欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (4): 1015-1029.doi: 10.3724/SP.J.1006.2024.34116

• 耕作栽培·生理生化 • 上一篇    下一篇

甘蓝型油菜苗期响应渍害胁迫的生理调控机制

周香玉(), 徐劲松, 谢伶俐(), 许本波(), 张学昆   

  1. 湿地生态与农业利用教育部工程研究中心 / 长江大学, 湖北荆州 434025
  • 收稿日期:2023-07-06 接受日期:2023-10-23 出版日期:2024-04-12 网络出版日期:2023-11-15
  • 通讯作者: * 谢伶俐, E-mail: linglixie@yangtzeu.edu.cn;许本波, E-mail: benboxu@yangtzeu.edu.cn
  • 作者简介:E-mail: 2844804442@qq.com
  • 基金资助:
    农业生物育种重大项目(2023ZD04042);农业农村部项目(15214011);湖北省农业厅项目(鄂农油[2022]7号)

Physiological mechanisms in response to waterlogging during seedling stage of Brassica napus L.

ZHOU Xiang-Yu(), XU Jin-Song, XIE Ling-Li(), XU Ben-Bo(), ZHANG Xue-Kun   

  1. Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education / Yangtze University, Jingzhou 434025, Hubei, China
  • Received:2023-07-06 Accepted:2023-10-23 Published:2024-04-12 Published online:2023-11-15
  • Contact: * E-mail: linglixie@yangtzeu.edu.cn; E-mail: benboxu@yangtzeu.edu.cn
  • Supported by:
    Major Projects of Agricultural Biology Breeding of China(2023ZD04042);Entrusted Program of Ministry of Agriculture and Rural Affairs of China(15214011);Hubei Provincial Department of Agriculture Project (Hubei Province Nongyou [2022] 7)

摘要:

长江流域是中国油菜主产区, 该区域常年湿润多雨, 且产区实行油菜-水稻轮作制度, 导致渍害频发。为明确甘蓝型油菜(Brassica napus L.)对苗期渍害的响应机制, 本研究采用盆栽试验, 以强耐渍品系YZ12、中等耐渍品系YZ45和不耐渍品系YZ59为试验材料, 研究苗期淹水对油菜表型性状、生理特性、光合作用、相关基因相对转录水平等的影响, 同时分析了外源激素抑制剂对油菜渍害胁迫的影响。结果表明, 淹水胁迫严重抑制油菜生长, 根系活力可作为衡量淹水胁迫对油菜生长影响的指示指标。根细胞超微结构观察发现, 淹水胁迫导致油菜根系细胞发生质壁分离及细胞器破碎解体, 强、中耐渍油菜的细胞器受损程度较小, 能够在淹水胁迫中维持较为正常的细胞形态; 淹水胁迫下根部细胞骨架相关基因Bnamicrotubule1.A3Bnatubulin-α2.C3Bnatubulin-β7.C6Bnalamin-like.A2相对转录水平显著下调至对照水平(CK)的0.2~0.5倍; 无氧呼吸相关基因BnaPDC.C9BnaLDH.A1BnaADH.A7表达量显著升高, 为CK的3~6倍, 且在中、强耐渍油菜中诱导表达水平更高。过氧化物酶(peroxidase, POD)、超氧化物歧化酶(superoxide dismutase, SOD)活性随淹水时间延长呈先升后降趋势, 过氧化氢酶(catalase, CAT)活性和丙二醛(malondialdehyde, MDA)含量呈升高趋势, 其中强耐渍品系抗氧化酶活性相对较高, 而MDA增幅较小。淹水胁迫严重影响油菜叶片光合效率及叶绿素含量, 导致油菜叶绿素含量、光合速率、气孔导度和蒸腾速率显著下降, 胞间CO2浓度显著升高, 且不耐渍品系变化幅度相对较大。淹水胁迫导致油菜乙烯(ethylene, ET)和脱落酸(abscisic acid, ABA)含量显著升高, 其中强耐渍品系ET含量较高, 不耐渍品系ABA含量较高; 强耐渍品系的ET信号相关基因BnaACO1.C8BnaERF73.C6相对转录水平显著上调, 不耐渍品系ABA合成相关基因BnaZEP.A7相对转录水平上调。外源喷施激素抑制剂可改善淹水胁迫对油菜的伤害, 但不同外源激素抑制剂效果差异明显。综上, 不同耐渍性甘蓝型油菜苗期对淹水胁迫响应在表型、生理代谢、光合、激素和基因转录水平存在差异。甘蓝型油菜通过调控细胞骨架、无氧呼吸、激素代谢相关基因的相对转录水平, 引起植株内抗氧化酶活性、激素水平、光合效率、根部超微结构及根系活力改变, 进而响应淹水胁迫。

关键词: 甘蓝型油菜, 淹水胁迫, 根系超微结构, 光合特性, 抗氧化酶活性, 激素水平, 转录调控

Abstract:

The Yangtze River basin is the main producing area of rapeseeds in China, which is wet and rainy all the year round, and the rapeseed-rice rotation system is implemented in the producing area, resulting in frequent waterlogging. To explore the effects of waterlogging at seedling stage on phenotypic traits, physiological characteristics, photosynthesis, relative gene transcriptional levels, and the regulation of exogenous hormone inhibitors on rapeseed damage under waterlogging, a pot experiment was conducted, and the strong waterlogging tolerant line YZ12, medium waterlogging tolerant line YZ45, and weak waterlogging tolerant line YZ59 were used as the experimental materials. The results indicated that flooding stress severely inhibited the growth of rapeseed, and root activity could be used as an indicator to measure the impact of flooding stress on rapeseed growth. The observation of root cell ultrastructure showed that flooding stress led to plasmolysis and organelle fragmentation of rape root cells. The organelle of strong and medium waterlogging resistant rape was less damaged, and it could maintain a more normal cell morphology under flooding stress. The relative transcriptional levels of cytoskeletal genes Bnamicrotubule1.A3, Bnatubulin-α2.C3, Bnatubulin-β7.C6, and Bnalamin-like.A2 in rape roots were significantly decreased under flooding stress, which were 0.2-0.5 times that of the control (CK) samples. The relative expressional levels of BnaPDH.C9, BnaLDH.A1, and BnaADH.A7 associated to anaerobic respiration were significantly increased, which was 3-6 times higher than that of CK, and higher expression levels were observed in medium and strong waterlogging tolerant rapeseed seedlings than in weak waterlogging tolerant line YZ59. During waterlogging, the activities of POD and SOD increased first and then decreased, while the activity of CAT and the content of MDA increased. Among them, the enzyme activities of YZ12 line such as POD, SOD, CAT were relatively high, and the increase of MDA was small. The photosynthetic efficiency and chlorophyll content of rapeseed leaves were seriously affected by flooding stress. The chlorophyll content, photosynthetic rate, stomatal conductance and transpiration rate of rapeseed decreased significantly, and the intercellular CO2 concentration increased significantly, and the change range of the weak waterlogging tolerant line YZ59 was larger than that of the other two lines. Under flooding stress, ET and ABA contents of rapeseed increased significantly. Among the three lines, YZ12 had higher ET content, while YZ59 had higher ABA content. The relative transcriptional levels of ET related genes BnaACO1.C8, BnaERF73.C6 were significantly up-regulated in the strong waterlogging tolerant line YZ12, while the relative transcriptional level of ABA-related gene BnaZEP.A7 was up-regulated in the weak waterlogging tolerant line YZ59. Exogenous application of hormone inhibitors could improve the damage of flooding stress to rapeseed, but the effects of different exogenous hormone inhibitors varied significantly. In conclusion, there were differences in physiological metabolism, photosynthesis, hormone, and gene transcriptional levels in response to flooding stress at seedling stage in B. napus with different waterlogging tolerance. B. napus responsed to flooding stress by regulating the relative transcription levels of genes related to cytoskeleton, anaerobic respiration, hormone metabolism, causing changes in antioxidant enzyme activity, hormone levels, photosynthetic efficiency, root ultrastructure and root vitality.

Key words: Brassica napus L., flooding stress, root ultrastructure, photosynthetic characteristics, antioxidant enzyme activity, hormone levels, transcriptional regulation

表1

qRT-PCR所用引物序列"

基因编号
Gene ID
基因名称
Gene name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
XM_013825609.2 Bnatubulin-α2.C3 AACCATCAAGACCAAGCGCAC CCTCCTCATAATCCTTCTCCAG
XM_013846861.2 Bnatubulin-β7.C6 CGTCCAGAACAAGAACTCCTC GCTCGCTGACTCTCCTGAAC
XM_013847632.2 Bnalaminlike.A2 GCATCTCCGACCATCCTATCCG AAACAACCACCCCTTCCGTC
XM_013786846.2 Bnamicrotubule1.A3 GCATACGATGGTGTTCCTCTG CTCTACGTGTGGCTGTTCTTG
XM_013852099.3 BnaPDC.C9 TGCTCAAGCCATACCTAACAAACG CGCAGTCCAGCATTTACCTTCTC
XM_013794611.3 BnaADH.A7 GGATTGCTGGTGCTGGTAGGA GCGATGACTTGCTGAACTGGC
XM_013866109.3 BnaLDH.A1 TCCTCCGAGACCAGCGTAAGAT TTAGTCACAGCCACCACACCG
GU550519.1 BnaRGA.A9 ATCACTCTCTCTCCGACACGCTC GGACCACCTTCTCTCAACGCAA
XM_013788321.3 BnaGA3.A6 GGATAAGAAGCGTTGGGAGAAGC TCAACATTCTCTTCCTCACCGTCT
XM_013815976.3 BnaGA2ox2.C3 TGAAAGATGGAAGTTGGGTCGC GCAATCTTCTGGCTCAATGGG
NM_001315888.1 BnaZEP.A7 GCATTGTCGGAAGTGAACCAGA TGAGATAGGTCCCGTGTTCGC
XM_013788810.3 BnaNCED3.C1 ACCAGATACGCTTACCTCGCTT TGTAACCGTCGTCTTCGCCT
XM_013887010.1 BnaAAO.A4 GATTTAGGACAGGTGGAAGGAGC CACAATGAACCGAAGCCGC
XM_013804747.3 BnaACO1.C8 CGCCATCAAAGAACAACACCATT CTGGAGCTGGAGATATTACGGCA
XM_013893836.3 BnaEIN3.A5 CCAACGGTCCAGAATCATCAAGA GTTGTTGTTGTTGTTGGTGTGCG
XM_013845804.2 BnaERF73.C6 CAACTTCCCTAACGATTCTCCAGC CCGCATTGTTATTCTCCTCCCAC
NM_001316010.1 BnaACT.C2 CTGGAATTGCTGACCGTATGAG ATCTGTTGGAAAGTGCTGAGGG

图1

淹水胁迫6 d不同耐渍性甘蓝型油菜形态 CK: 正常供水; T: 淹水处理6 d。"

表2

淹水6 d时3个油菜品系形态指标及根系活力"

品系
Line
处理
Treatment
株高
Plant height
(cm)
叶长
Leaf length
(cm)
叶宽
Leaf width
(cm)
地上部鲜重
Fresh weight of shoot (g)
根长
Root length
(cm)
根系活力
Root activity
(mg g-1 h-1)
YZ12 CK 13.63±1.42 a 4.40±0.39 a 3.87±0.47 a 1.07±0.16 a 7.93±1.17 a 453.59±12.71 a
T 10.17±0.89 bc 2.40±0.38 c 2.07±0.16 c 0.70±0.02 bc 5.52±1.67 bc 385.07±23.59 b
YZ45 CK 11.35±1.70 b 3.90±0.86 ab 3.47±0.19 b 0.91±0.27 ab 6.85±0.96 ab 442.02±14.39 a
T 8.80±0.63 cd 2.25±0.21 c 1.98±0.27 c 0.55±0.06 c 3.97±1.14 cd 364.69±8.26 bc
YZ59 CK 10.98±1.39 b 3.57±0.31 b 3.53±0.40 ab 0.90±36.00 ab 8.08±1.78 a 462.23±35.66 a
T 8.27±1.01 d 1.90±0.12 c 1.72±0.12 c 0.26±0.18 c 3.12±1.17 c 325.93±26.33 c

表3

淹水6 d时3个油菜品系各指标的灰色关联分析"

指标
Index
根系活力
Root activity
叶宽
Leaf width
根长
Root length
叶长
Leaf length
株高
Plant height
关联度 Correlation degree 0.6211 0.6001 0.5938 0.5798 0.5465
排序 Order 1 2 3 4 5

图2

不同耐渍性甘蓝型油菜根细胞超微结构 CK: 正常供水; T: 淹水处理6 d; A~C: 正常供水状态下不同耐渍性油菜根细胞超微结构; D~F: 淹水胁迫下不同耐渍性油菜根细胞超微结构。"

图3

根中细胞骨架相关基因转录水平分析 CK: 正常供水; T: 淹水处理48 h。不同小写字母表示处理间在0.05概率水平差异显著。"

图4

根中无氧呼吸相关基因转录水平分析 CK: 正常供水; T: 淹水处理48 h。不同小写字母表示处理间在0.05概率水平差异显著。"

图5

淹水胁迫下不同耐渍性甘蓝型油菜内源激素含量的变化"

图6

根中激素代谢相关基因转录水平分析 CK: 正常供水; T: 淹水处理48 h。不同小写字母表示处理间在0.05概率水平差异显著。"

图7

淹水胁迫对甘蓝型油菜抗氧化酶活性及MDA含量的影响 不同小写字母表示处理间在0.05概率水平差异显著。"

图8

淹水胁迫对甘蓝型油菜光合性状及叶绿素总量的影响 不同小写字母表示处理间在0.05概率水平差异显著。"

图9

甘蓝型油菜根系活力与生理指标相关性分析 图中数据为Pearson r。X1: 根系活力; X2: POD活性; X3: CAT活性; X4: SOD活性; X5: MDA含量; X6: 光合速率; X7: 气孔导度; X8: 蒸腾速率; X9: 胞间CO2浓度; X10: 叶绿素含量; X11: GA含量; X12: ABA含量; X13: ET含量。"

图10

外源生长调节剂对淹水胁迫下甘蓝型油菜表型的影响 CK: 正常供水; T1: 淹水处理+喷施蒸馏水; T2: 淹水处理+喷施GA抑制剂UNICONAZOLE; T3: 淹水处理+喷施ET抑制剂STS; T4: 淹水处理+喷施ABA抑制剂NDGA。"

图11

淹水胁迫对甘蓝型油菜苗期生长的影响及响应机制 A: 激素调控根系生长信号通路图[12,50??-53], 实线表示直接相互作用, 虚线表示间接相互作用。箭头表示刺激作用, ⊥表示抑制作用; B: 甘蓝型油菜苗期响应渍害胁迫的生理调控机制。"

[1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617.
doi: 10.7505/j.issn.1007-9084.2018.05.001
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617. (in Chinese with English abstract)
[2] 宋丰萍, 胡立勇, 周广生, 吴江生, 傅廷栋. 渍水时间对油菜生长及产量的影响. 作物学报, 2010, 36: 170-176.
doi: 10.3724/SP.J.1006.2010.00170
Song F P, Hu L Y, Zhou G S, Wu J S, Fu T D. Effects of waterlogging time on rapeseed (Brassica napus L.) growth and yield. Acta Agron Sin, 2010, 36: 170-176. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.00170
[3] 张佩, 吴洪颜, 江海东, 高苹, 徐敏. 长江中下游油菜春季湿渍害灾损风险评估研究. 气象与环境科学, 2019, 42(1): 11-17.
Zhang P, Wu H Y, Jiang H D, Gao P, Xu M. Risk assessment study on rapeseed suffering from spring wet damages in the middle and lower reaches of Yangtze River. Meteorol Environ Sci, 2019, 42(1): 11-17. (in Chinese with English abstract)
[4] Wang Z Y, Han Y L, Luo S, Rong X M, Song H X, Jiang N, Li C W, Yang L. Calcium peroxide alleviates the waterlogging stress of rapeseed by improving root growth status in a rice-rape rotation field. Front Plant Sci, 2022, 13: 1048227.
doi: 10.3389/fpls.2022.1048227
[5] 杨海云, 艾雪莹, Batool M, 刘芳, 蒯婕, 王晶, 汪波, 周广生. 油菜响应水分胁迫的生理机制及栽培调控措施研究进展. 华中农业大学学报, 2021, 40(2): 6-16.
Yang H Y, Ai X Y, Batool M, Liu F, Kuai J, Wang J, Wang B, Zhou G S. Progress on physiological mechanisms of response to water stress and measures of cultivation controlling in rapeseed. J Huangzhong Agric Univ, 2021, 40(2): 6-16. (in Chinese with English abstract)
[6] 张学昆, 陈洁, 王汉中, 李加纳, 邹崇顺. 甘蓝型油菜耐湿性的遗传差异鉴定. 中国油料作物学报, 2007, 29: 98-102.
Zhang X K, Chen J, Wang H Z, Li J N, Zou C S. Genetic difference of waterlogging tolerance in rapeseed (Brassica napus L.). Chin J Oil Crop Sci, 2007, 29: 98-102. (in Chinese with English abstract)
[7] Champolivier L, Merricen A. Effects of water stress applied at different growth stages to Brassica napus L. var. oleifera on yield, yield components and seed quality. Eur J Agron, 1996, 5: 153-160.
doi: 10.1016/S1161-0301(96)02004-7
[8] 俄有浩, 马玉平. 农田涝渍灾害研究进展. 自然灾害学报, 2022, 31(4):12-30.
E Y H, Ma Y P. Advances in research on cropland waterlogging disaster. Nat Dis, 2022, 31(4): 12-30. (in Chinese with English abstract)
[9] 张树杰, 廖星, 胡小加, 谢立华, 余常兵, 李银水, 车志, 廖祥生. 渍水对油菜苗期生长及生理特性的影响. 生态学报, 2013, 33: 7382-7389.
Zhang S J, Liao X, Hu X J, Xie L H, Yu C B, Li Y S, Che Z, Liao X S. Effects of waterlogging on the growth and physiological properties of juvenile oilseed rape. Acta Ecol Sin, 2013, 33: 7382-7389. (in Chinese with English abstract)
[10] Li J J, Iqbal S, Zhang Y T, Chen Y H, Tan Z D, Ali U, Guo L. Transcriptome analysis reveals genes of flooding-tolerant and flooding-sensitive rapeseeds respond to flooding at the germination stage. Plants, 2021, 10: 693.
doi: 10.3390/plants10040693
[11] Kuroha T, Nagai K, Gamuyao R, Wang D, Furuta T, Nakamori M, Kitaoka T, Adachi K, Minami A, Mori Y, Mashiguchi K, Seto Y, Yamaguchi S, Kojima M, Sakakibara H, Wu J, Ebana K, Mitsuda N, Ohme-Takagi M, Yanagisawa S, Yamasaki M, Yokoyama R, Nishitani K, Mochizuki T, Tamiya G, McCouch S, Ashikari M. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science, 2018, 361: 181-186.
doi: 10.1126/science.aat1577 pmid: 30002253
[12] Qin H, He L, Huang R F. The coordination of ethylene and other hormones in primary root development. Front Plant Sci, 2019, 10: 874.
doi: 10.3389/fpls.2019.00874 pmid: 31354757
[13] Fukushima A, Kuroha T, Nagai K, Hattori Y, Kobayashi M, Nishizawa T, Kojima M, Utsumi Y, Oikawa A, Seki M, Sakakibara H, Saito K, Ashikari M, Kusano M. Metabolite and phytohormone profiling illustrates metabolic reprogramming as an escape strategy of deepwater rice during partially submerged stress. Metabolites, 2020, 10: 68.
doi: 10.3390/metabo10020068
[14] Cheng Y, Gu M, Cong Y, Zou C S, Zhang X K, Wang H Z. Combining ability and genetic effects of germination traits of Brassica napus L. under waterlogging stress condition. Agric Sci China, 2010, 9: 951-957.
doi: 10.1016/S1671-2927(09)60176-0
[15] Leul M, Zhou W J. Alleviation of waterlogging damage in winter rape by application of uniconazole: effects on morphological characteristics, hormones and photosynthesis. Field Crops Res, 1998, 59: 121-127.
doi: 10.1016/S0378-4290(98)00112-9
[16] 何激光, 官春云, 李凤阳, 阴长发. 不同渍水处理对油菜产量及生理特性的影响. 作物研究, 2011, 25: 313-315.
He J G, Guan C Y, Li F Y, Yin C F. Effects of different waterlogging treatments on the yield and physiological characteristics of rape. Crop Res, 2011, 25: 313-315 (in Chinese with English abstract).
[17] 李玲, 张春雷, 张树杰, 李光明. 渍水对冬油菜苗期生长及生理的影响. 中国油料作物学报, 2011, 33: 247-252.
Li L, Zhang C L, Zhang S J, Li G M. Effects of waterlogging on growth and physiological changes of winter rapeseed seedling (Brassica napus L.). Chin J Oil Crop Sci, 2011, 33: 247-252. (in Chinese with English abstract)
[18] Kuai J, Li X Y, Xie Y, Li Z, Wang B, Zhou G S. Leaf characteristics at recovery stage affect seed oil and protein content under the interactive effects of nitrogen and waterlogging in rapeseed. Agriculture, 2020, 10: 207.
doi: 10.3390/agriculture10060207
[19] 张维, 李云, 戚存扣, 陈松, 王晓东. 淹水胁迫对耐淹和不耐淹油菜光合参数影响差异的研究. 中国农学通报, 2019, 35(7): 28-35.
doi: 10.11924/j.issn.1000-6850.casb18090105
Zhang W, Li Y, Qi C K, Chen S, Wang X D. Effects of waterlogging stress on photosynthetic parameters of waterlogging-tolerant and susceptible rapeseed lines. Chin Agric Sci Bull, 2019, 35(7): 28-35. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb18090105
[20] 谢云韵, 余常兵, 侯加佳, 胡小加, 李银水, 沈宏, 廖星. 低氧胁迫对油菜幼苗不定根生长的影响. 中国油料作物学报, 2013, 35: 284-289.
doi: 10.7505/j.issn.1007-9084.2013.03.009
Xie Y Y, Yu C B, Hou J J, Hu X J, Li Y S, Shen H, Liao X. Effect of low oxygen stress on adventitious roots of rape seedlings. Chin J Oil Crop Sci, 2013, 35: 284-289 (in Chinese with English abstract).
[21] Guo Y Y, Chen J, Kuang L H, Wang N J, Zhang G P, Jiang L X, Wu D Z. Effects of waterlogging stress on early seedling development and transcriptomic responses in Brassica napus. Mol Breed, 2020, 40: 4917-4929.
[22] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
Li H S. Principles and Techniques of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2000. (in Chinese)
[23] 杨志敏. 生物化学实验. 北京: 高等教育出版社, 2015.
Yang Z M. Biochemistry Experiments. Beijing: Higher Education Press, 2015. (in Chinese)
[24] 徐爱军, 高桂枝, 汤莉莉. 梯度洗脱测定植物源调节剂中内源激素方法探讨. 分析试验室, 2007, 26(9): 51-55.
Xu A J, Gao G Z, Tang L L. Study on the determination of intrinsic hormones in plant growth regulator from plants by HPLC with gradient elution. Chin J Anal Lab, 2007, 26(9): 51-55. (in Chinese with English abstract)
[25] Ali B, Qian P, Sun R, Farooq M A, Gill R A, Wang J, Azam M, Zhou W J. Hydrogen sulfide alleviates the aluminum-induced changes in Brassica napus as revealed by physiochemical and ultrastructural study of plant. Environ Sci Pollut Res Int, 2015, 22: 3068-3081.
doi: 10.1007/s11356-014-3551-y
[26] 徐国伟, 孙会忠, 陆大克, 王贺正, 李友军. 不同水氮条件下水稻根系超微结构及根系活力差异. 植物营养与肥料学报, 2017, 23: 811-820.
Xu G W, Sun H Z, Lu D K, Wang H Z, Li Y J. Differences in ultrastructure and activity of rice roots under different irrigation and nitrogen supply levels. J Plant Nutr Fert, 2017, 23: 811-820. (in Chinese with English abstract)
[27] 胡亚丽, 聂靖芝, 吴霞, 潘姣, 曹珊, 岳娇, 罗登杰, 王财金, 李增强, 张辉, 吴启境, 陈鹏. 水杨酸引发对红麻幼苗耐盐性的影响. 中国农业科学, 2022, 55: 2696-2708.
doi: 10.3864/j.issn.0578-1752.2022.14.002
Hu Y L, Nie J Z, Wu X, Pan J, Cao S, Yue J, Luo D J, Wang C J, Li Z Q, Zhang H, Wu Q J, Chen P. Effect of salicylic acid priming on salt tolerance of kenaf seedlings. Sci Agric Sin, 2022, 55: 2696-2708. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2022.14.002
[28] Hong B, Zhou B Q, Peng Z C, Yao M Y, Wu J J, Wu X P, Guan C Y, Guan M. Tissue-specific transcriptome and metabolome analysis reveals the response mechanism of Brassica napus to waterlogging stress. Int J Mol Sci, 2023, 24: 3-23.
doi: 10.3390/ijms24010003
[29] Zou X L, Tan X Y, Hu C W, Zeng L, Lu G Y, Fu G P, Cheng Y, Zhang X K. The transcriptome of Brassica napus L. roots under waterlogging at the seedling stage. Int J Mol Sci, 2013, 14: 2637-2651.
doi: 10.3390/ijms14022637
[30] Zou X L, Zeng L, Lu G Y, Xu J S, Zhang X K. Comparison of transcriptomes undergoing waterlogging at the seedling stage between tolerant and sensitive varieties of Brassica napus L. J Integr Agric, 2015, 14: 1723-1734.
doi: 10.1016/S2095-3119(15)61138-8
[31] Peng Y J, Zhao Z X, Tong R G, Hu X Y, Du K B. Anatomy and ultrastructure adaptations to soil flooding of two full-sib poplar clones differing in flood-tolerance. Flora, 2017, 233: 90-98.
doi: 10.1016/j.flora.2017.05.014
[32] Hasanuzzaman M, Bhuyan M, Zulfiqar F, Raza A, Mohsin S M, Mahmud J A, Fujita M, Fotopoulos V. Reactive oxygen species and antioxidant defense in plants under abiotic stress revisiting the crucial role of a universal defense regulator. Antioxidants, 2020, 9: 681.
doi: 10.3390/antiox9080681
[33] Cheng X X, Yu M, Zhang N, Zhou Z Q, Xu Q T, Mei F Z, Qu L H. Reactive oxygen species regulate programmed cell death progress of endosperm in winter wheat (Triticum aestivum L.) under waterlogging. Protoplasma, 2016, 253: 311-327.
doi: 10.1007/s00709-015-0811-8
[34] 陶霞, 李慧琳, 万林, 周琴, 江海东. 叶面喷施吲哚乙酸对油菜蕾薹期渍水的缓解效应. 中国油料作物学报, 2015, 37: 55-61.
doi: 10.7505/j.issn.1007-9084.2015.01.009
Tao X, Li H L, Wan L, Zhou Q, Jiang D H. Alleviation effects of IAA foliar spray on waterlogging stressed rapeseed at budding stage. Chin J Oil Crop Sci, 2015, 37: 55-61. (in Chinese with English abstract)
doi: 10.7505/j.issn.1007-9084.2015.01.009
[35] Zhang J Y, Huang S N, Wang G, Xuan P J, Guo Z R. Overexpression of Actinidia deliciosa pyruvate decarboxylase 1 gene enhances waterlogging stress in transgenic Arabidopsis thaliana. Plant Physiol Biochem, 2016, 106: 244-252.
doi: 10.1016/j.plaphy.2016.05.009
[36] 魏和平, 利容千, 王建波. 淹水对玉米叶片细胞超微结构的影响. 植物学报, 2000, 42: 811-817.
Wei H P, Li R Q, Wang J B. Ultrastructural changes in leaf cells of submerged maize. Acta Bot Sin, 2000, 42: 811-817. (in Chinese with English abstract)
[37] Zhang R D, Zhou Y F, Yue Z X, Chen X F, Cao X, Xu X X, Xing Y F, Jiang B, Ai X Y, Huang R D. Changes in photosynthesis, chloroplast ultrastructure, and antioxidant metabolism in leaves of sorghum under waterlogging stress. Photosynthetica, 2019, 57: 1076-1083.
doi: 10.32615/ps.2019.124
[38] Reinbardt D, Mandel T, Kuhlemeier C. Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell, 2000, 12: 507-518.
doi: 10.1105/tpc.12.4.507 pmid: 10760240
[39] Hinz M, Wilson I W, Yang J, Buerstenbinder K, Llewellyn D, Dennis E S, Sauter M, Dolferus R. Arabidopsis RAP2.2: an ethylene response transcription factor that is important for hypoxia survival. Plant Physiol, 2010, 153: 757-772.
doi: 10.1104/pp.110.155077 pmid: 20357136
[40] Licausi F, Van Dongen J T, Giuntoli B, Novi G, Santaniello A, Geigenberger P, Perata P. HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J, 2010, 62: 302-315.
[41] Nguyen T N, Tuan P A, Mukherjee S, Son S H, Ayeke B T. Hormonal regulation in adventitious roots and during their emergence under waterlogged conditions in wheat. J Exp Bot, 2018, 69: 4065-4082.
doi: 10.1093/jxb/ery190
[42] 谢伶俐, 韦丁一, 章子爽, 徐劲松, 张学昆, 许本波. 甘蓝型油菜发育进程中赤霉素动态变化及其与产量的关系. 中国农业科学, 2022, 55: 4793-4807.
doi: 10.3864/j.issn.0578-1752.2022.24.002
Xie L L, Wei D Y, Zhang Z S, Xu J S, Zhang X K, Xu B B. Dynamic changes of gibberellin content during the development and the relationship between gibberellin and yield of Brassica napus L.. Sci Agric Sin, 2022, 55: 4793-4807. (in Chinese with English abstract)
[43] O’neill D P, Davidson S E, Clarke V C, Yamauchi Y, Yamauchi S, Kamiya Y, Reid J B, Ross J J. Regulation of the gibberellins pathway by auxin and DELLA proteins. Planta, 2010, 232: 1141-1149.
doi: 10.1007/s00425-010-1248-0
[44] Sharp R E, Lenoble M E. ABA, ethylene and the control of shoot and root growth under water stress. J Exp Bot, 2002, 53: 33-37.
pmid: 11741038
[45] Kim Y H, Hwang S J, Waqas M, Khan A L, Lee J H, Lee J D, Nguyen H T, Lee I J. Comparative analysis of endogenous hormones level in two soybean (Glycine max L.) lines differing in waterlogging tolerance. Front Plant Sci, 2015, 6: 714.
[46] De S L, Signora L, Beeckman T, Inze D, Foyer C H, Zhang H. An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J, 2003, 33: 543-555.
doi: 10.1046/j.1365-313X.2003.01652.x
[47] Komatsu S, Han C, Nanjo Y, Altaf-Un-Nahar M, Wang K, He D L, Yang P F. Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding. J Proteome Res, 2013, 12: 4769-4784.
doi: 10.1021/pr4001898 pmid: 23808807
[48] Saha I, Hasanuzzaman M, Dolui D, Sikdar D, Debnath S C, Adak M K. Silver-nanoparticle and abscisic acid modulate sub1A quantitative trait loci functioning towards submergence tolerance in rice (Oryza sativa L.). Environ Exp Bot, 2021, 181: 104276.
doi: 10.1016/j.envexpbot.2020.104276
[49] Wang S Y, Zhou H, Feng N J, Xiang H T, Liu Y, Wang F, Li W, Feng S J, Liu M L, Zheng D F. Physiological response of soybean leaves to uniconazole under waterlogging stress at R1 stage. J Plant Physiol, 2022, 268: 153579.
doi: 10.1016/j.jplph.2021.153579
[50] 王琼. 几种植物生长调节剂对油菜渍害的缓解作用及机理研究. 中国农业科学院硕士学位论文, 北京, 2012.
Wang Q. Studies on Mitigative Effects of Plant Growth Regulators on Rapeseed Subjected to Waterlogging. MS Thesis of Chinese Academy of Agricultural Sciences Dissertation, Beijing, China, 2012. (in Chinese with English abstract)
[51] Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J R, Harberd N P. Integration of plant responses to environmentally activated phytohormonal signals. Science, 2006, 311: 91-94.
doi: 10.1126/science.1118642 pmid: 16400150
[52] Ma B, Yin C C, He S J, Lu X, Zhang W K, Lu T G, Chen S Y, Zhang J S. Ethylene-induced inhibition of root growth requires abscisic acid function in rice (Oryza sativa L.) seedlings. PLoS Genet, 2014, 10: e1004701.
doi: 10.1371/journal.pgen.1004701
[53] Li Z F, Zhang L X, Yu Y W, Quan R D, Zhang Z J, Zhang H W, Huang R F. The ethylene response factor AtERF11 that is transcriptionally modulated by the bZIP transcription factor HY5 is a crucial repressor for ethylene biosynthesis in Arabidopsis. Plant J, 2011, 68: 88-99.
doi: 10.1111/tpj.2011.68.issue-1
[1] 钟元, 朱天宇, 戴成, 马朝芝 . 耐亚磷酸盐除草剂转基因油菜的创建和抗性评价[J]. 作物学报, 2024, 50(5): 1158-1171.
[2] 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146.
[3] 张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响[J]. 作物学报, 2024, 50(4): 981-990.
[4] 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835.
[5] 杨闯, 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝. 甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建[J]. 作物学报, 2024, 50(1): 237-250.
[6] 曹玉军, 刘志铭, 兰天娇, 刘小丹, 魏雯雯, 姚凡云, 吕艳杰, 王立春, 王永军. 吉林省不同年代玉米品种光合生理特性对施氮量的响应[J]. 作物学报, 2023, 49(8): 2183-2195.
[7] 唐玉凤, 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报, 2023, 49(7): 1829-1842.
[8] 袁大双, 张晓莉, 朱冬鸣, 杨友鸿, 姚梦楠, 梁颖. BnMAPK2 对甘蓝型油菜耐旱性的影响[J]. 作物学报, 2023, 49(6): 1518-1531.
[9] 杨一丹, 何督, 刘静, 张岩, 陈飞志, 巫燕飞, 杜雪竹. 寄主诱导的基因沉默干扰核盘菌致病基因OAH在甘蓝型油菜抗菌核病中的应用[J]. 作物学报, 2023, 49(6): 1542-1550.
[10] 雷新慧, 冷佳俊, 陶金才, 万晨茜, 吴怡欣, 王家乐, 王鹏科, 冯佰利, 王孟, 高金锋. 叶面喷施亚硒酸钠对甜荞光合特性、产量及硒积累效应的影响[J]. 作物学报, 2023, 49(6): 1678-1689.
[11] 杨太桦, 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶, 周广生. 初步探究LncRNA在甘蓝型油菜生态型分化中的作用[J]. 作物学报, 2023, 49(5): 1197-1210.
[12] 张盈川, 吴晓明玉, 陶保龙, 陈丽, 鲁海琴, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-miR43-FBXL调控模块参与甘蓝型油菜铝胁迫的功能分析[J]. 作物学报, 2023, 49(5): 1211-1221.
[13] 张俊杰, 陈金平, 汤钰镂, 张锐, 曹红章, 王丽娟, 马梦金, 王浩, 王泳超, 郭家萌, KRISHNA SV Jagadish, 杨青华, 邵瑞鑫. 花期前后干旱胁迫对复水后夏玉米光合特性与产量的影响[J]. 作物学报, 2023, 49(5): 1397-1409.
[14] 柏成成, 姚小尧, 王雨璐, 王赛玉, 李金莹, 蒋有为, 靳舒荣, 陈春杰, 刘渔, 魏星玥, 徐新福, 李加纳, 倪郁. 甘蓝型油菜长链烷烃合成相关基因的克隆及其与BnCER1-2的互作[J]. 作物学报, 2023, 49(4): 1016-1027.
[15] 陈慧, 肖清, 汪华栋, 文静, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 易斌. 甘蓝型油菜SUMO蛋白家族成员鉴定及Bna.SUMO1.C08基因的功能研究[J]. 作物学报, 2023, 49(4): 917-925.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .