+SMLR 训练组Train 光谱参数
Spectral parameters
y = 387.1+27619.5R799'-7360.8Dy
-302.8SDy-5437PRI
0.866 0.854 287.2 3.65 <0.01
测试组
Test
测量值
Measure
y = 1.0194x-129.81 0.897 0.865 238.6 <0.01
SPA+SMLR 训练组
Train
光谱反射率
Spectral
reflectance
y = 490.48+1258.94R599-1078.41R677
-237.54R736-194.43R781+194.87R1078+146.82R1083
0.841 0.818 320.3 49.29 <0.01
测试组
Test
测量值
Measure
y = 0.873x+245.764 0.838 0.830 285.7 <0.01

图5

冬小麦地上生物量PLSR模型训练组和测试组拟合关系 a, b: 基于光谱反射率为自变量的地上生物量偏最小二乘法回归模型, a为训练组, b为测试组; c, d: 基于光谱参数为自变量的地上生物量偏最小二乘法回归模型, c为训练组, d为测试组; ncomps: 最佳成分个数; Y-Var: 因变量累积方差解释百分数。"

[1] 王卓妮, 袁佳双, 庞博, 黄磊. IPCC AR6《气候变化2022: 减缓气候变化》主要结论和启示. 气候变化研究进展, 2022, 18: 531-537.
Wang Z N, Yuan J S, Pang B, Huang L. The interpretation and highlights of IPCC AR6 WGIII report climate change 2022:mitigation of climate change. Climate Chang Res, 2022, 18: 531-537. (in Chinese with English abstract)
[2] Ainsworth E A, Long S P. What have we learned from 15 years of free air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol, 2005, 165: 351-371.
doi: 10.1111/nph.2005.165.issue-2
[3] Sinha P G, Kapoor R, Uprety D C, Bhatnagar A K. Impact of elevated CO2 concentration on ultrastructure of pericarp and composition of grain in three Triticum species of different ploidy levels. Environ Exp Bot, 2009, 66: 451-456.
doi: 10.1016/j.envexpbot.2009.04.006
[4] Li B, Xu X, Zhang L, Han J, Bian C, Li G, Liu J, Jin L. Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging. ISPRS J Photogramm Remote Sens, 2020, 162: 161-172.
doi: 10.1016/j.isprsjprs.2020.02.013
[5] Miller G J, Morris J T, Wang C. Estimating aboveground biomass and its spatial distribution in coastal wetlands utilizing planet multispectral imagery. Remote Sens, 2019, 11: 1-16.
doi: 10.3390/rs11010001
[6] Tian H, Shi S, Wang H, Li F, Li Z, Alva A, Zhang Z. Estimation of sugar beet aboveground biomass by band depth optimization of hyperspectral canopy reflectance. J Indian Soc Remote Sens, 2016, 45: 795-803.
doi: 10.1007/s12524-016-0632-z
[7] Xie Y, Wang C, Yang W, Feng M, Qiao X, Song J. Canopy hyperspectral characteristics and yield estimation of winter wheat (Triticum aestivum) under low temperature injury. Sci Rep, 2020, 10: 244-254.
doi: 10.1038/s41598-019-57100-8 pmid: 31937859
[8] Dawson T P, Curran P J. A new technique for interpolating the reflectance red edge position. Int J Remote Sens, 1998, 1: 2133-2139.
[9] 郑红平, 邹红玉. 浅述植被“红边”效应及其定量分析方法. 遥感信息, 2010, 25(4): 112-116.
Zheng H P, Zou H Y. The effect and method of quantitative analysis of “Red Edge” of vegetation. Remote Sens Inf, 2010, 25(4): 112-116. (in Chinese with English abstract)
[10] 蔡瑶, 缪宇轩, 吴浩, 王丹. 高CO2浓度下冬小麦的高光谱特征及其与叶面积指数和SPAD值的反演. 浙江农业学报, 2022, 34: 582-589.
doi: 10.3969/j.issn.1004-1524.2022.03.19
Cai Y, Miao Y X, Wu H, Wang D. Hyperspectral characteristics and leaf area index (LAI) and SPAD value inversion of winter wheat under elevated CO2 concentration. Acta Agric Zhejiangensis, 2022, 34: 582-589. (in Chinese with English abstract)
[11] 杨璐璐, 华开, 张学霞. 不同CO2浓度及干旱胁迫下高羊茅的生理响应和光谱特征. 中国草地学报, 2014, 36(4): 72-78.
Yang L L, Hua K, Zhang X X. The impacts of mowing on photosynthesis and water physiological conditions of Ceratoides latens. Chin J Grassland, 2014, 36(4): 72-78. (in Chinese with English abstract)
[12] Sun Q, Gu X, Sun L, Yang G, Zhou L, Guo W. Dynamic change in rice leaf area index and spectral response under flooding stress. Paddy Water Environ, 2020, 18: 223-233.
doi: 10.1007/s10333-019-00776-5
[13] Ren P, Feng M C, Yang W D, Wang C, Liu T T, Wang H Q. Response of winter wheat (Triticum aestivum L.) hyperspectral characteristics to low temperature stress. Spectr Spect Anal, 2014, 34: 2490-2494.
[14] Xu D Q, Liu X L, Wang W, Chen M, Kan H C, Li C F, Zheng S F. Hyper spectral characteristics and estimation model of leaf chlorophyll content in cotton under waterlogging stress. J Appl Ecol, 2017, 28: 3289-3296.
[15] Tschannerl J, Ren J, Yuen P, Sun G, Zhao H, Yang Z, Wang Z, Marshall S. MIMR-DGSA: unsupervised hyperspectral band selection based on information theory and a modified discrete gravitational search algorithm. Inf Fusion, 2019, 51: 189-200.
doi: 10.1016/j.inffus.2019.02.005
[16] Steve D B, Pieter K, Paul S. Walter D. A band selection technique for spectral classification. IEEE Geosci Remote Sens Lett, 2005, 2: 319-323.
doi: 10.1109/LGRS.2005.848511
[17] Gao H Z, Lu Q P, Ding H Q, Peng Z Q. Choice of characteristic near-infrared wavelengths for soil total nitrogen based on successive projection algorithm. Spectr Spect Anal, 2009, 29: 2951-2954.
[18] Liu J, Xie J, Meng T, Dong H. Organic matter estimation of surface soil using successive projection algorithm. Agron J, 2022, 114: 1944-1951.
doi: 10.1002/agj2.v114.4
[19] Xie Y, Feng M, Wang C, Yang W, Sun H, Yang C, Jing B, Qiao X, Saleem K M, Song J. Hyperspectral monitor on chlorophyll density in winter wheat under water stress. Agron J, 2020, 112: 3667-3676.
doi: 10.1002/agj2.v112.5
[20] El-Hendawy S, Al-Suhaibani N, Alotaibi M, Hassan W, Elsayed S, Tahir M U, Mohamed A I, Schmidhalter U. Estimating growth and photosynthetic properties of wheat grown in simulated saline field conditions using hyperspectral reflectance sensing and multivariate analysis. Sci Rep, 2019, 9: 16473.
doi: 10.1038/s41598-019-52802-5 pmid: 31712701
[21] Gitelson A A, Merzlyak M N, Chivkunova O B. Optical properties and non-destructive estimation of anthocyanin content in plant leaves? Photochem Photobiol, 2001, 74: 38-45.
doi: 10.1562/0031-8655(2001)074<0038:opaneo>2.0.co;2 pmid: 11460535
[22] Merzlyak M N, Solovchenko A E, Gitelson A A. Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit. Postharvest Biol Technol, 2003, 27: 197-211.
doi: 10.1016/S0925-5214(02)00066-2
[23] Kaufman Y J, Tanre D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans Geosci Remote Sens, 1992, 30: 261-270.
doi: 10.1109/36.134076
[24] Huete A R, Liu H Q, Batchily K, van Leeuwen W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens Environ, 1997, 59: 440-451.
doi: 10.1016/S0034-4257(96)00112-5
[25] Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ, 2002, 81: 337-354.
doi: 10.1016/S0034-4257(02)00010-X
[26] Gamon J A, Peñuelas J, Field C B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens Environ, 1992, 41: 35-44.
doi: 10.1016/0034-4257(92)90059-S
[27] Gitelson A, Merzlyak M N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. spectral features and relation to chlorophyll estimation. J Plant Physiol, 1994, 143: 286-292.
doi: 10.1016/S0176-1617(11)81633-0
[28] Schlerf M, Atzberger C, Hill J. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sens Environ, 2005, 95: 177-194.
doi: 10.1016/j.rse.2004.12.016
[29] 张华东, 阮陆宁. 偏最小二乘回归在R软件中的实现及其优缺点剖析. 科技广场, 2015, (11): 12-17.
Zhang H D, Ruan L N. Realization and advantages and disadvantages analysis of partial least-squares regression in the R software. Sci Mos, 2015, (11): 12-17. (in Chinese with English abstract)
[30] 王石言, 王力, 张静, 张林森. 黄土旱塬主要农林用地土壤水文特征对比. 中国水土保持科学, 2016, 14(3): 10-18.
Wang S Y, Wang L, Zhang J, Zhang L S. Comparison of soil hydrological characteristics for main cropland and orchard in dry highland of the Loess Tableland. Sci Soil Water Conserv, 2016, 14(3): 10-18. (in Chinese with English abstract)
[31] Xie Y, Feng M, Wang C, Yang W, Sun H, Yang C, Jing B, Qiao X, Saleem Kubar M, Song J. Hyperspectral monitor on chlorophyll density in winter wheat under water stress. Agron J, 2020, 112: 3667-3676.
doi: 10.1002/agj2.v112.5
[32] Liu J, Xie J, Meng T, Dong H. Organic matter estimation of surface soil using successive projection algorithm. Agron J, 2022, 114: 1944-1951.
doi: 10.1002/agj2.v114.4
[33] Högy P, Kottmann L, Schmid I, Fangmeier A. Heat, wheat and CO2: the relevance of timing and the mode of temperature stress on biomass and yield. J Agron Crop Sci, 2019, 205: 608-615.
doi: 10.1111/jac.v205.6
[34] Högy P, Brunnbauer M, Koehler P, Schwadorf K, Breuer J, Franzaring J, Zhunusbayeva D, Fangmeier A. Grain quality characteristics of spring wheat (Triticum aestivum) as affected by free-air CO2 enrichment. Environ Exp Bot, 2013, 88: 11-18.
doi: 10.1016/j.envexpbot.2011.12.007
[35] Liu C, Hu Z H, Islam A, Kong R, Yu L F, Wang Y Y. Hyperspectral characteristics and inversion model estimation of winter wheat under different elevated CO2 concentrations. Int J Remote Sens, 2021, 42: 1035-1053.
doi: 10.1080/01431161.2020.1823038
[36] 杨熙来, 朱榴骏, 冯兆忠. 臭氧胁迫下冬小麦叶片高光谱特征和叶绿素含量估算. 生态学报, 2023, 43: 3213-3223.
Yang X L, Zhu L J, Feng Z Z. Hyperspectral characteristics and chlorophyll content estimation of winter wheat under ozone stress. Acta Ecol Sin, 2023, 43: 3213-3223. (in Chinese with English abstract)
[37] Bandyopadhyay K K, Pradhan S, Sahoo R N, Singh R, Gupta V K, Joshi D K, Sutradhar A K. Characterization of water stress and prediction of yield of wheat using spectral indices under varied water and nitrogen management practices. Agric Water Manag, 2014, 146: 115-123.
doi: 10.1016/j.agwat.2014.07.017
[38] Zhang C, Ren H, Dai X, Qin Q, Li J, Zhang T, Sun Y. Spectral characteristics of copper stressed vegetation leaves and further understanding of the copper stress vegetation index. Int J Remote Sens, 2019, 40: 4473-4488.
doi: 10.1080/01431161.2018.1563842
[39] Estrada F, Flexas J, Araus J L, Mora P F, Gonzalez T J, Castillo D, Matus I A, Méndez E A M, Garriga M, Araya R C, Douthe C, Castillo B, Del P A, Lobos G A. Exploring plant responses to abiotic stress by contrasting spectral signature changes. Front Plant Sci, 2023, 13: 1-17.
[40] Ohsowski B M, Dunfield K E, Klironomos J N, Hart M M. Improving plant biomass estimation in the field using partial least squares regression and ridge regression. Botany, 2016, 94: 501-508.
doi: 10.1139/cjb-2016-0009
[41] Xie Y, Feng M, Wang C, Yang W, Sun H, Yang C, Jing B, Qiao X, Saleem K M, Song J. Hyperspectral monitor on chlorophyll density in winter wheat under water stress. Agron J, 2020, 112: 3667-3676.
doi: 10.1002/agj2.v112.5
[1] 赵荣荣, 丛楠, 赵闯. 基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择[J]. 作物学报, 2024, 50(3): 721-733.
[2] 谢炜, 贺鹏, 马宏亮, 雷芳, 黄秀兰, 樊高琼, 杨洪坤. 秋闲期秸秆覆盖与施磷对冬小麦氮素吸收利用的影响[J]. 作物学报, 2024, 50(2): 440-450.
[3] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
[4] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[5] 许乃银, 王扬, 王丹涛, 宁贺佳, 杨晓妮, 乔银桃. 棉花纤维质量指数的构建与WGT双标图分析[J]. 作物学报, 2023, 49(5): 1262-1271.
[6] 张金鑫, 葛均筑, 马玮, 丁在松, 王新兵, 李从锋, 周宝元, 赵明. 华北平原冬小麦-夏玉米种植体系周年水分高效利用研究进展[J]. 作物学报, 2023, 49(4): 879-892.
[7] 王雪, 谷淑波, 林祥, 王威雁, 张保军, 朱俊科, 王东. 微喷补灌水肥一体化对冬小麦产量及水分和氮素利用效率的影响[J]. 作物学报, 2023, 49(3): 784-794.
[8] 高春华, 冯波, 李国芳, 李宗新, 李升东, 曹芳, 慈文亮, 赵海军. 施氮量对花后高温胁迫下冬小麦籽粒淀粉合成的影响[J]. 作物学报, 2023, 49(3): 821-832.
[9] 孟雨, 田文仲, 温鹏飞, 丁志强, 张学品, 贺利, 段剑钊, 刘万代, 郭天财, 冯伟. 基于不同发育阶段协同的小麦品种抗旱性综合评判[J]. 作物学报, 2023, 49(2): 570-582.
[10] 张翔宇, 胡鑫慧, 谷淑波, 林祥, 殷复伟, 王东. 减氮条件下分期施钾对冬小麦籽粒产量和氮素利用效率的影响[J]. 作物学报, 2023, 49(2): 447-458.
[11] 周琦, 李岚涛, 张露露, 苗玉红, 王宜伦. 氮肥和播种量互作对冬小麦产量、生长发育和生态场特性的影响[J]. 作物学报, 2023, 49(11): 3100-3109.
[12] 张艳艳, 关涵文, 刘淋茹, 贺利, 段剑钊, 王晨阳, 郭天财, 冯伟. 不同水分条件下施磷对冬小麦穗花发育及产量的影响[J]. 作物学报, 2023, 49(10): 2753-2765.
[13] 陈嘉军, 林祥, 谷淑波, 王威雁, 张保军, 朱俊科, 王东. 花后叶面喷施尿素对冬小麦氮素吸收利用和产量的影响[J]. 作物学报, 2023, 49(1): 277-285.
[14] 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760.
[15] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .