欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (4): 1004-1014.doi: 10.3724/SP.J.1006.2024.34098

• 耕作栽培·生理生化 • 上一篇    下一篇

气候变化背景下我国天麻种植适宜性和适宜区的评估

郝佳乐(), 赵炯超, 赵明宇, 王艺璇, 逯杰, 石晓宇, 高真真, 褚庆全()   

  1. 中国农业大学农学院 / 农业农村部农作制度重点实验室, 北京 100193
  • 收稿日期:2023-06-10 接受日期:2023-10-23 出版日期:2024-04-12 网络出版日期:2023-12-08
  • 通讯作者: * 褚庆全, E-mail: cauchu@cau.edu.cn
  • 作者简介:E-mail: sy20223010148@cau.edu.cn
  • 基金资助:
    云南省重大科技项目(202202AE090029)

Assessment of the cultivation suitability and suitable regions of Gastrodia elata under climate change in China

HAO Jia-Le(), ZHAO Jiong-Chao, ZHAO Ming-Yu, WANG Yi-Xuan, LU Jie, SHI Xiao-Yu, GAO Zhen-Zhen, CHU Qing-Quan()   

  1. College of Agronomy and Biotechnology, China Agricultural University / Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
  • Received:2023-06-10 Accepted:2023-10-23 Published:2024-04-12 Published online:2023-12-08
  • Contact: * E-mail: cauchu@cau.edu.cn
  • Supported by:
    Major Science and Technology Projects in Yunnan Province(202202AE090029)

摘要:

气候变化通过改变物种栖息地的适宜性来影响物种的生长区域。天麻作为中国珍稀濒危药用植物, 评估其种植适宜区分布以及气候变化对天麻种植适宜性的影响可以为天麻生产布局提供重要依据。本研究采用MaxEnt模型, 基于我国天麻地理分布数据和环境数据, 模拟天麻种植适宜性和适宜区的空间分布和变化。结果表明, 影响天麻分布的主要环境因子是5月至7月太阳辐射量、10月至11月降水量、最冷月最低温和植被类型。我国天麻种植高适宜区主要分布在四川盆地周围的西南地区。1961—2020年, 天麻种植适宜性呈波动增加趋势, 种植适宜性提高的面积占全国陆地面积的9.10%, 主要分布在西南地区、华中、华东的部分地区以及陕西省。过去60年间5月至7月太阳辐射量总体上的下降是天麻种植适宜性提高的主要原因。本研究通过对天麻种植适宜性准确评估和种植适宜区变化因子解析, 为我国天麻生产与人工栽培选址提供科学依据, 对制定应对未来气候变化的对策具有借鉴意义。

关键词: 天麻, 种植适宜性, 环境因子, MaxEnt, ArcGIS

Abstract:

Climate change affects species growth areas by altering the suitability of their habitats. As a rare and endangered medical plant in China, the evaluation of the suitable distribution area and the impact of climate change on the suitability of Gastrodia elata can provide important information for the production layout of Gastrodia elata. In this study, the MaxEnt model was used to simulate the spatial distribution and changes of the suitability and suitable area for Gastrodia elata cultivation from 1961 to 2020, based on geographic distribution and environmental data. Results showed that the main environmental factors affecting the distribution of Gastrodia elata were solar radiation from May to July, precipitation in October and November, the minimum temperature in the coldest month, and vegetation type. The high suitable areas for Gastrodia elata cultivation in China were mainly distributed in the southwestern region around the Sichuan Basin. 1961 to 2020, the suitability for Gastrodia elata cultivation had shown a fluctuating increasing trend, with the area of improved suitability accounting for 9.10% of the total land area of China, mainly concentrated in Southwest China, the parts of central and eastern China, and Shaanxi province. The overall decrease in solar radiation from May to July over the past 60 years was the main reason for the increased suitability of asparagus cultivation. This study provided a scientific basis for the production and artificial cultivation site selection of Gastrodia elata in China, which provided reference significance for formulating strategies to respond to future climate change.

Key words: Gastrodia elata, planting suitability, environmental factors, MaxEnt model, ArcGIS

图1

我国标准气象站点与天麻种植分布点地理分布图 该图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS (2019) 1822号的标准地图制作, 底图边界无修改。"

表1

影响天麻种植分布的潜在环境因子"

潜在环境因子
Potential environmental factor
意义
Meaning
文献
References
5月至7月太阳辐射量(Solar_5to7)
Solar radiation from May to July
反映天麻地面生长阶段光照吸收状况
Reflecting the light absorption status of the ground growth stage of Gastrodia elata
[15]
10月至11月降水量(Pre_10to11)
Precipitation in October and November
反映天麻关键生育时期水分供应情况
Reflecting water availability during the critical reproductive period of Gastrodia elata
[23,16]
植被类型(VEG)
Vegetation
天麻自然分布多需要一定的落叶阔叶林
Natural distribution of Gastrodia elata mostly requires a certain amount of deciduous broadleaf forest
[24]
最冷月最低温(MINtem_CM)
Min temperature of coldest month
天麻生长期内承受的最低温度
The minimum temperature to be tolerated during the growth period of Gastrodia elata
[23]
等温性(ISO)
Isothermality
天麻生长期内热量平均水平
Average heat level during the growth period of Gastrodia elata
[23]
含粘量(SCS)
Soil sediment concentration
反映天麻种植地土壤保水保肥能力
Reflects the soil water and fertility retention capacity of the Gastrodia elata cultivation sites
[25]
降水变异系数(CVpre)
Precipitation variability
天麻生长期降水量的季节性差异
Seasonal differences in precipitation during the growing season of Gastrodia elata
[26]
坡度Slope 影响天麻空间分布
Influence on the spatial distribution of Gastrodia elata
[24]
土壤有机碳(SOC)
Soil organic carbon
反映天麻种植地土壤质量状况
Reflecting the soil quality of the Gastrodia elata cultivation sites
[27]
坡向(ASPECT)
Slope
影响天麻营养吸收状况和产量
Influence nutrient uptake status and yield of absorption conditions of Gastrodia elata
[28]
土壤含水量(SWC)
Soil water content
反映天麻种植地土壤水分状况
Reflecting the soil moisture status of the Gastrodia elata cultivation sites
[27]

图2

受试者操作特征曲线(ROC) 红线是平均值, 蓝线为MaxEnt重复运行10次的响应曲线。"

图3

基于jackknife 检验的MaxEnt模型的正则化训练增益(a)和贡献百分比(b) 在(a)中, 红色柱状图显示了使用所有环境因子的模型的训练增益, 深蓝色柱状图显示了仅使用一种环境因子的模型的训练增益, 浅蓝色柱状图显示了除一种环境因子外使用所有环境因子的模型的训练增益。Veg: 植被类型; Solar_5to7: 5月至7月太阳辐射量; Pre_10to11: 10月至11月降水量; Mintem_CM: 最冷月最低温; CVpre: 降水变异系数; SCS: 土壤含沙量; SOC: 土壤有机碳; Slope: 坡度; ISO: 等温性; SWC: 含水量; Aspect: 坡向。"

表2

影响天麻种植适宜性主导环境因子阈值划分"

分类
Classification
5月至7月太阳辐射量
Solar radiation from May to July (MJ m-2)
10月至11月降水量 Precipitation in October and November (mm) 最冷月最低温
Minimum temperature
of coldest month (℃)
植被类型
Vegetation
高适宜区
High suitable area
1230.14-1598.53 79.58-159.81 -11.17 to -0.68 针叶林, 针阔叶混交林, 阔叶林
Coniferous forests, mixed coniferous, and broad-leaved forests, broad- leaved forests
中适宜区
Moderate suitable area
1598.53-1713.89 72.66-78.20
161.19-209.60
-13.83 to -11.46
-0.53 to -0.09
灌丛, 栽培植被
Scrub and cultivated vegetation
低适宜区
Less suitable area
1713.89-1810.64 67.13-72.66
209.60-238.65
-14.72 to -13.98
0.21 to 1.98
其他
Others
不适宜区
Unsuitable area
<1230.14 or >1810.64 <67.13 or >238.65 < -14.72 or >1.98 荒漠, 草原, 草甸, 沼泽, 高山植被
Deserts, grasslands, meadows, swamps, and alpine vegetation

图4

我国天麻种植适宜区空间分布 该图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS (2019) 1822号的标准地图制作, 底图边界无修改。"

图5

我国天麻种植适宜区空间分布(a, b)及种植适宜性变化(c) 该图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS (2019) 1822号的标准地图制作, 底图边界无修改。"

表3

我国不同年代天麻种植适宜区分布面积"

适宜性划分
Suitability regionalization
年份Years
1961-1970 1971-1980 1981-1990 1991-2000 2001-2010 2011-2020
低适宜区Less suitable area 61.79 76.84 72.97 87.72 76.15 81.03
中适宜区Moderate suitable area 25.71 33.68 35.81 47.46 41.93 40.51
高适宜区High suitable area 15.09 21.83 24.60 40.63 32.49 26.66
总适宜区Total suitable area 102.59 132.35 133.38 175.81 150.57 148.20
不适宜区Unsuitable area 857.41 827.65 826.62 784.19 809.43 811.80
[1] Intergovernmental Panel on Climate Change. Climate Change 2013:the Physical Science Basis. Working Group I:Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013. pp 5-6.
[2] 商蒙非, 石晓宇, 赵炯超, 李硕, 褚庆全. 气候变化背景下中国不同区域玉米生育期高温胁迫时空变化特征. 作物学报, 2023, 49: 167-176.
doi: 10.3724/SP.J.1006.2023.23007
Shang M F, Shi X Y, Zhao J C, Li S, Chu Q Q. Spatial and temporal characteristics of high temperature stress during maize fertility in different regions of China in the context of climate change. Acta Agron Sin, 2023, 49: 167-176. (in Chinese with English abstract)
[3] 韩湘玲. 作物生态学. 北京: 气象出版社, 1991. pp 15-18.
Han X L. Crop Ecology. Beijing: China Meteorological Press, 1991. pp 15-18. (in Chinese)
[4] Guisan A, Thuiller W. Predicting species distribution: offering more than simple habitat models. Ecol Lett, 2005, 8: 993-1009.
doi: 10.1111/j.1461-0248.2005.00792.x pmid: 34517687
[5] Zhao J C, Wang C, Shi X Y, Bo X Z, Li S, Shang M F, Chen F, Chu Q Q. Modeling climatically suitable areas for soybean and their shifts across China. Agric Syst, 2021, 192: 1873-2267.
[6] Yuan H S, Wei Y L, Wang X G. Maxent modeling for predicting the potential distribution of Sanghuang, an important group of medicinal fungi in China. Fungal Ecol, 2015, 2: 140-145.
doi: 10.1016/j.funeco.2009.02.001
[7] He Q J, Zhou G S, Lu X M, Zhou M Z. Climatic suitability and spatial distribution for summer maize cultivation in China at 1.5 and 2.0C global warming. Sci Bull, 2019, 64: 690-697.
doi: 10.1016/j.scib.2019.03.030
[8] Kumar S, Stohlgren T J. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J Ecol Nat Environ, 2009, 1: 94-98.
[9] Fand B B, Kumar M, Kamble A L. Predicting the potential geographic distribution of cotton mealybug Phenacoccus solenopsis in India based on MAXENT ecological niche model. J Environ Biol, 2014, 35: 973.
[10] 国家药典委员会. 中华人民共和国药典(一部). 北京: 中国医药科技出版社, 2020. pp 59-60.
National Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China (Part 1). Beijing: China Pharmaceutical Science and Technology Press, 2020. pp 59-60. (in Chinese)
[11] 胡荣丽. 天麻栽培管理技术分析. 农业与技术, 2015, 35(4): 111.
Hu R L. Analysis of cultivation and management technical of Gastrodia elata. Agric Technol, 2015, 35(4): 111. (in Chinese with English abstract)
[12] 郭怡博, 莫可, 王桂荣, 张悦, 张伟, 周建国, 孙志蓉. 未来气候条件下天麻适生区预测及时空变化分析. 中国中医药信息杂志, 2022, 29(7): 1-7.
Guo Y B, Mo K, Wang G R, Zhang Y, Zhang W, Zhou J G, Sun Z R. Prediction and spatial and temporal variation analysis of asparagus suitable areas under future climate conditions. Chin J Trad Chin Med Inf, 2022, 29(7): 1-7. (in Chinese with English abstract)
[13] 张琴, 张东方, 吴明丽, 郭杰, 孙成忠. 基于生态位模型预测天麻全球潜在适生区. 植物生态学报, 2017, 41: 770-778.
doi: 10.17521/cjpe.2016.0380
Zhang Q, Zhang D F, Wu M L, Guo J, Sun C Z. Predicting the global potential fitness zones of asparagus based on ecological niche model. J Plant Ecol, 2017, 41: 770-778. (in Chinese with English abstract)
[14] 胡青青, 王咏菠, 胥烜勋, 黎敏, 王涛. 天麻栽培技术与品种选育研究进展. 中国药学杂志, 2021, 56: 868-874.
doi: 10.11669/cpj.2021.11.002
Hu Q Q, Wang Y B, Xu X X, Li M, Wang T. Progress of cultivation technology and variety selection of Tianma. Chin J Pharm, 2021, 56: 868-874. (in Chinese with English abstract)
[15] 余彬情, 杨玲, 张启鑫, 田佳昕, 万文勇. 天麻环境习性分析及栽培方法探究. 南方农业, 2020, 14(32): 58-59.
Yu B Q, Yang L, Zhang Q X, Tian J X, Wan W Y. Analysis of environmental habit and cultivation method of Gastrodia elata. Southern Agric, 2020, 14(32): 58-59. (in Chinese with English abstract)
[16] 刘金美, 田治蛟, 戴堃, 张昌飞, 余显伦, 郭有刚, 刘大会. 昭通乌天麻最佳采收期研究. 中国现代中药, 2016, 18(2): 189-192.
Liu J M, Tian Z J, Dai K, Zhang C F, Yu X L, Guo Y G, Liu D H. Study on the optimal harvesting period of Zhaotong Wu Tianma. Modern Chin Med, 2016, 18(2): 189-192. (in Chinese with English abstract)
[17] 陈顺芳, 黄先敏, 祁岑. 天麻的生长发育过程及其营养特性. 昭通师范高等专科学校学报, 2011, 33(5): 19-21.
Chen S F, Huang X M, Qi C. Growth and development process of asparagus and its nutritional characteristics. J Zhaotong Norm Coll High Educat, 2011, 33(5): 19-21. (in Chinese with English abstract)
[18] 王海峰, 王超群, 尉广飞, 黄钦, 张海珠, 董林林. 天麻全国产地适宜性区划及其种植技术. 中国现代中药, 2021, 23: 1869-1875.
Wang H F, Wang C Q, Wei G F, Huang Q, Zhang H Z, Dong L L. The suitability zoning of national origin of asparagus and its cultivation technology. Modern Chin Med, 2021, 23: 1869-1875. (in Chinese with English abstract)
[19] 江维克, 张进强, 郭兰萍, 杨野, 肖承鸿, 袁青松, 王晓, 周涛. 天麻种植产业生态化发展的思路与建议. 中国中药杂志, 2022, 47: 2277-2280.
Jiang W K, Zhang J Q, Guo L P, Yang Y, Xiao C H, Yuan Q S, Wang X, Zhou T. Ideas and suggestions for ecological development of Tianma plantation industry. Chin J Trad Chin Med, 2022, 47: 2277-2280. (in Chinese with English abstract)
[20] Sillero N. What does ecological modelling model A proposed classification of ecological niche models based on their underlying methods. Ecol Modell, 2011, 222: 1343-1346.
doi: 10.1016/j.ecolmodel.2011.01.018
[21] Peterson A T, Nakazawa Y. Environmental data sets matter in ecological niche modelling: an example with Solenopsis invicta and Solenopsis richteri. Global Ecol Biogeogr, 2008, 17: 135-144.
doi: 10.1111/geb.2008.17.issue-1
[22] Worthington T A, Zhang T, Logue D R, Mittelstet A R, Brewer K. Landscape and flow metrics affecting the distribution of a federally-threatened fish: improving management, model fit, and model transferability. Ecol Modell, 2016, 342: 1-18.
doi: 10.1016/j.ecolmodel.2016.09.016
[23] 刘炳仁. 天麻高产栽培技术. 上海: 上海科学技术文献出版社, 1992. pp 21-22.
Liu B R. Cultivation Technology of High Yield of Asparagus. Shanghai: Shanghai Science and Technology Literature Press, 1992. pp 21-22. (in Chinese)
[24] 彭华胜, 王德群. 生态因子与古今天麻产区的关系. 现代中药研究与实践, 2007, 22(2): 6-9.
Peng H S, Wang D Q. Affecting ecological factor on location of Gastrodia elata. Res Pract Chin Med, 2007, 22(2): 6-9. (in Chinese with English abstract)
[25] 何海艳, 王玉川, 丁培超, 胡德分, 余显伦, 杨成巧. 天麻种植生态气候条件及增产技术. 南方农业, 2018, 12(36): 5-7.
He H Y, Wang Y C, Ding P C, Hu D F, Yu X L, Yang C Q. Ecological and climatic conditions of asparagus cultivation and yield enhancement techniques. Southern Agric, 2018, 12(36): 5-7. (in Chinese with English abstract)
[26] 曾玉洁, 王业红, 谭涛, 王传华. 北方蜜环菌菌索生长、发育对环境氧气及土壤湿度的响应. 菌物学报, 2022, 41: 739-748.
doi: 10.13346/j.mycosystema.210446
Zeng Y J, Wang Y H, Tan T, Wang C H. Response of growth and development of northern honey ring fungus mycelium to environmental oxygen and soil moisture. J Mycol, 2022, 41: 739-748. (in Chinese with English abstract)
[27] 袁崇文. 中国天麻. 贵阳: 贵州科技出版社, 2002. p 17.
Yuan C W. Chinese Tianma. Guiyang: Guizhou Science and Technology Press, 2002. p 17. (in Chinese)
[28] 刘威, 赵致, 王华磊, 罗夫来, 李金玲, 刘红昌, 罗春丽. 不同坡向与种植层数组合对仿野生栽培红天麻的影响. 中药材, 2015, 38: 883-888.
Liu W, Zhao Z, Wang H L, Luo F L, Li J L, Liu H C, Luo C L. Effects of different combinations of slope orientation and planting layers on wild-cultivated red asparagus. Chin Med Mater, 2015, 38: 883-888. (in Chinese with English abstract)
[29] Singh K, McClean C J, Buker P, Hartley S E, Hill J K. Mapping regional risks from climate change for rainfed rice cultivation in India. Agric Syst, 2017, 156: 76-84.
doi: 10.1016/j.agsy.2017.05.009
[30] Papier C M, Poulos H M, Kusch A. Invasive species and carbon flux: the case of invasive beavers (Castor canadensis) in riparian Nothofagus forests of Tierra del Fuego Chile. Clim Change, 2019, 153: 219-234.
doi: 10.1007/s10584-019-02377-x
[31] Swets J A. Measuring the accuracy of diagnostic systems. Science, 1988, 240: 1285-1293.
doi: 10.1126/science.3287615 pmid: 3287615
[32] 马青江, 孙操稳, 张乐英, 胡梓恒, 张仕娇, 洑香香. 东亚四照花群体中国潜在适生区预测研究. 南京林业大学学报(自然科学版), 2019, 43(5): 135-140.
doi: 10.3969/j.issn.1000-2006.201901046
Ma Q J, Sun C W, Zhang L Y, Hu Z H, Zhang S J, Fu X X. Prediction of the potential habitat of East Asian Tetrahymena group in China. J Nanjing For Univ (Nat Sci Edn), 2019, 43(5): 135-140. (in Chinese with English abstract)
[33] 周元. 天麻生物学特性研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2005.
Zhou Y. Biological Characterization of Asparagus. MS Thesis of Northwest Agriculture and Forestry University of Science and Technology, Yangling, Shaanxi, China, 2005. (in Chinese with English abstract)
[34] 罗夫来, 刘威, 张博华, 赵致, 王华磊, 李金玲. 地理与植被因子对云贵高原仿野生栽培天麻的影响. 北方园艺, 2023, (9): 97-103.
Luo F L, Liu W, Zhang B H, Zhao Z, Wang H L, Li J L. Influence of geographic and vegetation factors on the wild cultivation of Tianma in the Yunnan-Guizhou Plateau. Northern Hortic, 2023, (9): 97-103. (in Chinese with English abstract)
[35] 中国植被编辑委员会. 中国植被. 北京: 科学出版社, 1995. pp 731-745.
Chinese Vegetation Editorial Committee. Vegetation of China. Beijing: Science Press, 1995. pp 731-745. (in Chinese)
[36] 中国医学科学院药物研究所. 中药志. 北京: 人民卫生出版社, 1959. p 88.
Institute of Pharmaceutical Sciences, Chinese Academy of Medical Sciences. Chinese Medicine. Beijing: People’s Health Publishing House, 1959. p 88. (in Chinese)
[37] 罗夫来, 刘威, 张博华, 赵致, 王华磊, 李金玲, 罗春丽. 云贵高原仿野生栽培天麻的产量影响因子及生长发育规律研究. III: 生长发育规律与生境因子特征. 时珍国医国药, 2021, 32: 1221-1225.
Luo F L, Liu W, Zhang B H, Zhao Z, Wang H L, Li J L, Luo C L. Study on yield influencing factors and growth and development patterns of wild cultivated asparagus on the Yunnan-Guizhou plateau. III: Growth and development patterns and habitat factor characteristics. Lishizhen Med Mater Medica Res, 2021, 32: 1221-1225. (in Chinese with English abstract)
[38] Yang S, Wang X L, Wild M. Homogenization and trend analysis of the 1958-2016 in situ surface solar radiation records in China. J Climate, 2018, 31: 4529-4541.
doi: 10.1175/JCLI-D-17-0891.1
[39] 齐月, 房世波, 周文佐. 近50年来中国地面太阳辐射变化及其空间分布. 生态学报, 2014, 34: 7444-7453.
Qi Y, Fang S B, Zhou W Z. Variation and spatial distribution of surface solar radiation in China over recent 50 years. Acta Ecol Sin, 2014, 34: 7444-7453. (in Chinese with English abstract)
[40] 申彦波, 王标. 近50年中国东南地区地面太阳辐射变化对气温变化的影响. 地球物理学报, 2011, 54: 1457-1465.
Shen Y B, Wang B. Effect of surface solar radiation variations on temperature in South-East China during recent 50 years. Chin J Geophys, 2011, 54: 1457-1465 (in Chinese with English abstract).
[41] 石子为, 马聪吉, 康传志, 王丽, 张智慧, 陈骏飞, 张小波, 刘大会. 基于空间分析的昭通天麻生态适宜性区划研究. 中国中药杂志, 2016, 41: 3155-3163.
Shi Z W, Ma C J, Kang C Z, Wang L, Zhang Z H, Chen J F, Zhang X B, Liu D H. Research on the ecological suitability zoning of Zhaotong Tianma based on spatial analysis. Chin J Trad Chin Med, 2016, 41: 3155-3163. (in Chinese with English abstract)
[1] 姜骁, 许静, 潘丽娟, 陈娜, 王通, 江晓东, 殷祥贞, 杨珍, 禹山林, 迟晓元. 花生产量相关性状与气象因子多环境相关性分析[J]. 作物学报, 2023, 49(11): 3110-3121.
[2] 唐朝臣,罗峰,李欣禹,裴忠有,高建明,孙守钧*. 甜高粱产量及品质相关性状对环境因子反应度分析[J]. 作物学报, 2015, 41(10): 1612-1618.
[3] 袁继超;丁志勇;蔡光泽;杨世民;朱庆森;杨建昌. 攀西地区稻米淀粉RVA谱的影响因子及其垂直变化特点[J]. 作物学报, 2005, 31(12): 1611-1619.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .