欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (5): 1193-1206.doi: 10.3724/SP.J.1006.2024.31049

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦芽期和苗期耐盐鉴定方法的适用性评价

陈家婷(), 白欣, 谷雨杰, 张潇文, 郭慧娟, 常利芳, 陈芳, 张树伟, 张晓军, 李欣, 冯瑞云, 畅志坚, 乔麟轶*()   

  1. 山西农业大学农学院 / 作物遗传与分子改良山西省重点实验室 / 农业农村部有机旱作农业重点实验室(部省共建), 山西太原 030031
  • 收稿日期:2023-08-31 接受日期:2024-01-12 出版日期:2024-05-12 网络出版日期:2024-01-29
  • 通讯作者: 乔麟轶, E-mail: linyi.qiao@sxau.edu.cn
  • 作者简介:E-mail: chenjiating111@126.com
  • 基金资助:
    中央引导地方科技发展资金项目(YDZJSX2022A046);山西省回国留学人员科研资助项目(2021-070);山西农业大学博士科研启动项目(2021BQ39)

Applicability evaluation of screen methods to identify salt tolerance in wheat at germination and seedling stages

CHEN Jia-Ting(), BAI Xin, GU Yu-Jie, ZHANG Xiao-Wen, GUO Hui-Juan, CHANG Li-Fang, CHEN Fang, ZHANG Shu-Wei, ZHANG Xiao-Jun, LI Xin, FENG Rui-Yun, CHANG Zhi-Jian, QIAO Lin-Yi*()   

  1. College of Agriculture, Shanxi Agricultural University / Shanxi Key Laboratory of Crop Genetics and Molecular Improvement / Key Laboratory of Sustainable Dryland Agriculture (co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Taiyuan 030031, Shanxi, China
  • Received:2023-08-31 Accepted:2024-01-12 Published:2024-05-12 Published online:2024-01-29
  • Contact: E-mail: linyi.qiao@sxau.edu.cn
  • Supported by:
    Science and Technology Development Foundation of Central Guides Local Government Project(YDZJSX2022A046);Shanxi Scholarship Council of China(2021-070);Shanxi Agricultural University Research Project for Doctor(2021BQ39)

摘要:

耐盐鉴定是筛选种质和选育耐盐小麦品种的前提。小麦室内耐盐鉴定方法较多, 涉及不同生育时期和组织器官。为了评估这些方法在生产上的适用性, 本研究选用北方冬麦区5个耐盐品种和5个盐敏感品种为试验材料, 对基于芽期和苗期的7种耐盐鉴定方法(涉及27个测试指标)进行实用性评价。结果显示, 利用小麦种子的发芽相对盐害率不能区分参试耐盐品种和盐敏感品种, 而小麦苗期的叶部盐害指数、根部Na+和K+流速以及根尖数、根径、叶片K+含量的相对盐害率在耐盐和盐敏感品种之间差异显著。综合回归分析结果和可操作性, 明确叶部盐害指数是北方冬麦区适用性较高的耐盐鉴定方法, 可结合根尖数相对盐害率、叶片K+含量相对盐害率或根部Na+和K+流速用于种质筛选或品种选育。本研究从适用程度方面解析和评价了耐盐鉴定方法, 为小麦耐盐育种工作提供参考信息。

关键词: 小麦, 耐盐鉴定, 方法评价, 芽期, 苗期

Abstract:

Salt tolerance identification is the premise of screening germplasm and breeding salt-tolerant wheat varieties. There are many methods for testing salt tolerance of wheat indoor, involving different growth stages and tissues or organs. In order to evaluate the applicability of these methods in production, we selected five salt-tolerant varieties and five salt-sensitive varieties from the Northern Winter Wheat Production Area of China to compare seven identification methods (involving 27 parameters) for the responses to salt stress of wheat at germination and seedling stages. The results showed that the relative salt-injury rate for germination of grains could not distinguish the tolerant- and sensitive-varieties, while the salt-injury index of leaf, the Na+ and K+ fluxes of root, and the relative salt-injury rates for root tip number, root diameter as well as leaf K+ content of seedlings were significantly different between the tolerant- and sensitive-varieties. Based on the results of regressive analysis and operability, the salt-injury index of leaf was considered to be an appropriate method for identifying salt tolerance that with high applicability in the Northern Winter Wheat Production Area, which can be used for germplasm screening or variety breeding by integrating the relative salt-injury rate for root tip number or leaf K+ content, and the Na+ or K+ flux of root. This study analyzed and evaluated

the salt tolerance identification methods from the aspect of application, and provide reference information for salt tolerance breeding in wheat.

Key words: wheat, salt-tolerance identification, method evaluation, germination stage, seedling stage

表1

10个已报道耐盐性的中国北方冬麦区育成品种"

育成品种
Variety
耐盐性
Salt tolerance
参考文献
Reference
审定编号
Approval number
小偃60 Xiaoyan 60 耐盐 Tolerant [18] 国审麦20220069 Guoshenmai 20220069
青麦6号 Qingmai 6 耐盐 Tolerant [19] 国审麦2016027 Guoshenmai 2016027
沧麦6005 Cangmai 6005 耐盐 Tolerant [20] 冀审麦2012007 Jishenmai 2012007
山融3号 Shanrong 3 耐盐 Tolerant [21] 鲁农审字[2004] 030 Lunongshenzi [2004] 030
德抗961 Dekang 961 耐盐 Tolerant [22,23] 鲁农审字[2004] 031 Lunongshenzi [2004] 031
中麦175 Zhongmai 175 盐敏感 Sensitive [18] 国审麦2011018 Guoshenmai 2011018
鲁原502 Luyuan 502 盐敏感 Sensitive [24] 国审麦2011016 Guoshenmai 2011016
京411 Jing 411 盐敏感 Sensitive [22,25] 1991年通过北京市品种审定 Passed variety approval in Beijing in 1991
河农6425 Henong 6425 盐敏感 Sensitive [17] 冀审麦200901 Jishenmai 200901
济麦20 Jimai 20 盐敏感 Sensitive [26] 鲁农审字[2003] 029 Lunongshenzi [2003] 029

图1

耐盐与盐敏感品种在盐胁迫下的发芽结果比较 (a) GR: 发芽率; **: P<0.01; ****: P<0.0001。(b) RSIR-G: 发芽相对盐害率; T: 耐盐品种; S: 盐敏感品种。"

图2

耐盐与盐敏感品种苗期根部盐害表型比较 ==RtL: 总根长; RsA: 根表面积; RV: 根体积; RD: 根径; RTN: 根尖数; RFN: 根分叉数; RSIR-RP: 根部表型相对盐害率。*: P < 0.05; **: P < 0.01; T: 耐盐品种; S: 盐敏感品种。"

图3

耐盐与盐敏感品种在苗期盐胁迫下的根部离子流速比较 ***: P < 0.001; ****: P < 0.0001; T: 耐盐品种; S: 盐敏感品种。"

附表1

10个参试品种的耐盐表型数据"

表型
Phenotype
耐盐品种 Salt-tolerant varieties 盐敏感品种 Salt-sensitive varieties
小偃
60
XY60
青麦
6号
QM6
沧麦6005
CM6005
山融
3号
SR3
德抗
961
DK961
中麦
175
ZM175
鲁原502
LY502

411
J411
河农6425
HN6425
济麦
20
JM20
发芽率 CK (%) 97.00 98.00 100.00 100.00 100.00 100.00 100.00 100.00 83.75 100.00
Germination rate NaCl (%) 53.61 41.31 74.42 62.31 61.77 62.62 38.36 41.06 19.14 83.75
RSIR (%) 44.73 57.85 25.58 37.69 38.23 37.38 61.64 58.94 77.15 16.25
总根长 CK (cm) 73.64 34.26 45.23 65.84 62.44 33.15 35.23 34.26 52.67 78.66
Root total length NaCl (cm) 37.76 22.62 30.91 32.56 43.20 22.30 16.67 26.27 31.57 33.99
RSIR (%) 48.72 33.98 31.65 50.54 30.81 32.75 52.68 23.31 40.07 56.79
根表面积 CK (cm2) 7.53 5.14 6.45 10.25 4.13 4.33 4.90 4.59 7.77 11.00
Root surface area NaCl (cm2) 3.05 2.95 4.08 4.92 3.25 3.82 2.30 3.60 4.60 4.83
RSIR (%) 59.52 42.68 36.71 51.97 21.44 11.82 53.06 21.65 40.89 56.03
根体积 CK (cm3) 0.08 0.06 0.07 0.13 0.07 0.05 0.05 0.05 0.09 0.12
Root volume NaCl (cm3) 0.03 0.03 0.04 0.06 0.04 0.03 0.03 0.04 0.05 0.06
RSIR (%) 62.44 50.05 41.85 53.75 42.02 30.10 53.33 19.59 41.92 55.43
根径 CK (mm) 0.42 0.48 0.46 0.50 0.42 0.42 0.45 0.43 0.47 0.45
Root diameter NaCl (mm) 0.42 0.41 0.42 0.48 0.31 0.42 0.43 0.44 0.46 0.45
RSIR (%) 7.73 14.05 8.33 2.35 25.99 -1.11 3.73 -1.05 1.57 -0.40
根尖数 CK 91.50 56.00 45.60 89.20 82.30 43.20 53.00 79.60 109.60 114.40
Root tips number NaCl 53.32 30.60 23.66 44.00 50.35 21.24 16.20 44.62 45.60 41.40
RSIR (%) 41.73 45.36 48.11 50.67 38.82 50.84 69.43 43.95 58.39 63.81
根分叉数 CK 63.52 45.33 35.80 72.80 55.31 49.20 35.67 53.00 51.00 80.00
Root forks number NaCl 9.01 24.40 18.95 39.00 32.19 14.90 15.00 39.40 41.20 23.40
RSIR (%) 95.81 46.18 -21.23 46.43 41.80 -37.68 57.94 25.66 19.22 70.75
离子流速
Ions-flux
K+-flux
(pmol cm-2 s-1)
-215.06 -240.00 -67.11 -120.38 -166.78 -46.65 -67.03 -176.05 -181.43 -195.29
Na+-flux
(pmol cm-2 s-1)
607.06 448.07 792.54 1589.41 385.65 523.28 347.25 1922.13 -89.79 102.16
叶部盐害指数
Salt-injury index of leaves (%)
51.61 42.09 22.50 40.54 39.19 58.79 43.75 57.61 58.22 55.00
根鲜重 CK (mg) 76.98 61.44 142.57 90.93 92.98 39.94 96.33 85.70 111.04 196.58
Fresh weight of root NaCl (mg) 43.62 39.22 43.47 48.56 47.51 31.73 49.90 43.06 61.28 66.26
RSIR (%) 43.34 36.17 69.51 46.60 48.90 20.56 48.20 49.75 44.81 66.29
地上部鲜重 CK (mg) 251.52 194.36 512.82 422.36 345.26 171.30 230.67 338.74 315.58 621.13
Fresh weight of shoot NaCl (mg) 120.98 108.78 190.32 151.66 152.86 90.73 69.60 153.30 159.23 183.51
RSIR (%) 51.90 44.03 62.89 64.09 55.73 47.04 69.83 54.74 49.54 70.46
鲜重根冠比 CK (%) 30.61 31.77 25.46 21.51 27.34 23.19 30.92 24.31 35.21 31.47
Ratio of FW-R/FW-S NaCl (%) 36.05 36.32 22.81 32.03 32.16 31.96 34.48 28.09 39.27 38.48
RSIR (%) -17.79 -14.33 10.41 -48.90 -17.65 -37.83 -11.50 -15.54 -11.51 -22.28
根干重 CK (mg) 28.80 34.58 16.85 21.67 25.48 4.61 23.93 20.12 21.80 64.66
Dry weight of root NaCl (mg) 12.33 4.45 7.37 19.16 11.96 5.51 5.00 9.08 7.60 10.43
RSIR (%) 57.18 87.13 56.26 11.58 53.04 -19.51 79.11 54.87 65.14 83.87
地上部干重 CK (mg) 71.40 42.71 66.48 51.37 57.99 10.71 92.67 142.55 78.05 182.83
Dry weight of shoot NaCl (mg) 24.93 17.22 25.31 35.56 26.46 10.21 17.80 106.40 24.52 33.96
RSIR (%) 65.08 59.68 61.93 30.78 54.37 4.67 80.79 25.36 68.58 81.43
干重根冠比 CK (%) 40.34 42.47 25.39 44.79 55.33 43.71 25.83 66.08 27.76 28.19
Ratio of DW-R/DW-S NaCl (%) 49.47 25.68 29.18 52.51 52.29 54.08 28.09 15.25 30.86 30.88
RSIR (%) -22.63 39.53 -14.92 -17.23 5.51 -23.73 -8.76 76.93 -11.16 -9.54
根中K+含量 CK (mg g-1) 7.65 8.26 8.17 7.60 7.14 7.60 7.86 7.14 7.76 6.69
K+ contents in root NaCl (mg g-1) 8.04 8.04 7.86 8.56 7.74 7.05 8.84 7.19 8.74 6.42
RSIR (%) -5.02 2.68 3.74 -12.72 -8.39 7.23 -12.46 -0.74 -12.63 3.99
茎中K+含量 CK (mg g-1) 25.24 23.25 26.38 24.48 24.25 26.25 24.59 24.87 25.77 26.07
K+ contents in stem NaCl (mg g-1) 25.87 24.87 25.45 26.69 27.82 25.19 25.13 26.38 25.05 26.92
RSIR (%) -2.50 -6.98 3.52 -9.05 -14.76 4.05 -2.19 -6.09 2.81 -3.23
叶中K+含量 CK (mg g-1) 27.33 26.64 29.47 28.43 27.63 30.48 27.67 29.44 30.66 31.99
K+ contents in leaf NaCl (mg g-1) 29.98 29.35 30.75 31.99 31.24 30.03 30.35 29.47 30.15 31.01
RSIR (%) -9.67 -10.18 -4.32 -12.53 -13.07 1.46 -9.69 -0.11 1.65 3.06
根中Na+含量 CK (mg g-1) 4.64 5.24 5.17 4.03 4.33 4.51 5.63 5.12 4.39 4.07
Na+ contents in root NaCl (mg g-1) 4.91 5.01 5.07 4.71 4.84 4.71 5.81 4.37 4.96 4.31
RSIR (%) -6.00 4.24 2.05 -17.09 -11.98 -4.59 -3.34 14.67 -12.92 -5.98
茎中Na+含量 CK (mg g-1) 2.80 3.20 3.26 2.59 2.60 2.43 3.34 3.42 2.90 2.68
Na+ contents in stem NaCl (mg g-1) 2.85 3.25 2.68 2.35 2.78 3.16 3.48 3.09 2.93 2.42
RSIR (%) -1.97 -1.72 17.82 9.29 -6.85 -29.84 -4.16 9.48 -1.00 9.50
叶中Na+含量 CK (mg g-1) 2.28 2.44 2.26 1.88 2.13 1.72 2.65 2.35 2.04 2.28
Na+ contents in leaf NaCl (mg g-1) 2.56 2.66 1.72 1.56 2.36 2.53 2.75 2.18 2.03 1.72
RSIR (%) -12.11 -8.94 24.06 17.24 -10.55 -47.12 -4.00 7.31 0.54 24.82
根中K+与Na+的含量比 CK 1.65 1.58 1.58 1.89 1.65 1.69 1.40 1.39 1.77 1.65
Ratio of K+ and Na+
contents in root
NaCl 1.64 1.60 1.55 1.82 1.60 1.50 1.52 1.65 1.76 1.49
RSIR (%) 0.92 -1.63 1.72 3.74 3.20 11.30 -8.82 -18.07 0.26 9.41
茎中K+与Na+的含量比 CK 9.02 7.27 8.10 9.44 9.33 10.79 7.36 7.28 8.88 9.75
Ratio of K+ and Na+
contents in stem
NaCl 9.07 7.65 9.52 11.34 10.02 7.97 7.22 8.53 8.54 11.12
RSIR (%) -0.52 -5.17 -17.40 -20.22 -7.40 26.10 1.89 -17.20 3.77 -14.06
叶中K+与Na+的含量比 CK 11.99 10.92 13.04 15.13 12.96 17.75 10.45 12.51 15.02 14.01
Ratio of K+ and Na+
contents in leaf
NaCl 11.73 11.04 17.91 20.57 13.26 11.89 11.02 13.51 14.85 18.06
RSIR (%) 2.18 -1.14 -37.37 -35.98 -2.27 33.02 -5.47 -8.00 1.12 -28.95
根中脯氨酸含量 CK (μg g-1) 25.20 30.66 18.28 16.58 24.93 20.33 36.91 10.31 24.18 22.15
Proline contents in root NaCl (μg g-1) 964.23 570.92 521.75 338.13 251.10 625.37 708.36 436.70 347.56 184.11
RSIR (%) 97.39 94.63 96.50 95.10 90.07 96.75 94.79 97.64 93.04 87.97
叶中脯氨酸含量 CK (μg g-1) 11.46 14.68 2.78 14.79 45.07 29.62 32.25 28.80 3.63 1.05
Proline contents in leaf NaCl (μg g-1) 1555.03 1457.10 297.47 437.31 534.29 363.77 381.59 669.70 934.29 1821.49
RSIR (%) 99.26 98.99 99.06 96.62 91.56 91.86 91.55 95.70 99.61 99.94

图4

耐盐与盐敏感品种叶部盐害指数测定比较 *: P < 0.05; T: 耐盐品种; S: 盐敏感品种。"

图5

耐盐与盐敏感品种在苗期盐胁迫下的生物量比较 FW-R: 根鲜重; FW-S: 地上部鲜重; FW-R/S: 鲜重根冠比; DW-R: 根干重; DW-S: 地上部干重; DW-R/S: 干重根冠比; RSIR-B: 生物量相对盐害率。*: P < 0.05, **: P < 0.01, ***: P < 0.001; T: 耐盐品种; S: 盐敏感品种。"

图6

耐盐与盐敏感品种在苗期盐胁迫下的不同组织离子含量比较 a~c: 根、茎、叶中的K+含量; d~f: 根、茎、叶中的Na+含量; g~i: 根、茎、叶中K+与Na+的含量比; j: 离子含量相对盐害率。*: P < 0.05; **: P < 0.01; T: 耐盐品种; S: 盐敏感品种。"

图7

耐盐与盐敏感品种在苗期盐胁迫下的不同组织脯氨酸含量比较 a: 根中的脯氨酸含量; b: 叶中的脯氨酸含量; c: 根、叶中脯氨酸含量相对盐害率(RSIR-P)。*: P < 0.05; **: P < 0.01; T: 耐盐品种; S: 盐敏感品种。"

图8

参试表型之间的回归分析 左下角为P值, 右上角为决定系数R2值, 用红色填充; 在参试耐盐和盐敏感品种间差异显著的表型用蓝色标注。"

[1] Safdar H, Amin A, Shafiq Y, Ali A, Yasin R, Shoukat A, Hussan M U, Sarwar M I. A review: impact of salinity on plant growth. Nat Sci, 2019, 1: 34-40.
[2] 赵广才. 中国小麦种植区划研究(一). 麦类作物学报, 2010, 30: 886-895.
Zhao G C. Study on Chinese wheat planting regionalization (I). J Triticeae Crops, 2010, 30: 886-895 (in Chinese with English abstract).
[3] 杨劲松, 姚荣江. 我国盐碱地的治理与农业高效利用. 中国科学院院刊, 2015, 30(增刊1): 162-170.
Yang J S, Yao R J. Management and efficient agricultural utilization of salt-affected soil in China. Bull Chin Acad Sci, 2015, 30(S1): 162-170 (in Chinese with English abstract).
[4] 邢锦城, 陈超, 董静, 刘冲, 朱小梅, 洪立洲. 长江中下游及黄淮冬麦区小麦主栽品种耐盐性评价. 大麦与谷类科学, 2017, 34(6): 8-13.
Xing J C, Chen C, Dong J, Liu C, Zhu X M, Hong L Z. Evaluation of salt tolerance of main wheat cultivars planted in the middle and lower reaches of the Yangtze River and Huang Huai area. Barley Cereal Sci, 2017, 34(6): 8-13 (in Chinese with English abstract).
[5] Richards R A. Should selection for yield in saline conditions be made on saline or non-saline soils. Euphytica, 1983, 32: 431-438.
doi: 10.1007/BF00021452
[6] Munns R, James R A. Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil, 2003, 253: 201-218.
doi: 10.1023/A:1024553303144
[7] El-Hendawy S E, Hassan W M, Al-Suhaibani N A, Refay Y, Abdella K A. Comparative performance of multivariable agro- physiological parameters for detecting salt tolerance of wheat cultivars under simulated saline field growing conditions. Front Plant Sci, 2017, 8: 435.
doi: 10.3389/fpls.2017.00435 pmid: 28424718
[8] Flowers T J, Yeo A R. Breeding for salinity resistance in crop plants: where next. Aust J Plant Physiol, 1995, 22: 875-884.
[9] Yu S Z, Wu J H, Wang M, Shi W M, Xia G M, Jia J Z, Kang Z S, Han D J. Haplotype variations in QTL for salt tolerance in Chinese wheat accessions identified by marker-based and pedigree-based kinship analyses. Crop J, 2020, 8: 1011-1024.
doi: 10.1016/j.cj.2020.03.007
[10] Genc Y, McDonald G K, Tester M. Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat. Plant Cell Environ, 2007, 30: 1486-1498.
doi: 10.1111/pce.2007.30.issue-11
[11] Tao R, Ding J, Li C, Zhu X, Guo W, Zhu M. Evaluating and screening of agro-physiological indices for salinity stress tolerance in wheat at the seedling stage. Front Plant Sci, 2021, 12: 646175.
doi: 10.3389/fpls.2021.646175
[12] Masarmi A G, Solouki M, Fakheri B, Kalaji H M, Mahgdingad N, Golkari S, Telesiński A, Lamlom S F, Kociel H, Yousef A F. Comparing the salinity tolerance of twenty different wheat genotypes on the basis of their physiological and biochemical parameters under NaCl stress. PLoS One, 2023, 18: e0282606.
doi: 10.1371/journal.pone.0282606
[13] Wang M, Xia G M. The landscape of molecular mechanisms for salt tolerance in wheat. Crop J, 2018, 6: 42-47.
doi: 10.1016/j.cj.2017.09.002
[14] Tavakkoli E, Fatehi F, Rengasamy P, McDonald G K. A comparison of hydroponic and soil-based screening methods to identify salt tolerance in the field in barley. J Exp Bot, 2012, 63: 3853-3867.
doi: 10.1093/jxb/ers085 pmid: 22442423
[15] Genc Y, Taylor J, Lyons G, Li Y, Cheong J, Appelbee M, Oldach K, Sutton T. Bread wheat with high salinity and solidity tolerance. Front Plant Sci, 2019, 10: 1280.
doi: 10.3389/fpls.2019.01280
[16] Cuin T A, Bose J, Stefano G, Jha D, Tester M, Mancuso S, Shabala S. Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat: in planta quantification methods. Plant Cell Environ, 2011, 34: 947-961.
doi: 10.1111/pce.2011.34.issue-6
[17] 豆昕桐, 王英杰, 王华忠, 岳洁瑜. 耐盐和盐敏感型小麦品种对NaCl胁迫的生理响应及耐盐性差异. 生态学报, 2021, 41: 4976-4992.
Dou X T, Wang Y J, Wang H Z, Yue J Y. Physiological response and tolerance difference of two wheat varieties to NaCl stress. Acta Ecol Sin, 2021, 41: 4976-4992 (in Chinese with English abstract).
[18] Luo Q L, Teng W, Fang S, Li H W, Li B, Chu J F, Li Z S, Zheng Q. Transcriptome analysis of salt-stress response in three seedling tissues of common wheat. Crop J, 2019, 7: 378-392.
doi: 10.1016/j.cj.2018.11.009
[19] Zhang Y, Liu Z, Khan A A, Lin Q, Han Y, Mu P, Liu Y, Zhang H, Li L, Meng X, Ni Z, Xin M. Expression partitioning of homeologs and tandem duplications contribute to salt tolerance in wheat (Triticum aestivum L.). Sci Rep, 2016, 6: 21476.
doi: 10.1038/srep21476
[20] Yu L, Wang W W, Niu L Y, Wang W, Lu L, Wang F Z, Wang L P, Wang Y, Zang X J. A new cultivation technique of Cangmai 6005 for high yield in Cangzhou dry-alkali land. Asian Agric Res, 2018, 10: 68-70.
[21] Shan L, Li C, Chen F, Zhao S, Xia G. A Bowman-Birk type protease inhibitor is involved in the tolerance to salt stress in wheat. Plant Cell Environ, 2008, 31: 1128-1137.
doi: 10.1111/pce.2008.31.issue-8
[22] Wang Z Y, Qin X H, Li J H, Fan L F, Zhou Q, Wang Y Q, Zhao X, Xie C J, Wang Z Y, Huang L. Highly reproducible periodic electrical potential changes associated with salt tolerance in wheat plants. Environ Exp Bot, 2019, 160: 120-130.
doi: 10.1016/j.envexpbot.2019.01.014
[23] 梁超, 王超, 杨秀风, 张秀田, 王玮. ‘德抗961’小麦耐盐生理特性研究. 西北植物学报, 2006, 26: 2075-2082.
Liang C, Wang C, Yang X F, Zhang X T, Wang W. Salt-tolerant physiological characters of wheat variety Dekang 961. Acta Bot Boreal-Occident Sin, 2006, 26: 2075-2082 (in Chinese with English abstract).
[24] Ma Q, Zhou H J, Sui X Y, Su C X, Yu Y C, Yang H B, Dong C H. Generation of new salt-tolerant wheat lines and transcriptomic exploration of the responsive genes to ethylene and salt stress. Plant Growth Regul, 2021, 94: 33-48.
doi: 10.1007/s10725-021-00694-9
[25] Guo G F, Ge P, Ma C Y, Li X H, Lü D W, Wang S L, Ma W J, Yan Y M. Comparative proteomic analysis of salt response proteins in seedling roots of two wheat varieties. J Proteomics, 2012, 75: 1867-1885.
doi: 10.1016/j.jprot.2011.12.032 pmid: 22245046
[26] Xiong H, Guo H, Xie Y, Zhao L, Gu J, Zhao S, Li J, Liu L. RNAseq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflight-induced wheat mutant. Sci Rep, 2017, 7: 2731.
doi: 10.1038/s41598-017-03024-0 pmid: 28578401
[27] 马雅琴, 翁跃进. 引进春小麦种质耐盐性的鉴定评价. 作物学报, 2005, 31: 58-64.
Ma Y Q, Weng Y J. Evaluation for salt tolerance in spring wheat cultivars introduced from abroad. Acta Agron Sin, 2005, 31: 58-64 (in Chinese with English abstract).
[28] Wang W, Wang W, Wu Y, Li Q, Zhang G, Shi R, Yang J, Wang Y, Wang W. The involvement of wheat U-box E3 ubiquitin ligase TaPUB1 in salt stress tolerance. J Integr Plant Biol, 2020, 62: 631-651.
doi: 10.1111/jipb.v62.5
[29] 乔麟轶, 张潇文, 李世姣, 陈芳, 李欣, 郭慧娟, 张树伟, 常利芳, 张晓军, 畅志坚. 小偃麦渗入系苗期耐盐鉴定与分子标记评价. 山东农业科学, 2021, 53(5): 69-73.
Qiao L Y, Zhang X W, Li S J, Chen F, Li X, Guo H J, Zhang S W, Chang L F, Zhang X J, Chang Z J. Salt-tolerance identification at seedling stage and molecular marker evaluation of wheat-Thinopyrum intermedium introgression lines. Shandong Agric Sci, 2021, 53(5): 69-73 (in Chinese with English abstract).
[30] Kamiab F, Talaie A, Javanshah A, Khezri M, Khalighi A. Effect of long-term salinity on growth, chemical composition and mineral elements of pistachio (Pistacia vera cv. Badami-Zarand) rootstock seedlings. Ann Biol Res, 2012, 3: 5545-5551.
[31] Soda N, Ephrath J E, Dag A, Beiersdorf I, Presnov E, Yermiyahu U, Ben-Gal A. Root growth dynamics of olive (Olea europaea L.) affected by irrigation induced salinity. Plant Soil, 2017, 411: 305-318.
doi: 10.1007/s11104-016-3032-9
[32] Tan J L, Ben-Gal A, Shtein I, Bustan A, Dag A, Erel R. Root structural plasticity enhances salt tolerance in mature olives. Environ Exp Bot, 2020, 179: 104224.
doi: 10.1016/j.envexpbot.2020.104224
[33] Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Ann Bot, 2003, 91: 503-527.
doi: 10.1093/aob/mcg058
[34] Ashraf M, O’Leary J W. Responses of newly developed salt- tolerant genotype of spring wheat to salt stress: yield components and ion distribution. J Agron Crop Sci, 1996, 176: 91-101.
doi: 10.1111/jac.1996.176.issue-2
[35] Rashid A, Querishi R H, Hollington P A, Jones R G W. Comparative responses of wheat cultivars to salinity at the seedling stage. J Agron Crop Sci, 1999, 182: 199-207.
doi: 10.1046/j.1439-037x.1999.00295.x
[36] Poustini K, Siosemardeh A. Ion distribution in wheat cultivars in response to salinity stress. Field Crops Res, 2004, 85: 125-133.
doi: 10.1016/S0378-4290(03)00157-6
[37] Walker D J, Leigh R A, Miller A J. Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci USA, 1996, 93: 10510-10514.
doi: 10.1073/pnas.93.19.10510 pmid: 11607707
[38] Isabelle C, Cécile L, Martin B, Hervé S. Molecular mechanisms involved in plant adaptation to low K+ availability. J Exp Bot, 2013, 3: 833-848.
[39] Anschütz U, Becker D, Shabala S. Going beyond nutrition: regulation of potassium homeostasis as a common denominator of plant adaptive responses to environment. J Plant Physiol, 2014, 171: 670-687.
doi: 10.1016/j.jplph.2014.01.009
[40] 张潇文, 李世姣, 张晓军, 李欣, 杨足君, 张树伟, 陈芳, 常利芳, 郭慧娟, 畅志坚, 乔麟轶. 小麦品系CH7034中耐盐QTL定位. 作物学报, 2022, 48: 2646-2654.
Zhang X W, Li S J, Zhang X J, Li X, Yang Z J, Zhang S W, Chen F, Chang L F, Guo H J, Chang Z J, Qiao L Y. QTL mapping for salt tolerance in wheat line CH7034. Acta Agron Sin, 2022, 48: 2646-2654 (in Chinese with English abstract).
[41] 周升辉, 吴秋红, 谢菁忠, 陈娇娇, 陈永兴, 傅琳, 王国鑫, 于美华, 王振忠, 张德云, 王令, 王丽丽, 张艳, 梁荣奇, 韩俊, 刘志勇. 小麦燕大1817×北农6号重组自交系群体在正常和盐胁迫水培条件下苗期性状的QTL定位. 作物学报, 2016, 42: 1764-1778.
Zhou S H, Wu Q H, Xie J Z, Chen J J, Chen Y X, Fu L, Wang G X, Yu M H, Wang Z Z, Zhang D Y, Wang L, Wang L L, Zhang Y, Liang R Q, Han J, Liu Z Y. Mapping QTLs for wheat seedling traits in RILs population of Yanda 1817 × Beinong 6 under normal and salt-stress conditions. Acta Agron Sin, 2016, 42: 1764-1778 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.01764
[42] Richards R A, Dennett C W, Qualset C O, Epstein E, Norlyn J D, Winslow M D. Variation in yield of grain and biomass in wheat, barley, and triticale in a salt-affected field. Field Crops Res, 1987, 15: 277-287.
doi: 10.1016/0378-4290(87)90017-7
[43] Houshmand S, Arzani A, Maibody S A M, Feizi M. Evaluation of salt-tolerant genotypes of durum wheat derived from in vitro and field experiments. Field Crops Res, 2005, 91: 345-354.
doi: 10.1016/j.fcr.2004.08.004
[44] Weimberg R. Solute adjustment in leaves of two species of wheat at two different stages of growth in response to salinity. Physiol Plant, 1987, 70: 381-388.
[45] Chen Z, Zhou M, Newman I A, Mendham N J, Zhang G, Shabala S. Potassium and sodium relations in salinized barley tissues as a basis of differential salt tolerance. Funct Plant Biol, 2007, 34: 150-162.
doi: 10.1071/FP06237
[46] Cuin T A, Betts S A, Chalmandrier R, Shabala S. A root’s ability to retain K+ correlates with salt tolerance in wheat. J Exp Bot, 2008, 59: 2697-2706.
doi: 10.1093/jxb/ern128
[47] Oyiga B C, Sharma R C, Baum M, Ogbonnaya F C, Léon J, Ballvora A. Allelic variations and differential expressions detected at quantitative trait loci for salt stress tolerance in wheat. Plant Cell Environ, 2018, 41: 919-935.
doi: 10.1111/pce.v41.5
[48] Davenport R, James R A, Zakrisson-Plogander A, Tester M, Munns R. Control of sodium transport in durum wheat. Plant Physiol, 2005, 137: 807-818.
doi: 10.1104/pp.104.057307 pmid: 15734907
[49] Santa-Maria G E, Epstein E. Potassium/sodium selectivity in wheat and amphiploid cross wheat × Lophopyrum elongatum. Plant Sci, 2001, 160: 523-534.
pmid: 11166440
[50] Meneguzzo S, Navari-Izzo F, Izzo R. NaCl effects on water relations and accumulation of mineral nutrients in shoots, roots and cell sap of wheat seedling. J Plant Physiol, 2000, 156: 711-716.
doi: 10.1016/S0176-1617(00)80236-9
[51] Gaxiola R A, Rao R, Sherman A, Grisafi P, Alper S L, Fink G R. The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci USA, 1999, 96: 1480-1485.
doi: 10.1073/pnas.96.4.1480 pmid: 9990049
[52] Qiu D, Hu W, Zhou Y, Xiao J, Hu R, Wei Q, Zhang Y, Feng J, Sun F, Sun J, Yang G, He G. TaASR1-D confers abiotic stress resistance by affecting ROS accumulation and ABA signalling in transgenic wheat. Plant Biotechnol J, 2021, 19: 1588-1601.
doi: 10.1111/pbi.13572 pmid: 33638922
[53] Rong W, Qi L, Wang A, Ye X, Du L, Liang H, Xin Z, Zhang Z. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J, 2014, 12: 468-479.
doi: 10.1111/pbi.12153 pmid: 24393105
[54] Cuin T A, Tian Y, Betts S A, Chalmandrier R, Shabala S. Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions. Funct Plant Biol, 2009, 36: 1110-1119.
doi: 10.1071/FP09051
[55] Raven J A. Regulation of pH and generation of osmolarity in vascular plants: a cost-benefit analysis in relation to efficiency of use energy, nitrogen and water. New Phytol, 1985, 101: 25-77.
doi: 10.1111/j.1469-8137.1985.tb02816.x pmid: 33873830
[1] 陆汝华, 王文轩, 曹强, 田永超, 朱艳, 曹卫星, 刘小军. 稻麦复种模式下氮肥与稻秸互作对小麦产量和N2O排放影响及推荐施肥研究[J]. 作物学报, 2024, 50(5): 1300-1311.
[2] 许乃银, 金石桥, 晋芳, 刘丽华, 徐剑文, 刘丰泽, 任雪贞, 孙全, 许栩, 庞斌双. 基于SNP标记的小麦品种遗传相似度及其检测准确度分析[J]. 作物学报, 2024, 50(4): 887-896.
[3] 黄宏胜, 张馨月, 居辉, 韩雪. 大气CO2浓度升高背景下冬小麦冠层光谱特征和地上生物量估算[J]. 作物学报, 2024, 50(4): 991-1003.
[4] 王添宁, 冯雅岚, 琚吉浩, 吴毅, 张均, 马超. 小麦及其祖先物种GRF转录因子家族鉴定与表达分析[J]. 作物学报, 2024, 50(4): 897-813.
[5] 张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响[J]. 作物学报, 2024, 50(4): 981-990.
[6] 齐学礼, 李莹, 李春盈, 韩留鹏, 赵明忠, 张建周. 基于转录组探究外源水杨酸对条锈菌侵染小麦幼苗的缓解效应及差异表达基因分析[J]. 作物学报, 2024, 50(4): 1080-1090.
[7] 琚吉浩, 马超, 王添宁, 吴毅, 董钟, 方美娥, 陈钰姝, 张均, 付国占. 小麦TaPOD家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(3): 779-792.
[8] 张宝华, 刘佳静, 田晓, 田旭钊, 董阔, 武郁洁, 肖凯, 李小娟. 小麦TaSPX1基因的克隆、表达及耐低氮逆境的功能研究[J]. 作物学报, 2024, 50(3): 576-589.
[9] 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602.
[10] 赵荣荣, 丛楠, 赵闯. 基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择[J]. 作物学报, 2024, 50(3): 721-733.
[11] 范子培, 李龙, 史雨刚, 孙黛珍, 李超男, 景蕊莲. 小麦TabHLH112-2B基因克隆及每穗小穗数相关功能标记开发[J]. 作物学报, 2024, 50(2): 403-413.
[12] 张康, 聂志刚, 王钧, 李广. 温度升高下APSIM模型春小麦籽粒生长参数敏感性分析及优化[J]. 作物学报, 2024, 50(2): 464-477.
[13] 谭丹, 陈家婷, 郜钰, 张晓军, 李欣, 闫贵云, 李锐, 陈芳, 常利芳, 张树伟, 郭慧娟, 畅志坚, 乔麟轶. 小麦穗型相关生长素通路基因发掘及TaARF23-A与小穗数关联分析[J]. 作物学报, 2024, 50(2): 506-513.
[14] 李艳, 方宇辉, 王永霞, 彭超军, 华夏, 齐学礼, 胡琳, 许为钢. 不同磷胁迫处理转OsPHR2小麦的转录组学分析[J]. 作物学报, 2024, 50(2): 340-353.
[15] 谢炜, 贺鹏, 马宏亮, 雷芳, 黄秀兰, 樊高琼, 杨洪坤. 秋闲期秸秆覆盖与施磷对冬小麦氮素吸收利用的影响[J]. 作物学报, 2024, 50(2): 440-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!