欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (4): 981-990.doi: 10.3724/SP.J.1006.2024.31042

• 耕作栽培·生理生化 • 上一篇    下一篇

不同播幅对小麦花后叶片光合特性和产量的影响

张振1(), 赵俊晔2,*(), 石玉1, 张永丽1, 于振文1   

  1. 1山东农业大学农学院 / 小麦育种全国重点实验室 / 农业农村部作物生理生态与耕作重点实验室, 山东泰安 271018
    2中国农业科学院农业信息研究所 / 农业部农业信息服务技术重点实验室, 北京 100081
  • 收稿日期:2023-02-16 接受日期:2023-04-17 出版日期:2024-04-12 网络出版日期:2023-11-13
  • 通讯作者: * 赵俊晔, E-mail: zhaojunye@caas.cn
  • 作者简介:E-mail: zhangzhenxiaomai@163.com
  • 基金资助:
    国家自然科学基金项目(32172114);国家自然科学基金项目(31601243);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-03);泰山学者工程专项经费

Effects of different sowing space on photosynthetic characteristics after anthesis and grain yield of wheat

ZHANG Zhen1(), ZHAO Jun-Ye2,*(), SHI Yu1, ZHANG Yong-Li1, YU Zhen-Wen1   

  1. 1College of Agronomy, Shandong Agricultural University / National Key Laboratory of Wheat Breeding / Key Laboratory of Crop Physiology, Ecology and Farming, Ministry of Agriculture and Rural Affairs, Tai’an 271018, Shandong, China
    2Key Laboratory of Agricultural Information Service Technology, Ministry of Agriculture and Rural Affairs, Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2023-02-16 Accepted:2023-04-17 Published:2024-04-12 Published online:2023-11-13
  • Contact: * E-mail: zhaojunye@caas.cn
  • Supported by:
    National Natural Science Foundation of China(32172114);National Natural Science Foundation of China(31601243);China Agriculture Research System of MOF and MARA(CARS-03);Special funds for Taishan Scholars Project

摘要:

为了明确不同播幅对小麦籽粒产量的影响及其形成的生理原因, 本研究于2019—2020年和2020—2021年冬小麦生长季, 在山东省济宁市兖州区小孟镇史家王子村小麦试验站大田试验条件下设置2种播幅处理: 处理1是播幅为8 cm (B1); 处理2是播幅为3 cm (B2)。研究了不同播幅对小麦光合特性、冠层光截获特性、干物质积累与转运和籽粒产量的影响。试验结果表明: B1处理开花后叶面积指数和冠层光合有效辐射截获率显著高于B2处理, 其冠层光合有效辐射透射率显著低于B2处理; B1处理开花后旗叶叶绿素相对含量、净光合速率、蒸腾速率和气孔导度均显著高于B2处理, 其胞间二氧化碳浓度显著低于B2处理; B1处理开花期和成熟期干物质积累量、开花后干物质在籽粒中的分配量、成熟期籽粒干物质积累量均显著高于B2处理; B1处理穗粒数、千粒重均显著高于B2处理; 与B2处理相比, B1处理的2年平均籽粒产量和光能利用率分别高6.12%和7.71%。综上所述, 播幅为8 cm的B1处理通过塑造了合理的冠层结构, 改善了开花后叶片的光合性能, 有利于开花后植株的光合物质生产, 从而获得了最高的籽粒产量和光能利用率, 为本试验条件下的最优处理。研究为小麦宽幅播种节水高产高效栽培技术提供了理论依据。

关键词: 小麦, 光合特性, 干物质积累与转运, 籽粒产量

Abstract:

In order to clarify the influence of different sowing width on wheat grain yield and its physiological causes, in the 2019-2020 and 2020-2021 winter wheat growing seasons, two sowing treatments were set under field test conditions at Shijiawangzi Wheat Test Station, Xiaomeng Town, Yanzhou District, Jining City, Shandong Province. Treatment 1 was 8 cm (B1); Treatment 2 is broadcast at 3 cm (B2). The effects of different sowing plots on photosynthetic characteristics, canopy light interception characteristics, dry matter accumulation and transport, and grain yield of wheat were studied. The results showed that the leaf area index and photosynthetically active radiation interception rate of B1 treatment were significantly higher than those of B2 treatment, and the photosynthetically active radiation transmittance of B1 treatment was significantly lower than that of B2 treatment. The relative chlorophyll content, net photosynthetic rate, transpiration rate and stomatal conductance of flag leaves under B1 treatment were significantly higher than B2 treatment, and the intercellular carbon dioxide concentration was significantly lower than B2 treatment. Dry matter accumulation at anthesis and maturity, dry matter distribution in seeds after anthesis and dry matter accumulation at maturity were significantly higher under B1 treatment than B2 treatment. The number of grains per spike and 1000-grain weight of B1 treatment were significantly higher than those of B2 treatment. Compared with B2 treatment, the two-year average grain yield and light energy utilization rate of B1 treatment increased by 6.12% and 7.71%, respectively. In summary, B1 treatment with a sowing width of 8 cm can shape a reasonable canopy structure, improve the photosynthetic performance of leaves after anthesis, and facilitate the production of photosynthetic substances of plants after anthesis, thus obtaining the highest grain yield and light energy utilization rate, which is the optimal treatment under the conditions of this experiment. This research provides a theoretical basis for wide-sowing technology of wheat with water-saving, high-yield and high-efficiency.

Key words: wheat, photosynthetic characteristics, dry matter accumulation and transport, grain yield

图1

不同处理开花后叶面积指数 B1: 播幅为8 cm;B2: 播幅为3 cm。A, B分别表示2019-2020和2020-2021生长季开花后叶面积指数。图中所示数据均为每处理测定的3次重复, **表示不同处理在0.01概率水平差异显著。"

图2

不同处理开花后冠层光合有效辐射截获率和透射率 A, B, C, D分别表示2019-2020和2020-2021生长季光合有效辐射截获率和透射率。图中所示数据均为每处理测定的3次重复, **表示不同处理在0.01概率水平差异显著。"

图3

不同处理开花后旗叶叶绿素相对含量(SPAD) A, B分别表示2019-2020和2020-2021生长季开花后旗叶叶绿素相对含量。图中所示数据均为每处理测定的3次重复, **表示不同处理在0.01概率水平差异显著。"

图4

不同处理开花后旗叶净光合速率、蒸腾速率、气孔导度和胞间二氧化碳浓度 A、C、E、G分别表示2019-2020生长季开花后旗叶净光合速率、蒸腾速率、气孔导度和胞间二氧化碳浓度, B、D、F、H分别表示2020-2021生长季开花后旗叶净光合速率、蒸腾速率、气孔导度和胞间二氧化碳浓度; 图中所示数据均为每处理测定的3次重复, *、**表示不同处理在0.05和0.01概率水平差异显著。"

表1

不同处理开花期和成熟期干物质积累量"

年份
Year
处理
Treatment
干物质积累量
Dry matter accumulation amount (kg hm-2)
开花期 Anthesis 成熟期 Maturity
2019-2020 B1 13,468.22 a 19,518.79 a
B2 12,444.63 b 18,059.69 b
2020-2021 B1 14,451.76 a 22,673.16 a
B2 13,353.42 b 20,945.94 b

表2

不同处理开花后营养器官同化物再分配量"

年份
Year
处理
Treatment
开花前营养器官贮藏同化物
Pre-anthesis reserves
开花后干物质
Post-anthesis assimilates
转运量
Translocated into
grain (kg hm-2)
对籽粒贡献率
Contribution to
grain (%)
籽粒中的分配量
Allocation to
grain (kg hm-2)
对籽粒贡献率
Contribution to
grain (%)
2019-2020 B1 3283.41 a 35.18 b 6050.54 a 64.82 a
B2 3367.61 a 37.49 a 5615.06 b 62.51 a
2020-2021 B1 2152.22 a 20.75 b 8221.43 a 79.25 a
B2 2361.85 a 23.73 a 7592.52 b 76.27 a

表3

不同处理成熟期各器官干物质积累量"

年份
Year
处理
Treatment
成熟期干物质积累量Dry matter accumulation amounts in maturity (kg hm-2)
茎秆+叶鞘
Stem and sheath
叶片
Leaf
穗轴+颖壳
Spike axis and glume
籽粒
Grain
2019-2020 B1 4759.94 a 1836.29 a 3168.63 a 9753.93 a
B2 4548.33 b 1697.61 b 2831.08 b 8982.67 b
2020-2021 B1 6100.18 a 1958.16 a 3805.76 a 10,809.06 a
B2 5785.97 b 1807.63 b 3397.97 b 9954.37 b

表4

不同处理产量构成因素、籽粒产量及光能利用率"

年份
Year
处理
Treatment
穗数
Spike number
(×104 hm-2)
穗粒数
Grain number
per spike
千粒重
1000-grain
weight (g)
籽粒产量
Grain yield
(kg hm-2)
光能转化率
PCE
(g MJ-1)
光能利用率
PUE
(g MJ-1)
2019-2020 B1 642.73 a 38.39 a 44.25 a 9333.90 a 2.34 a 1.05 a
B2 605.45 b 37.97 a 41.51 b 8795.33 b 2.31 a 0.98 b
2020-2021 B1 660.76 a 40.99 a 47.65 a 10,343.60 a 3.15 a 1.44 a
B2 622.44 b 40.54 a 43.70 b 9746.77 b 3.10 a 1.33 b
[1] Ma S T, Wang T C, Ma S C. Effects of drip irrigation on root activity patterns, root-soured signal characteristics and yield stability of winter wheat. Agric Water Manag, 2022, 271: 107783.
doi: 10.1016/j.agwat.2022.107783
[2] Wang Z X, Khan S, Sun M, Ren A X, Lin W, Ding P C, Noor H, Yu S B, Feng Y, Wang Q, Gao Z Q. Optimizing the wheat seeding rate for wide-space sowing to improve yield and water and nitrogen utilization. Int J Plant Prod, 2021, 15: 553-562.
doi: 10.1007/s42106-021-00155-3
[3] Feng S, Gu S, Zhang H, Wang D. Root vertical distribution is important to improve water use efficiency and grain yield of wheat. Field Crops Res, 2017, 214: 131-141.
doi: 10.1016/j.fcr.2017.08.007
[4] Liu Y, Liao Y C, Liu W Z. High nitrogen application rate and planting density reduce wheat grain yield by reducing filling rate of inferior grain in middle spikelets. Crop J, 2021, 9: 412-426.
doi: 10.1016/j.cj.2020.06.013
[5] Zhao H X, Zhang P, Wang Y Y, Ning T Y, Xu C L, Wang P. Canopy morphological changes and water use efficiency in winter wheat under different irrigation treatments. J Integr Agric, 2020, 19: 1105-1116.
doi: 10.1016/S2095-3119(19)62750-4
[6] 赵刚, 樊廷录, 李兴茂, 张建军, 党翼, 李尚中, 王磊, 王淑英, 程万莉, 倪胜利. 宽幅播种旱作冬小麦幅间距与基因型对产量和水分利用效率的影响. 中国农业科学, 2020, 53: 2171-2181.
doi: 10.3864/j.issn.0578-1752.2020.11.004
Zhao G, Fan T L, Li X M, Zhang J J, Dang Y, Li S Z, Wang L, Wang S Y, Cheng W L, Ni S L. Effects of wide-range distance and genotype on yield and water use efficiency of winter wheat. Sci Agric Sin, 2020, 53: 2171-2181 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.11.004
[7] Munkholm L Z, Hansen E M, Thomsen I M, Wahlstrcom E, Ostergaard H. Nitrogen uptake, nitrate leaching and root development in winter-grown wheat and fodder radish. Soil Use Manag, 2017, 33: 233-240.
doi: 10.1111/sum.2017.33.issue-2
[8] 李拴良, 任长宏, 格桑曲珍, 赵宗财, 张宗卷, 胡希远. 宽幅硬茬播种对冬小麦生长、产量及品质的效应. 麦类作物学报, 2015, 35: 80-85.
Li S L, Ren C H, Gesangquzhen, Zhao Z C, Zhang Z J, Hu X Y. Effect of No-tilled wide planting pattern on growth, yield and quality of winter wheat. J Triticeae Crops, 2015, 35: 80-85. (in Chinese with English abstract)
[9] 韩占江, 于振文, 王东, 张永丽, 许振柱. 测墒补灌对冬小麦氮素积累与转运及籽粒产量的影响. 生态学报, 2011, 31: 1631-1640.
Han Z J, Yu Z W, Wang D, Zhang Y L, Xu Z Z. Effects of supplemental irrigation based on measured soil moisture on nitrogen accumulation, distribution and grain yield in winter wheat. Acta Ecol Sin, 2011, 31: 1631-1640. (in Chinese with English abstract)
[10] 徐龙龙, 殷文, 胡发龙, 范虹, 范志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响. 作物学报, 2022, 48: 437-447.
doi: 10.3724/SP.J.1006.2022.01093
Xu L L, Yin W, Hu F L, Fan H, Fan Z L, Zhao C, Yu A Z, Chai Q. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat. Acta Agron Sin, 2022, 48: 437-447. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.01093
[11] Fan Y L, Liu J M, Zhao J T, Ma Y Z, Li Q Q. Effects of delayed irrigation during the jointing stage on the photosynthetic characteristics and yield of winter wheat under different planting patterns. Agric Water Manag, 2019, 221: 371-376.
doi: 10.1016/j.agwat.2019.05.004
[12] 王海琪, 王荣荣, 蒋桂英, 尹豪杰, 晏世杰, 车子强. 施氮量对滴灌春小麦叶片光合生理性状的影响. 作物学报, 2023, 49: 211-224.
doi: 10.3724/SP.J.1006.2023.11100
Wang H Q, Wang R R, Jiang G Y, Yin H J, Yan S J, Che Z Q. Effect of amount of nitrogen fertilizer applied on photosynthetic physiological characteristics of drip irrigated spring wheat leaves. Acta Agron Sin, 2023, 49: 211-224 (in Chinese with English abstract).
[13] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特征和产量的影响. 作物学报, 2023, 49: 2210-2224.
doi: 10.3724/SP.J.1006.2023.21057
Li Y X, Ma L L, Zhang Y, Qin B Y, Zhang W J, Ma S Y, Huang Z L, Fan Y H. Effects of exogenous trehalose on physiological characteristics and yield of wheat flag leaves under high temperature stress at grain filling stage. Acta Agron Sin, 2023, 49: 2210-2224. (in Chinese with English abstract)
[14] 李盼, 陈桂平, 苟志文, 殷文, 樊志龙, 胡发龙, 范虹, 柴强. 绿洲灌区春小麦光能利用与水分生产效益对秸秆还田方式的响应. 作物学报, 2023, 49: 1316-1326.
Li P, Chen G P, Gou Z W, Yin W, Fan Z L, Hu F L, Fan H, Chai Q. Response on light energy utilization and water production benefit of spring wheat to straw retention in an oasis irrigated area. Acta Agron Sin, 2023, 49: 1316-1326. (in Chinese with English abstract)
[15] 丁永刚, 陈立, 董金鑫, 朱敏, 李春燕, 朱新开, 丁锦峰, 郭文善. 高产高效型半冬性小麦品种的产量构成、氮素积累转运和籽粒品质特征分析. 作物学报, 2022, 48: 3144-3154.
doi: 10.3724/SP.J.1006.2022.11117
Ding Y G, Chen L, Dong J X, Zhu M, Li C Y, Zhu X K, Ding J F, Guo W S. Characteristics of yield components, nitrogen accumulation and translocation, and grain quality of semi-winter cultivars with high-yield and high-efficiency. Acta Agron Sin, 2022, 48: 3144-3154. (in Chinese with English abstract)
[16] Abichou M, Solan B D, Andrieu B. Architectural response of wheat cultivars to row spacing reveals altered perception of plant density. Front Plant Sci, 2019, 10: 00999.
doi: 10.3389/fpls.2019.00999
[17] Farooq M, Hussain M, Habib M M, Khan M S, Ahmad I, Farooq S, Siddique K H M. Influence of seed priming techniques on grain yield and economic returns of bread wheat planted at different spacings. Crop Past Sci, 2020, 71: 725-738.
doi: 10.1071/CP20065
[18] Dai Y L, Fan J L, Liao Z Q, Zhang C, Yu J, Feng H L, Zhang F C, Li Z J. Supplemental irrigation and modified plant density improved photosynthesis, grain yield and water productivity of winter wheat under ridge-furrow mulching. Agric Water Manag, 2022, 274: 107985.
doi: 10.1016/j.agwat.2022.107985
[19] Angelique T, Etienne N, Innocent M, Wansim A N, Chuan L, Tian Q H, Bosco J S, Jiang B H. The combined effect of different sowing methods and seed rates on the quality features and yield of winter wheat. Agriculture, 2020, 10: 153.
doi: 10.3390/agriculture10050153
[20] 冯学颖, 刘景辉, 赵宝平, 王英, 陈晓晶, 徐忠山. 宽幅条播和种植密度对燕麦光合特性及干物质积累量的影响. 麦类作物学报, 2022, 422: 1527-1534.
Feng X Y, Liu J H, Zhao B P, Wang Y, Chen X J, Xue Z S. Effects of wide sowing and planting density on photosynthetic characteristics and dry matter accumulation of oat. J Triticeae Crops, 2022, 42: 1527-1534. (in Chinese with English abstract)
[21] Zhang J J, Mu J Y, Hu Y N, Ren A X, Lei B, Ding P C, Li L H, Sun M, Gao Z Q. Effect of planting patterns and seeding rate on dryland wheat yield formation and water use efficiency on the loess plateau, China. Agronomy, 2023, 13, 851.
[22] Hiromi M, Taiichiro O. The effects of seeding rate on yield, lodging resistance and culm strength in wheat. Plant Prod Sci, 2019, 23: 322-332.
doi: 10.1080/1343943X.2019.1702469
[23] May W E, Aldous L, Lafond G P. Feasibility of a wider row spacing and recommended nitrogen in no-till wheat. Agron J, 2020, 112: 4076-4091.
doi: 10.1002/agj2.v112.5
[24] Yang W J, Liu W J, Li Y L, Wang S W, Yin L N, Deng X P. Increasing rainfed wheat yield by optimizing agronomic practices to consume more subsoil water in the Loess Plateau. Crop J, 2021, 9: 1418-1427.
doi: 10.1016/j.cj.2021.01.006
[25] Kassu T K, Wubengeda A Y. Seeding and NP fertilizer rates effect on irrigated wheat yield and water use efficiency in midland tropical environment. J Soil Sci Plant Nutr, 2022, 22: 1490-1505.
doi: 10.1007/s42729-021-00749-w
[26] 吕广德, 殷复伟, 孙盈盈, 钱兆国, 徐加利, 李宁, 薛丽娜, 吴科. 不同播种量对临麦4号产量和干物质积累及分配的影响. 作物杂志, 2020, (3): 142-148.
Lyu G D, Yin F W, Sun Y Y, Qian Z G, Xu J L, Li N, Xue L, Wu K. Effects of different seeding rates on yield, dry matter accumulation and distribution of Linmai 4. Crops, 2020, (3): 142-148. (in Chinese with English abstract)
[27] Schmitz P K, Ransom J K. Seeding rate effects on hybrid spring wheat yield, yield components, and quality. Agronomy, 2021, 11: 1240.
doi: 10.3390/agronomy11061240
[28] 吕鹏, 吕广德, 鞠正春, 高瑞杰, 钱兆国, 庞慧, 吴科, 韩伟. 宽幅播种条件下行距对小麦产量及干物质积累和转运的影响. 麦类作物学报, 2021, 41: 232-237.
Lyu P, Lyu G D, Ju Z C, Gao R J, Qian Z G, Pang H, Wu K, Han W. Effects of row spacing on wheat yield and dry matter accumulation and transport under wide planting. J Triticeae Crops, 2021, 41: 232-237. (in Chinese with English abstract)
[1] 陆汝华, 王文轩, 曹强, 田永超, 朱艳, 曹卫星, 刘小军. 稻麦复种模式下氮肥与稻秸互作对小麦产量和N2O排放影响及推荐施肥研究[J]. 作物学报, 2024, 50(5): 1300-1311.
[2] 陈家婷, 白欣, 谷雨杰, 张潇文, 郭慧娟, 常利芳, 陈芳, 张树伟, 张晓军, 李欣, 冯瑞云, 畅志坚, 乔麟轶. 小麦芽期和苗期耐盐鉴定方法的适用性评价[J]. 作物学报, 2024, 50(5): 1193-1206.
[3] 齐学礼, 李莹, 李春盈, 韩留鹏, 赵明忠, 张建周. 基于转录组探究外源水杨酸对条锈菌侵染小麦幼苗的缓解效应及差异表达基因分析[J]. 作物学报, 2024, 50(4): 1080-1090.
[4] 周香玉, 徐劲松, 谢伶俐, 许本波, 张学昆. 甘蓝型油菜苗期响应渍害胁迫的生理调控机制[J]. 作物学报, 2024, 50(4): 1015-1029.
[5] 邹佳琪, 王仲林, 谭先明, 陈燎原, 杨文钰, 杨峰. 基于连续小波变换估测干旱胁迫下玉米籽粒产量[J]. 作物学报, 2024, 50(4): 1030-1042.
[6] 许乃银, 金石桥, 晋芳, 刘丽华, 徐剑文, 刘丰泽, 任雪贞, 孙全, 许栩, 庞斌双. 基于SNP标记的小麦品种遗传相似度及其检测准确度分析[J]. 作物学报, 2024, 50(4): 887-896.
[7] 黄宏胜, 张馨月, 居辉, 韩雪. 大气CO2浓度升高背景下冬小麦冠层光谱特征和地上生物量估算[J]. 作物学报, 2024, 50(4): 991-1003.
[8] 吴霞玉, 李盼, 韦金贵, 范虹, 何蔚, 樊志龙, 胡发龙, 柴强, 殷文. 减量灌水及有机无机肥配施对西北灌区玉米光合生理、籽粒产量及品质的影响[J]. 作物学报, 2024, 50(4): 1065-1079.
[9] 王添宁, 冯雅岚, 琚吉浩, 吴毅, 张均, 马超. 小麦及其祖先物种GRF转录因子家族鉴定与表达分析[J]. 作物学报, 2024, 50(4): 897-813.
[10] 琚吉浩, 马超, 王添宁, 吴毅, 董钟, 方美娥, 陈钰姝, 张均, 付国占. 小麦TaPOD家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(3): 779-792.
[11] 张宝华, 刘佳静, 田晓, 田旭钊, 董阔, 武郁洁, 肖凯, 李小娟. 小麦TaSPX1基因的克隆、表达及耐低氮逆境的功能研究[J]. 作物学报, 2024, 50(3): 576-589.
[12] 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602.
[13] 赵荣荣, 丛楠, 赵闯. 基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择[J]. 作物学报, 2024, 50(3): 721-733.
[14] 范子培, 李龙, 史雨刚, 孙黛珍, 李超男, 景蕊莲. 小麦TabHLH112-2B基因克隆及每穗小穗数相关功能标记开发[J]. 作物学报, 2024, 50(2): 403-413.
[15] 张康, 聂志刚, 王钧, 李广. 温度升高下APSIM模型春小麦籽粒生长参数敏感性分析及优化[J]. 作物学报, 2024, 50(2): 464-477.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .