欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (5): 1115-1123.doi: 10.3724/SP.J.1006.2024.33052

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

用于玉米品种真实性鉴定的最优核心SNP位点集的研发

田红丽1**(), 杨扬1**(), 范亚明1**(), 易红梅1, 王蕊1, 金石桥2, 晋芳2, 张云龙1, 刘亚维1, 王凤格1,*(), 赵久然1,*()   

  1. 1北京市农林科学院玉米研究所 / 农业农村部农作物DNA指纹创新利用重点实验室(部省共建) / 玉米DNA指纹及分子育种北京市重点实验室, 北京 100097
    2全国农业技术推广服务中心, 北京 100125
  • 收稿日期:2023-10-25 接受日期:2024-01-12 出版日期:2024-05-12 网络出版日期:2024-02-08
  • 通讯作者: 赵久然, E-mail: maizezhao@126.com, Tel: 86-10-51503936; 王凤格, E-mail: gege0106@163.com, Tel: 86-10-51503558
  • 作者简介:田红丽, E-mail: tianhongli9963@163.com;
    杨杨, E-mail: caurwx@163.com;
    范亚明, E-mail: 13718078547@163.com第一联系人:

    **同等贡献

  • 基金资助:
    国家科技创新重大项目(2022ZD04019);北京市农林科学院财政项目(KJCX20230301);北京市农林科学院财政项目(CZZJ202206)

Development of an optimal core SNP loci set for maize variety genuineness identification

TIAN Hong-Li1**(), YANG Yang1**(), FAN Ya-Ming1**(), YI Hong-Mei1, WANG Rui1, JIN Shi-Qiao2, JIN Fang2, ZHANG Yun-Long1, LIU Ya-Wei1, WANG Feng-Ge1,*(), ZHAO Jiu-Ran1,*()   

  1. 1Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences / Key Laboratory of Crop DNA Fingerprinting Innovation and Utilization of the Ministry of Agriculture and Rural Affairs (Co-construction by Ministry and Province) / Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China
    2National Agricultural Technology Extension and Service Center, Beijing 100026, China
  • Received:2023-10-25 Accepted:2024-01-12 Published:2024-05-12 Published online:2024-02-08
  • Contact: E-mail: maizezhao@126.com, Tel: 86-10-51503936; E-mail: gege0106@163.com, Tel: 86-10-51503558
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    National Scientific and Technological Innovation-Major Projects(2022ZD04019);Financial Project of Beijing Academy of Agriculture and Forestry Sciences(KJCX20230301);Financial Project of Beijing Academy of Agriculture and Forestry Sciences(CZZJ202206)

摘要:

品种真实性是种子质量监测的一个重要指标。为建立准确可靠、快速简便、高通量、低成本的玉米品种真实性鉴定技术, 本文利用200个核心SNP位点构建的5816个玉米杂交品种, 3274个自交系的指纹数据, 基于遗传算法、品种识别率评估确定了一套高鉴别力的核心SNP位点集, 包含96个SNP位点。这96个SNPs全部位于基因内区域, 相对均匀分布在10对染色体上。采用上述杂交品种和自交系的指纹数据评估显示这96个位点具有较高多态性和品种区分能力, PIC、MAF、DP平均值分别为0.36、0.40、0.60和0.36、0.39、0.48, 对杂交品种、自交系的品种识别率达到99.14%和99.24%。两两样品成对比较结果显示, 99.99%的品种间差异位点数目≥3个, 杂交品种和自交系中96.74%和95.67%的成对比较差异位点数目集中在30~65个和30~60个。基于221个主推杂交品种的40个SSR位点、96个SNP位点的基因型数据分析结果显示, 这2组标记集的鉴定结果具有较高的一致性。综上所述, 本研究报道了一套具有位点数量最少、区分能力最强, 兼容多平台、适于自动化分型等优点的最优核心SNP集。期望位点集将在玉米品种真实性监测、种子质量控制中得到广泛应用, 进而维护玉米种子市场秩序、保障育种者权利以及保护农民利益。

关键词: 玉米品种, 真实性鉴定, SNP位点集, 高鉴别力

Abstract:

Variety genuineness is an important indicator for seed quality monitoring. In order to establish accurate, reliable, fast, simple, high-throughput, and low-cost maize variety genuineness identification technology, we evaluated and determined a set of high discriminative power core SNP loci set including 96 SNPs based on SNP fingerprint data of 5816 maize hybrids and 3274 inbred lines using the genetic algorithm and variety recognition rate. All 96 SNPs were located in the intra-gene region, generally distributed evenly on 10 pairs of chromosomes. The evaluation results using the above hybrid and inbred line data showed that 96 SNPs set had high polymorphism and variety discrimination power. The average values of PIC, MAF, and DP were 0.36, 0.40, 0.60, and 0.36, 0.39, 0.48 for hybrids and inbred lines, respectively. The variety discrimination power for hybrids and inbred lines reached 99.14% and 99.24%, respectively. Pairwise comparison between varieties showed that 99.99% of the comparisons had at least three differential loci. About 96.74% of hybrids and 95.67% of inbred lines mostly had the 30-65 and 30-60 differential loci between varieties, respectively. Compared with the 40 SSRs genotype dataset using 221 hybrids, the 96-SNPs set had high consistency in the identification results of the two marker sets. In summary, the optimal core SNPs set reported in this study had the advantage of the minimum number of loci, the highest discrimination power, the strongest differentiation platforms, and the automatic genotyping. It is expected that the extensive application of this core SNP loci set will be widely used in maize variety genuineness monitor and seed quality control for maintaining seed market order, so as to defend the breeders’ rights and protecting interests of farmers.

Key words: maize variety, genuineness identification, SNP loci set, high discrimination power

图1

最优位点集的品种识别率变化曲线图 横坐标为位点组合包含的位点数目, 纵坐标为品种识别率。"

图2

96个核心SNP位点在玉米核基因组上的分布"

图3

基于5816个杂交品种、3274个自交系评估96个SNP位点的PIC、MAF、DP和杂合基因型频率(AB rate)分布 横坐标为SNP位点, 排序依据PIC值由小到大的顺序; 纵坐标为各评估参数值。"

图4

玉米自交系和杂交品种分别成对比较差异SNP位点数目分布图"

图5

基于221个杂交品种两两遗传距离对96个SNP与40个SSR位点之间的相关性分析"

图6

20套三联体(杂交品种及其双亲)样品96个位点的SNP-DNA指纹展示图 每行代表1个样品, 每3行代表1套三联体样品, N01~N20为三联体样品的编号; 每列代表1个SNP位点, 按照在基因组上的物理位置排序; DNA指纹分别用不同颜色表示。"

[1] 赵久然, 王凤格, 郭景伦, 吕波, 胡长远, 堵苑苑. 玉米品种鉴定DNA指纹方法. 中华人民共和国农业行业标准, NY/T1432- 2007, 2007.
Zhao J R, Wang F G, Guo J L, Lyu B, Hu C Y, Du Y Y. Maize Variety Identification Molecular Techniques. Agricultural Industry Standards of the People’s Republic of China, NY/T 1432- 2007, 2007 (in Chinese).
[2] 王凤格, 易红梅, 赵久然, 刘平, 张新明, 田红丽, 堵苑苑. 玉米品种鉴定技术规程 SSR标记法. 中华人民共和国农业行业标准, NY/T1432- 2014, 2014.
Wang F G, Yi H M, Zhao J R, Liu P, Zhang X M, Tian H L, Du Y Y. Protocol for the Identification of Maize Varieties-SSR Marker Method. Agricultural Industry Standards of the People’s Republic of China, NY/T 1432- 2014, 2014 (in Chinese).
[3] 王凤格, 支巨振, 易红梅, 赵建宗, 张力科, 田红丽, 律宝春. 主要农作物品种真实性和纯度SSR分子标记检测玉米. 中华人民共和国国家标准, GB/T39914- 2021, 2021.
Wang F G, Zhi J Z, Yi H M, Zhao J Z, Zhang L K, Tian H L, Lyu B C. Variety Genuineness and Purity Testing of Main Crops with SSR Markers-Maize. National Standards of the People’s Republic of China, GB/T 39914- 2021, 2021 (in Chinese).
[4] 王凤格, 杨扬, 易红梅, 赵久然, 任洁, 王璐, 葛建镕, 江彬, 张宪晨, 田红丽, 侯振华. 中国玉米审定品种标准SSR指纹库的构建. 中国农业科学, 2017, 50: 1-14.
Wang F G, Yang Y, Yi H M, Zhao J R, Ren J, Wang L, Ge J R, Jiang B, Zhang X C, Tian H L, Hou Z H. Construction of an SSR-based standard fingerprint database for corn variety authorized in China. Sci Agric Sin, 2017, 50: 1-14 (in Chinese).
[5] 王凤格, 赵久然, 杨扬. 国家审定玉米品种SSR指纹图谱. 北京: 中国农业科学技术出版社, 2015.
Wang F G, Zhao J R, Yang Y. SSR Fingerprinting Data of National Approval of Maize Cultivars. Beijing: China Agricultural Science and Technology Press, 2015 (in Chinese).
[6] Lai J S, Li R Q, Xu X, Jin W W, Xu M L, Zhao H N, Xiang X K, Song W B, Ying K, Zhang M, Jiao Y P, Ni P X, Zhang J G, Li D, Guo X S, Ye K X, Jian M, Wang B, Zheng H S, Liang H Q, Zhang X Q, Wang S C, Chen S J, Li J S, Fu Y, Springer N M, Yang H M, Wang J, Dai J R, Schnable P S, Wang J. Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet, 2010, 42:1027-1030.
[7] Jiao Y P, Zhao H N, Ren L H, Song W B, Zeng B, Guo J J, Wang B B, Liu Z P, Chen J, Li W, Zhang M, Xie S J, Lai J S. Genome-wide genetic changes during modern breeding of maize. Nat Genet, 2012, 44:812-817.
doi: 10.1038/ng.2312 pmid: 22660547
[8] Chia J M, Song C, Bradbury P J, Costich D, Leon N D, Doebley J, Elshire R J, Gaut B, Geller L, Glaubitz J C, Gore M, Guill K E, Holland J, Hufford M B, Lai J S, Li M, Liu X, Lu Y L, McCombie R, Nelson R, Poland J, Prasanna B M, Pyhäjärvi T, Rong T Z, Sekhon R S, Sun Q, Tenaillon M I, Tian F, Wang J, Xu X, Zhang Z U, Kaeppler S M, Ross-Ibarra J, McMullen M D, Buckler E S, Zhang G Y, Xu Y B, Ware D. Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet, 2012, 44: 803-809.
doi: 10.1038/ng.2313
[9] Jiao Y P, Peluso P, Shi J H, Liang T, Stitzer M C, Wang B, Campbell M S, Stein J C, Wei X H, Chin C S, Guill K, Regulski M, Kumari S, Olson A, Gent J, Schneider K L, Wolfgruber T K, May M R, Springer N M, Antoniou E, McCombie W R, Presting G G, McMullen M, Ross-Ibarra J, Dawe R K, Hastie A, Rank D R, Ware D. Improved maize reference genome with single-molecular technologies. Nature, 2017, 546: 524-527.
[10] Bukowski R, Guo X, Lu Y L, Zou C, He B, Rong Z Q, Wang B, Xu D W, Yang B C, Xie C X, Fan L J, Gao S B, Xu X, Zhang G Y, Li Y R, Jiao Y P, Doebley J F, Ross-Ibarra J, Lorant A, Buffalo V, Romay M C, Buckler E S, Ware D, Lai J S, Sun Q, Xu Y B. Construction of the third-generation Zea mays haplotype map. GigaScience, 2018, 7: 1-12.
doi: 10.1093/gigascience/gix134 pmid: 29300887
[11] Semagn K, Babu R, Hearne S, Olsen M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed, 2014, 33, 1-14.
doi: 10.1007/s11032-013-9917-x
[12] Tian H L, Wang F G, Zhao J R, Yi H M, Wang L, Wang R, Yang Y, Song W. Development of maizeSNP3072, a high-throughput compatible SNP array, for DNA fingerprinting identification of Chinese maize varieties. Mol Breed, 2015, 35: 136.
doi: 10.1007/s11032-015-0335-0
[13] 田红丽, 杨扬, 王璐, 王蕊, 易红梅, 许理文, 张云龙, 葛建镕, 王凤格, 赵久然. 兼容型maizeSNP384标记筛选与玉米杂交种DNA指纹图谱构建. 作物学报, 2020, 46: 1006-1015.
doi: 10.3724/SP.J.1006.2020.93048
Tian H L, Yang Y, Wang L, Wang R, Yi H M, Xu L W, Zhang Y L, Ge J R, Wang F G, Zhao J R. Screening of compatible maizeSNP384 markers and the construction of DNA fingerprints of maize varieties. Acta Agron Sin, 2020, 46: 1006-1015 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2020.93048
[14] Tian H L, Yang Y, Yi H M, Xu L W, He H, Fan Y M, Wang L, Ge J R, Liu Y W, Wang F G, Zhao J R. New resources for genetic studies in maize (Zea mays L.): a genome-wide maize 6H-60K single nucleotide polymorphism array and its application. Plant J, 2021, 105: 1113-1122.
doi: 10.1111/tpj.v105.4
[15] Tian H L, Yang Y, Wang R, Fan Y M, Yi H M, Jiang B, Wang L, Ren J, Xu L W, Zhang Y L, Ge J R, Liu Y W, Wang F G, Zhao J R. Screening of 200 core SNPs and the construction of a systematic SNP-DNA standard fingerprint database with more than 20,000 maize varieties. Agriculture, 2021, 11: 597.
[16] 王凤格, 晋芳, 田红丽, 易红梅, 赵久然, 金石桥, 杨扬, 王蕊, 葛建镕, 支巨振, 赵建宗. 玉米品种真实性鉴定 SNP标记法. 中华人民共和国农业行业标准, NY/T4022- 2021, 2021.
Wang F G, Jin F, Tian H L, Yi H M, Zhao J R, Jin S Q, Yang Y, Wang R, Ge J R, Zhi J Z, Zhao J Z. Maize (Zea mays L.) Variety Genuineness Identification: SNP Based Method. Agricultural Industry Standards of the People’s Republic of China, NY/T 4022- 2021, 2021 (in Chinese).
[17] 魏兴华, 刘丰泽, 韩斌, 徐群, 冯旗, 赵妍, 支巨振, 周泽宇, 杨窑龙, 冯跃, 任雪贞, 王珊, 章孟臣. 水稻品种真实性鉴定 SNP标记法. 中华人民共和国农业行业标准, NY/T2745- 2021, 2021.
Wei X H, Liu F Z, Han B, Xu Q, Feng Q, Zhao Y, Zhi J Z, Zhou Z Y, Yang Y L, Feng Y, Ren X Z, Wang S, Zhang M C. Rice (Oryza sativa L.) Variety Genuineness Identification: SNP Based Method. Agricultural Industry Standards of the People’s Republic of China, NY/T 2745- 2021, 2021 (in Chinese).
[18] 庞斌双, 任雪贞, 刘丽华, 赵昌平, 张明明, 金石桥, 李宏博, 刘阳娜, 周泽宇, 张风廷, 张立平, 张胜全, 马锦绣, 权威, 王穆穆, 张旭, 侯建, 关海涛, 傅友兰, 王卫红. 小麦品种真实性鉴定 SNP标记法. 中华人民共和国农业行业标准, NY/T4021- 2021, 2021.
Pang B S, Ren X Z, Liu L H, Zhao C P, Zhang M M, Jin S Q, Li H B, Liu Y N, Zhou Z Y, Zhang F T, Zhang L P, Zhang S Q, Ma J X, Quan W, Wang M M, Zhang X, Hou J, Guan H T, Fu Y L, Wang W H. Wheat (Triticum aestivum L.) Variety Genuineness Identification: SNP Based Method. Agricultural Industry Standards of the People’s Republic of China, NY/T 4021- 2021, 2021 (in Chinese).
[19] 李志远, 于海龙, 方智远, 杨丽梅, 刘玉梅, 庄木, 吕红豪, 张扬勇. 甘蓝SNP标记开发及主要品种的DNA指纹图谱构建. 中国农业科学, 2018, 51: 2771-2787.
doi: 10.3864/j.issn.0578-1752.2018.14.014
Li Z Y, Yu H L, Fang Z Y, Yang L M, Liu Y M, Zhuang M, Lyu H H, Zhang Y Y. Development of SNP markers in cabbage and construction of DNA fingerprinting of main varieties. Sci Agric Sin, 2018, 51: 2771-2787 (in Chinese with English abstract).
[20] 颜廷进, 蒲艳艳, 张文兰, 田茜, 王栋, 李群, 戴双, 丁汉凤. 基于SNP标记的菜豆品种真实性和纯度鉴定技术. 山东农业科学, 2019, 51(12): 111-119.
Yan T J, Pu Y Y, Zhang W L, Tian Q, Wang D, Li Q, Dai S, Ding H F. Identification technology of genuineness and purity for common bean varieties based on SNP markers. Shandong Agric Sci, 2019, 51(12): 111-119 (in Chinese with English abstract).
[21] 任海龙, 许东林, 张晶, 邹集文, 李光光, 周贤玉, 肖婉钰, 孙艺嘉. 菜薹KASP-SNP指纹图谱构建及品种鉴定. 园艺学报, 2023, 50: 307-318.
doi: 10.16420/j.issn.0513-353x.2021-1046
Ren H L, Xu D L, Zhang J, Zou J W, Li G G, Zhou X Y, Xiao W Y, Sun Y J. Establishment of SNP fingerprinting and identification of Chinese flowering cabbage varieties based on KASP genotyping. Acta Hortic Sin, 2023, 50: 307-318.
doi: 10.16420/j.issn.0513-353x.2021-1046
[22] 王凤格, 赵久然, 杨扬. 基于遗传算法的植物品种真实性鉴定位点筛选方法. 中国发明专利, 2013, ZL201310629676.2.
Wang F G, Zhao J R, Yang Y. The Method of Locus Selecting for Plant Variety Authenticity Identification Based on Genetic Algorithm. Chinese Invention Patent, 2013, ZL201310629676.2 (in Chinese).
[23] Yang Y, Tian H L, Wang R, Wang L, Yi H M, Liu Y W, Xu L W, Fan Y M, Zhao J R, Wang F G. Variety Discrimination Power: an appraisal index for loci combination screening applied to plant variety discrimination. Front Plant Sci, 12: 566796.
doi: 10.3389/fpls.2021.566796
[24] 赵久然, 王凤格, 田红丽, 易红梅, 王蕊, 葛建镕. 适于农作物品种分子身份鉴别和确权鉴定的检测方法. 中国发明专利, 2017, ZL 201710527354.5.
Zhao J R, Wang F G, Tian H L, Yi H M, Wang R, Ge J R. Detection Methods for Identity Distinguish and Intellectual Property Confirmation of Crop Varieties Using Molecular Markers. Chinese Invention Patent, 2017, ZL 201710527354.5 (in Chinese).
[25] 王凤格, 田红丽, 易红梅, 赵涵, 霍永学, 匡猛, 张力科, 吕远大, 丁曼卿, 赵久然. 植物品种DNA指纹鉴定原理及其鉴定方案. 分子植物育种, 2018, 16: 4756-4766.
Wang F G, Tian H L, Yi H M, Zhao H, Huo Y X, Kuang M, Zhang L K, Lyu Y D, Ding M Q, Zhao J R. Principle and strategy of DNA fingerprint identification of plant variety. Mol Plant Breed, 2018, 16: 4756-4766 (in Chinese with English abstract).
[1] 岳海旺, 魏建伟, 刘朋程, 陈淑萍, 卜俊周. 基于GYT双标图分析对黄淮海生态区玉米品种综合评价[J]. 作物学报, 2024, 50(4): 836-856.
[2] 刘昕萌, 程乙, 刘玉文, 庞尚水, 叶秀芹, 卜艳霞, 张吉旺, 赵斌, 任佰朝, 任昊, 刘鹏. 黄淮海区域现代夏玉米品种产量与资源利用效率的差异分析[J]. 作物学报, 2023, 49(5): 1363-1371.
[3] 田红丽, 张如养, 范亚明, 杨扬, 张云龙, 易红梅, 邢锦丰, 王凤格, 赵久然. Maize 6H-60K芯片在玉米实质性派生品种鉴定中的应用分析[J]. 作物学报, 2023, 49(11): 2876-2885.
[4] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[5] 田红丽, 赵紫薇, 杨扬, 范亚明, 班秀丽, 易红梅, 杨洪明, 刘少荣, 高玉倩, 刘亚维, 王凤格. 290个吉林省审定玉米品种SSR-DNA指纹构建及遗传多样性分析[J]. 作物学报, 2022, 48(12): 2994-3003.
[6] 王欣怡,艾先涛,王俊铎,梁亚军,龚照龙,郑巨云,郭江平,买买提.莫明,李雪源. 利用SSR快速鉴定棉花品种真实性和纯度[J]. 作物学报, 2017, 43(10): 1565-1572.
[7] 张兴华,高杰,杜伟莉,张仁和*,薛吉全. 干旱胁迫对玉米品种苗期叶片光合特性的影响[J]. 作物学报, 2015, 41(01): 154-159.
[8] 张仁和,杜伟莉,郭东伟,张爱瑛,胡富亮,李凤艳,薛吉全. 陕西省不同年代玉米品种产量和氮效率性状的变化[J]. 作物学报, 2014, 40(05): 915-923.
[9] 钱春荣,于洋,宫秀杰,姜宇博,赵杨,王俊河,杨忠良,张卫建. 黑龙江省不同年代玉米杂交种产量对种植密度和施氮水平的响应[J]. 作物学报, 2012, 38(10): 1864-1874.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .