欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (4): 1030-1042.doi: 10.3724/SP.J.1006.2024.33030

• 耕作栽培·生理生化 • 上一篇    下一篇

基于连续小波变换估测干旱胁迫下玉米籽粒产量

邹佳琪1(), 王仲林1,2, 谭先明1, 陈燎原1, 杨文钰1, 杨峰1,*()   

  1. 1四川农业大学农学院 / 农业农村部西南作物生理生态与耕作重点实验室 / 四川省作物带状复合种植工程技术研究中心, 四川成都 611130
    2四川农业大学水稻研究所, 四川成都 611130
  • 收稿日期:2023-05-13 接受日期:2023-10-23 出版日期:2024-04-12 网络出版日期:2023-11-15
  • 通讯作者: * 杨峰, E-mail: f.yang@sicau.edu.cn, Tel: 028-86290867
  • 作者简介:E-mail: 987732088@qq.com
  • 基金资助:
    国家重点研发计划项目(2022YFD2300902)

Estimation of maize grain yield under drought stress based on continuous wavelet transform

ZOU Jia-Qi1(), WANG Zhong-Lin1,2, TAN Xian-Ming1, CHEN Liao-Yuan1, YANG Wen-Yu1, YANG Feng1,*()   

  1. 1College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs / Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130, Sichuan, China
    2Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
  • Received:2023-05-13 Accepted:2023-10-23 Published:2024-04-12 Published online:2023-11-15
  • Contact: * E-mail: f.yang@sicau.edu.cn, Tel: 028-86290867
  • Supported by:
    National Key Research and Development Program of China(2022YFD2300902)

摘要:

利用高光谱遥感技术监测作物水分状况和籽粒产量, 对于调控作物生长、优化水分管理和改善产量形成具有重要意义。本研究玉米品种选用正红505, 于2018—2019年在四川雅安和仁寿的试验田设置4个水分处理(正常水分、轻度、中度和重度干旱), 分析玉米在拔节期(V6)、抽雄期(VT)和灌浆期(R2)的冠层含水量(canopy water content, CWC)与籽粒产量的定量关系, 利用植被指数和连续小波变换对光谱反射率数据进行处理, 采用线性回归方法构建CWC定量反演模型, 进一步探索以CWC为桥梁建立的玉米籽粒产量的预测模型效果。结果表明, (1) 利用小波特征构建的CWC估测模型的预测效果高于植被指数, V6、VT和R2期分别以小波特征gaus3770,64、rbio3.31635,2和rbio3.3838,2构建的线性回归模型检验精度较高, R2分别为0.770、0.291和0.233。(2) CWC与玉米籽粒产量间建立的线性回归模型均达极显著水平(P<0.01), V6、VT和R2期的R2分别为0.596、0.366和0.439。(3) 基于光谱反射率构建的产量预测模型以V6期小波特征gaus3770,64的验证效果最好(R2 = 0.577, RMSE = 1.625 t hm-2), 可作为预测玉米籽粒产量的最佳时期。因此, 本研究提出的“光谱反射率—冠层含水量—产量”建模方法能够实现对玉米籽粒产量的精确估测, 为未来大面积监测玉米生产力提供了理论依据。

关键词: 玉米, 籽粒产量, 冠层含水量, 植被指数, 小波特征

Abstract:

The use of hyperspectral remote sensing technology to monitor crop water status and grain yield is important for regulating crop growth, optimizing water management and improving yield formation. Zhenghong 505 was selected as the maize variety in this study, to analyze the quantitative relationship between canopy water content (CWC) and grain yield of maize at jointing stage (V6), tasseling stage (VT), and filling stage (R2), four drought stress treatments (well-watered, mild, intermediate and severe drought) were conducted in the experimental fields of Ya’an and Renshou in Sichuan Province from 2018 to 2019. The spectral reflectance data were processed using vegetation indices and continuous wavelet transform, and a linear regression method was used to construct a quantitative CWC inversion model to explore the effectiveness of CWC as a bridge to establish a spectral inversion model for maize grain yield estimation. The results showed that the CWC estimation models using wavelet features was better than that of vegetation indices, and the linear regression models constructed with wavelet features gaus3770,64, rbio3.31635,2 and rbio3.3838,2 at the V6, VT, and R2 stages had high test accuracy with the R2 of 0.770, 0.291, and 0.233, respectively. The linear regression models established between CWC and maize grain yield all reached highly significant levels (P < 0.01), with R2 of 0.596, 0.366 and 0.439 at the V6, VT, and R2 stages, respectively. The yield prediction model based on the basis of spectral reflectance was the best validated with the wavelet feature gaus3770,64 (R2 = 0.577, RMSE = 1.625 t hm-2) at V6 stage, which can be used as the best period for predicting maize grain yield. Therefore, the “spectral reflectance-canopy water content-yield” modeling method proposed in this study can achieve an accurate estimation of maize grain yield and provide a theoretical basis for future large-scale monitoring of maize productivity.

Key words: maize, grain yield, canopy water content, vegetation indices, wavelet features

表1

3个试验年份、地点、试验载体、品种及处理"

试验编号Exp. No. 年份和地点
Year and site
试验载体
Experimental carrier
玉米品种
Maize cultivar
试验处理
Treatment
试验1
Exp. 1
2018, 雅安
2018, Ya’an
干旱池
Drought pool
正红505
Zhenghong 505
水分等级(占田间持水量百分比)
正常水分(60%-70%), 轻度干旱(45%-55%), 中度干旱(30%-40%), 重度干旱(15%-25%)
Moisture degree (percentage of field capacity)
WW (60%-70%), MD (45%-55%), ID (30%-40%), SD (15%-25%)
试验2
Exp. 2
2018, 仁寿
2018, Renshou
大田
Field
正红505
Zhenghong 505
倾斜农田(坡度/°)
斜坡顶部, 斜坡中间, 斜坡下方
Sloping farmland (gradient/°)
Top of the slope, middle of the slope, under the slope
试验3
Exp. 3
2019, 雅安
2019, Ya’an
干旱池
Drought pool
正红505
Zhenghong 505
水分等级(占田间持水量百分比)
正常水分(60%-70%), 轻度干旱(45%-55%), 中度干旱(30%-40%), 重度干旱(15%-25%)
Moisture degree (percentage of field capacity)
WW (60%-70%), MD (45%-55%), ID (30%-40%), SD (15%-25%)

图1

剔除波段后正常水分处理下玉米光谱反射率 A: 拔节期; B: 抽雄期; C: 灌浆期。"

图2

CWT的流程图 CWT: 冠层含水量。"

表2

本文采用的植被指数"

植被指数
Vegetation indices
公式
Formula
参考文献
Reference
水分指数Water index (WI) $\frac{{{R}_{900}}}{{{R}_{970}}}$ [29]
水分胁迫指数Moisture stress index (MSI) $\frac{{{R}_{1599}}}{{{R}_{819}}}$ [30-31]
比值植被指数Ratio vegetation index (RVI) $\frac{{{R}_{i}}}{{{R}_{j}}}$ [32]
差值植被指数Difference vegetation index (DVI) ${{R}_{i}}-{{R}_{j}}$ [33]
归一化差值植被指数Normalized difference vegetation index (NDVI) $\frac{\left( {{R}_{i}}-{{R}_{j}} \right)}{\left( {{R}_{i}}+{{R}_{j}} \right)}$ [34]

表3

玉米冠层含水量和籽粒产量的描述性统计"

参数
Parameters
数据集
Datasets
生育期
Growth stages
样本数
Number of samples
最大值Maximum 最小值Minimum 均值
Mean
标准差Standard deviation 变异系数Coefficient
of variation (%)
冠层含水量
Canopy water content
(kg m-2)
建模集
Calibration set
V6 44 0.468 0.051 0.222 0.115 51.7
VT 48 1.246 0.479 0.847 0.215 25.4
R2 38 1.198 0.581 0.889 0.151 16.9
验证集
Validation set
V6 46 0.836 0.056 0.347 0.227 65.4
VT 33 0.952 0.174 0.493 0.168 34.0
R2 36 0.993 0.275 0.642 0.197 30.6
籽粒产量
Grain yield
(t hm-2)
建模集
Calibration set
V6 12 5.051 3.353 4.060 0.547 13.5
VT 12 6.024 3.199 4.772 0.851 17.8
R2 10 6.200 3.420 5.403 0.828 15.3
验证集
Validation set
V6 12 8.761 3.940 5.964 1.249 20.9
VT 9 5.764 3.425 4.782 0.926 19.4
R2 9 11.101 6.402 9.022 1.413 15.7

图3

玉米冠层含水量与VIs之间相关系数(r)矩阵图 A: 拔节期; B: 抽雄期; C: 灌浆期。DVI:差值植被指数;RVI:比值植被指数;NDVI:归一化差值植被指数。"

表4

不同生育期玉米冠层含水量与VIs的相关性"

生育期Grown stages WI MSI DVI RVI NDVI
波长
W
相关系数
r
波长
W
相关系数
r
波长
W
相关系数
r
波长
W
相关系数
r
波长
W
相关系数
r
V6
n = 44
900, 970 0.691** 1599, 819 -0.766** 750, 751 0.881** 2150, 1189 0.933** 1471, 1209 0.937**
VT
n = 48
900, 970 0.684** 1599, 819 -0.395** 1667, 1583 0.793** 807, 761 -0.831** 761, 807 0.830**
R2
n = 38
900, 970 0.117 1599, 819 0.142 2409, 1065 0.506** 855, 856 0.538** 855, 856 0.538**

图4

玉米冠层含水量与小波特征之间相关系数(r)矩阵图 A: 拔节期; B: 抽雄期; C: 灌浆期。"

表5

玉米冠层含水量与特定尺度小波特征之间的相关性"

生育期Grown stage db3 bior1.5 rbio3.3 gaus3
特征位置
Feature location
相关系数
r
特征位置
Feature location
相关系数
r
特征位置
Feature location
相关系数
r
特征位置
Feature location
相关系数
r
波长
W
尺度Scale 波长
W
尺度Scale 波长
W
尺度Scale 波长
W
尺度Scale
V6
n = 44
718 64 -0.926** 722 1 0.932** 795 128 -0.933** 770 64 -0.929**
VT
n = 48
1524 1 -0.805** 1530 1 -0.783** 1635 2 -0.786** 1641 2 -0.790**
R2
n = 38
840 2 -0.596** 466 1 0.548** 838 2 0.585** 466 1 0.557**

表6

不同生育期冠层含水量的预测模型"

生育期
Growth stage
参数
Parameter
回归模型
Regression model
决定系数
R2
均方根误差
RMSE (kg m-2)
V6 DVI750,751 y = -0.065-1.410 x 0.776** 0.054
RVI2150,1189 y = 0.543-0.837 x 0.814** 0.050
NDVI1471,1209 y = -0.105-0.805 x 0.877** 0.040
db3718,64 y = 0.097-0.017x 0.857** 0.044
bior1.5722,1 y = 0.087+3226.741x 0.868** 0.042
rbio3.3795,128 y = 0.181-0.020 x 0.870** 0.035
gaus3770,64 y = 0.097-0.018 x 0.862** 0.043
VT DVI1667,1583 y = 1.19-0.142 x 0.628** 0.131
RVI807,761 y = -15.049+15.193 x 0.688** 0.120
NDVI761,807 y = 0.127-31.888 x 0.689** 0.120
db31524,1 y = 1.194-3.761 x 0.648** 0.128
bior1.51530,1 y = 0.987-485.085 x 0.614** 0.134
rbio3.31635,2 y = 1.189-1.572 x 0.617** 0.133
gaus31641,2 y = 1.231-1.215 x 0.624** 0.132
R2 DVI2409,1065 y = 0.827-0.005 x 0.256** 0.130
RVI855,856 y = 582.227-581.635 x 0.290** 0.127
NDVI855,856 y = 0.592-1162.731 x 0.290** 0.127
db3840,2 y = 0.938-77.240 x 0.355** 0.121
bior1.5466,1 y = 0.817+45351.913 x 0.299** 0.126
rbio3.3838,2 y = 0.932+43.040 x 0.343** 0.122
gaus3466,1 y = 0.89+338.957 x 0.311** 0.125

图5

冠层含水量实测值与预测值的关系 A: 拔节期; B: 抽雄期; C: 灌浆期;CWC: 冠层含水量。"

图6

利用冠层含水量预测玉米籽粒产量的模型 A: 拔节期; B: 抽雄期; C: 灌浆期。"

图7

基于光谱反射率数据的玉米籽粒产量估测模型的检验 A: 拔节期; B: 抽雄期; C: 灌浆期。"

[1] 王延仓, 张萧誉, 金永涛, 顾晓鹤, 冯华, 王闯. 基于连续小波变换定量反演冬小麦叶片含水量研究. 麦类作物学报, 2020, 40: 503-509.
Wang Y C, Zhang X Y, Jin Y T, Gu X H, Feng H, Wang C. Quantitative retrieval of water content in winter wheat leaves based on continuous wavelet transform. J Triticeae Crops, 2020, 40: 503-509. (in Chinese with English abstract)
[2] Ren B, Zhang J, Li X, Fan X, Dong S, Liu P, Zhao B. Effects of waterlogging on the yield and growth of summer maize under field conditions. Can J Plant Sci, 2014, 94: 23-31.
doi: 10.4141/cjps2013-175
[3] Zhou H, Zhou G, Song X, He Q. Dynamic characteristics of canopy and vegetation water content during an entire maize growing season in relation to spectral-based indices. Remote Sens, 2022, 14: 584.
doi: 10.3390/rs14030584
[4] 任传友, 姜卓群, 苏小琁, 米前川, 王婧, 李玥, 高西宁. 水分胁迫/复水对谷子光合特性及产量影响. 应用气象学报, 2021, 32: 456-467.
Ren C Y, Jiang Z Q, Su X X, Mi Q C, Wang J, Li Y, Gao X N. Effect of water stress/rewatering on photosynthetic characteristics and yield of cereals. J Appl Meteorol Sci, 2021, 32: 456-467. (in Chinese with English abstract)
[5] 马雅丽, 郭建平, 栾青, 刘文平, 李蕊. 持续性水分胁迫对冬小麦光合特性及产量的影响. 气象, 2022, 48: 1303-1311.
Ma Y L, Guo J P, Luan Q, Liu W P, Li R. Effects of persistent water stress on photosynthetic characteristics and yield of winter wheat. Meteorol Month, 2022, 48: 1303-1311. (in Chinese with English abstract)
[6] 唐源, 王小平, 鲁聪聪, 赵传燕. 基于PROSAIL模型与光谱指数的紫花苜蓿冠层含水量估算. 兰州大学学报(自然科学版), 2023, 59: 55-62.
Tang Y, Wang X P, Lu C C, Zhao C Y. Estimating the canopy water content of alfalfa based on the PROSAIL model and spectral index. J Lanzhou Univ (Nat Sci Edn), 2023, 59: 55-62. (in Chinese with English abstract)
[7] Zhang F, Zhou G. Estimation of vegetation water content using hyperspectral vegetation indices: a comparison of crop water indicators in response to water stress treatments for summer maize. BMC Ecol, 2019, 19: 18.
doi: 10.1186/s12898-019-0233-0 pmid: 31035986
[8] 江海英, 柴琳娜, 贾坤, 刘进, 杨世琪, 郑杰. 联合PROSAIL模型和植被水分指数的低矮植被含水量估算. 遥感学报, 2021, 25: 1025-1036.
Jiang H Y, Chai L N, Jia K, Liu J, Yang S Q, Zheng J. Estimation of water content for short vegetation based on PROSAIL model and vegetation water indices. Nation Remote Sens Bull, 2021, 25: 1025-1036. (in Chinese with English abstract)
[9] Wang Z L, Chen J X, Fan Y F, Cheng Y J, Wu X L, Zhang J W, Wang B B, Wang X C, Yong T W, Liu W G, Liu J, Du J B, Yang W Y, Yang F. Evaluating photosynthetic pigment contents of maize using UVE-PLS based on continuous wavelet transform. Comput Electron Agric, 2020, 169: 105160.
doi: 10.1016/j.compag.2019.105160
[10] Cheng T, Rivard B, Sánchez-Azofeifa A G, Féret J B, Jacquemoud S, Ustin S L. Predicting leaf gravimetric water content from foliar reflectance across a range of plant species using continuous wavelet analysis. J Plant Physiol, 2012, 169: 1134-1142.
doi: 10.1016/j.jplph.2012.04.006
[11] Cheng T, Riaño D, Ustin S L. Detecting diurnal and seasonal variation in canopy water content of nut tree orchards from airborne imaging spectroscopy data using continuous wavelet analysis. Remote Sens Environ, 2014, 143: 39-53.
doi: 10.1016/j.rse.2013.11.018
[12] Liu H J, Li M Z, Zhang J Y, Gao D H, Sun H, Yang L W. Estimation of chlorophyll content in maize canopy using wavelet denoising and SVR method. Int J Agric Biol Eng, 2018, 11: 132-137.
[13] Liu Y, Sun Q, Feng H K, Yang F Q. Estimation of above-ground biomass of potato based on wavelet analysis. Spectrosc Spectral Anal, 2021, 41: 1205-1212.
[14] Liu M, Liu X, Ding W, Wu L. Monitoring stress levels on rice with heavy metal pollution from hyperspectral reflectance data using wavelet-fractal analysis. Int J Appl Earth Obs Geoinf, 2010, 13: 246-255.
[15] Chen J X, Li F, Wang R, Fan Y F, Ali Raza M, Liu Q L, Wang Z L, Cheng Y J, Wu X L, Yang F, Yang W Y. Estimation of nitrogen and carbon content from soybean leaf reflectance spectra using wavelet analysis under shade stress. Comput Electron Agric, 2019, 156: 482-489.
doi: 10.1016/j.compag.2018.12.003
[16] Tao H L, Feng H K, Xu L J, Miao M K, Yang G J, Yang X D, Fan L L. Estimation of the yield and plant height of winter wheat using UAV-based hyperspectral images. Sensors, 2020, 20: 1231.
doi: 10.3390/s20041231
[17] Yue J B, Feng H K, Yang G J, Li Z H. A comparison of regression techniques for estimation of above-ground winter wheat biomass using near-surface spectroscopy. Remote Sens, 2018, 10: 66.
doi: 10.3390/rs10010066
[18] Zhang F, Zhou G S. Estimation of canopy water content by means of hyperspectral indices based on drought stress gradient experiments of maize in the North Plain China. Remote Sens, 2015, 7: 15203-15223.
doi: 10.3390/rs71115203
[19] Atzberger C, Darvishzadeh R, Immitzer M, Martin S, Andrew S, Guerric I M. Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy. Int J Appl Earth Obs Geoinf, 2015, 43: 19-31.
[20] 陶惠林, 徐良骥, 冯海宽, 杨贵军, 杨小冬, 牛亚超. 基于无人机高光谱遥感数据的冬小麦产量估算. 农业机械学报, 2020, 51(7): 146-155.
Tao H L, Xu L J, Feng H K, Yang G J, Yang X D, Niu Y C. Winter wheat yield estimation based on UAV hyperspectral remote sensing data. Trans CSAM, 2020, 51(7): 146-155. (in Chinese with English abstract)
[21] 韩文霆, 彭星硕, 张立元, 牛亚晓. 基于多时相无人机遥感植被指数的夏玉米产量估算. 农业机械学报, 2020, 51(1): 148-155.
Han W T, Peng X S, Zhang L Y, Niu Y X. Summer maize yield estimation based on vegetation index derived from multi- temporal UAV remote sensing. Trans CSAM, 2020, 51(1): 148-155. (in Chinese with English abstract)
[22] Jiang Y, Wei H, Hou S, Yin X, Wei S, Jiang D. Estimation of maize yield and protein content under different density and N rate conditions based on UAV multi-spectral images. Agronomy, 2023, 13: 421.
doi: 10.3390/agronomy13020421
[23] Li Z H, Jin X L, Zhao C J, Wang J H, Xu X G, Yang G J, Li C J, Shen J X. Estimating wheat yield and quality by coupling the DSSAT-CERES model and proximal remote sensing. Eur J Agron, 2015, 71: 53-62.
doi: 10.1016/j.eja.2015.08.006
[24] Zhang C, Liu J G, Shang J L, Cai H J. Capability of crop water content for revealing variability of winter wheat grain yield and soil moisture under limited irrigation. Sci Total Environ, 2018, 631-632: 677-687.
[25] Clevers J G P W, Kooistra L, Schaepman M E. Estimating canopy water content using hyperspectral remote sensing data. Int J Appl Earth Obs Geoinf, 2010, 12: 119-125.
[26] Blackburn G A, Ferwerda J G. Retrieval of chlorophyll concentration from leaf reflectance spectra using wavelet analysis. Remote Sens Environ, 2008, 112: 1614-1632.
doi: 10.1016/j.rse.2007.08.005
[27] Nourani V, Baghanam A H, Adamowski J, Gebremichael M. Using self-organizing maps and wavelet transforms for space-time pre-processing of satellite precipitation and runoff data in neural network based rainfall-runoff modeling. J Hydrol, 2013, 476: 228-243.
doi: 10.1016/j.jhydrol.2012.10.054
[28] Rivard B, Feng J, Gallie A, Sanchez-Azofeifa A. Continuous wavelets for the improved use of spectral libraries and hyperspectral data. Remote Sens Environ, 2008, 112: 2850-2862.
doi: 10.1016/j.rse.2008.01.016
[29] Penuelas J, Filella I, Biel C S, Serrano L, Save R. The reflectance at the 950-970 nm region as an indicator of plant water status. Int J Remote Sens, 1993, 14: 1887-1905.
doi: 10.1080/01431169308954010
[30] Ceccato P, Gobron N, Flasse S, Pinty B, Tarantola S. Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1: Theoretical approach. Remote Sens Environ, 2002, 82: 188-197.
doi: 10.1016/S0034-4257(02)00037-8
[31] Ceccato P, Flasse S, Grégoire J M. Designing a spectral index to estimate vegetation water content from remote sensing data: part 2. Validation and applications. Remote Sens Environ, 2002, 82: 198-207.
doi: 10.1016/S0034-4257(02)00036-6
[32] Pearson R L, Miller L D. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie. In: Proceeding of the 8th International Symposium on Remote Sensing of the Environment, Michigan, Ann Arbor, Michigan USA, 1972. pp 1355-1397.
[33] Jordan C F. Derivation of leaf-area index from quality of light on the forest floor. Ecology, 1969, 50: 663-666.
doi: 10.2307/1936256
[34] Rouse J W, Haas R H, Schell J A, Deering D W. Monitoring vegetation systems in the great plains with erts. NASA Sp Publ, 1974, 351: 309-313.
[35] Mutanga O, Skidmore A K. Red edge shift and biochemical content in grass canopies. ISPRS J Photogr Remote Sens, 2007, 62: 34-42.
doi: 10.1016/j.isprsjprs.2007.02.001
[36] Oki K, Yasuoka Y. Estimation of chlorophyll-a concentration in rich chlorophyll water area from near-infrared and red Spectral signature. J Remote Sens Soc Jpn, 2009, 16: 315-323.
[37] Cheng T, Rivard B, Sánchez-Azofeifa A. Spectroscopic determination of leaf water content using continuous wavelet analysis. Remote Sens Environ, 2010, 115: 659-670.
doi: 10.1016/j.rse.2010.11.001
[38] 林波, 杨玉静. 利用连续统去除方法遥感反演冠层水分含量的比较研究. 气象研究与应用, 2012, 33: 181-184.
Lin B, Yang Y J. A comparative study of remote sensing inversion of canopy moisture content using the continuum removal method. J Meteorol Res Appl, 2012, 33: 181-184. (in Chinese with English abstract)
[39] Sims D A, Gamon J A. Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: a comparison of indices based on liquid water and chlorophyll absorption features. Remote Sens Environ, 2003, 84: 526-537.
doi: 10.1016/S0034-4257(02)00151-7
[40] 苏涛, 王鹏新, 刘翔舸, 杨博. 基于熵值组合预测和多时相遥感的春玉米估产. 农业机械学报, 2011, 42(1): 186-192.
Su T, Wang P X, Liu X G, Yang B. Spring maize yield estimation based on combination of forecasting of entropy method and multi-temporal remotely sensed data. Trans CSAM, 2011, 42(1): 186-192. (in Chinese with English abstract)
[41] 任丽雯, 刘明春, 王兴涛, 丁文魁, 王润元. 拔节和抽雄期水分胁迫对春玉米生长和产量的影响. 中国农学通报, 2019, 35(1): 17-22.
doi: 10.11924/j.issn.1000-6850.casb17100010
Ren L W, Liu M C, Wang X T, Ding W K, Wang R Y. Water stress at jointing and tasseling stage: effect on growth and yield of spring maize. Chin Agric Sci Bull, 2019, 35(1): 17-22. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb17100010
[42] 白向历, 孙世贤, 杨国航, 刘明, 张振平, 齐华. 不同生育时期水分胁迫对玉米产量及生长发育的影响. 玉米科学, 2009, 17(2): 60-63.
Bai X L, Sun S X, Yang G H, Liu M, Zhang Z P, Qi H. Effect of water stress on maize yield during different growing stages. J Maize Sci, 2009, 17(2): 60-63. (in Chinese with English abstract)
[43] 李叶蓓, 陶洪斌, 王若男, 张萍, 吴春江, 雷鸣, 张巽, 王璞. 干旱对玉米穗发育及产量的影响. 中国生态农业学报, 2015, 23: 383-391.
Li Y B, Tao H B, Wang R N, Zhang P, Wu C J, Lei M, Zhang X, Wang P. Effect of drought on ear development and yield of maize. Chin J Eco-Agric, 2015, 23: 383-391. (in Chinese with English abstract)
[44] 郭松, 常庆瑞, 郑智康, 蒋丹垚, 高一帆, 宋子怡, 姜时雨. 基于无人机高光谱影像的玉米叶绿素含量估测. 江苏农业学报, 2022, 38: 976-984.
Guo S, Chang Q R, Zheng Z K, Jiang D Y, Gao Y F, Song Z Y, Jiang S Y. Estimation of maize chlorophyll content based on unmanned aerial vehicle (UAV) hyperspectral images. Jiangsu J Agric Sci, 2022, 38: 976-984. (in Chinese with English abstract)
[45] Mirzaie M, Darvishzadeh R, Shakiba A, Matkan A A, Atzberger C, Skidmore A. Comparative analysis of different uni-and multi-variate methods for estimation of vegetation water content using hyper-spectral measurements. Int J Appl Earth Obs Geoinf, 2014, 26: 1-11.
[46] Jiang Y, Wei H J, Hou S X, Yin X B, Wei S S, Jiang D. Estimation of maize yield and protein content under different density and N rate conditions based on UAV multi-spectral images. Agronomy, 2023, 13: 421.
doi: 10.3390/agronomy13020421
[47] 祝榛, 李天胜, 崔静, 陈建华, 史晓艳, 姜孟豪, 王海江. 基于高光谱成像估测冬小麦不同生育时期水分状况. 新疆农业科学, 2022, 59: 521-532.
doi: 10.6048/j.issn.1001-4330.2022.03.001
Zhu Z, Li T S, Cui J, Chen J H, Shi X Y, Jiang M H, Wang H J. Study on estimation of water status of winter wheat in different growth stages based on hyperspectral imaging. Xinjiang Agric Sci, 2022, 59: 521-532. (in Chinese with English abstract)
doi: 10.6048/j.issn.1001-4330.2022.03.001
[48] Zhang Y, Yang Y Z, Zhang Q W, Duan R Q, Liu J Q, Qin Y C, Wang X Z. Toward multi-stage phenotyping of soybean with multimodal UAV sensor data: a comparison of machine learning approaches for leaf area index estimation. Remote Sens, 2022, 15: 7.
doi: 10.3390/rs15010007
[1] 韩洁楠, 张泽, 刘晓丽, 李冉, 上官小川, 周婷芳, 潘越, 郝转芳, 翁建峰, 雍洪军, 周志强, 徐晶宇, 李新海, 李明顺. o2突变引起糯玉米籽粒淀粉积累差异研究[J]. 作物学报, 2024, 50(5): 1207-1222.
[2] 王永亮, 胥子航, 李申, 梁哲铭, 白炬, 杨治平. 不同覆盖措施对土壤水热状况及春玉米产量和水分利用效率的影响[J]. 作物学报, 2024, 50(5): 1312-1324.
[3] 田红丽, 杨扬, 范亚明, 易红梅, 王蕊, 金石桥, 晋芳, 张云龙, 刘亚维, 王凤格, 赵久然. 用于玉米品种真实性鉴定的最优核心SNP位点集的研发[J]. 作物学报, 2024, 50(5): 1115-1123.
[4] 苏帅, 刘孝伟, 牛群凯, 时子文, 侯雨微, 冯开洁, 荣廷昭, 曹墨菊. 玉米多叶矮化突变体lyd1的鉴定与基因克隆[J]. 作物学报, 2024, 50(5): 1124-1135.
[5] 吴霞玉, 李盼, 韦金贵, 范虹, 何蔚, 樊志龙, 胡发龙, 柴强, 殷文. 减量灌水及有机无机肥配施对西北灌区玉米光合生理、籽粒产量及品质的影响[J]. 作物学报, 2024, 50(4): 1065-1079.
[6] 张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响[J]. 作物学报, 2024, 50(4): 981-990.
[7] 岳海旺, 魏建伟, 刘朋程, 陈淑萍, 卜俊周. 基于GYT双标图分析对黄淮海生态区玉米品种综合评价[J]. 作物学报, 2024, 50(4): 836-856.
[8] 娄菲, 左怿平, 李萌, 代鑫萌, 王健, 韩金玲, 吴舒, 李向岭, 段会军. 有机肥替代部分化肥氮对糯玉米产量、品质及氮素利用的影响[J]. 作物学报, 2024, 50(4): 1053-1064.
[9] 薛明, 汪晨晨, 姜露光, 刘浩, 张路遥, 陈赛华. 玉米花序发育基因AFP1的定位及功能研究[J]. 作物学报, 2024, 50(3): 603-612.
[10] 赵荣荣, 丛楠, 赵闯. 基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择[J]. 作物学报, 2024, 50(3): 721-733.
[11] 梁星伟, 杨文亭, 金雨, 胡莉, 傅小香, 陈先敏, 周顺利, 申思, 梁效贵. 玉米穗轴的颜色变化, 是偶然还是与农艺性状存在关联?——以历年国审普通品种为例[J]. 作物学报, 2024, 50(3): 771-778.
[12] 毛燕, 郑名敏, 牟成香, 谢吴兵, 唐琦. 渗透胁迫下玉米自然反义转录本cis-NATZmNAC48启动子的功能分析[J]. 作物学报, 2024, 50(2): 354-362.
[13] 马娟, 曹言勇. 玉米杂交群体产量性状及其特殊配合力全基因组关联分析[J]. 作物学报, 2024, 50(2): 363-372.
[14] 杨静蕾, 吴冰杰, 王安洲, 肖英杰. 基于多维组学数据的玉米农艺和品质性状预测研究[J]. 作物学报, 2024, 50(2): 373-382.
[15] 谢炜, 贺鹏, 马宏亮, 雷芳, 黄秀兰, 樊高琼, 杨洪坤. 秋闲期秸秆覆盖与施磷对冬小麦氮素吸收利用的影响[J]. 作物学报, 2024, 50(2): 440-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .