欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (5): 1104-1114.doi: 10.3724/SP.J.1006.2024.32043

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻雄性不育突变体tpa1的表型鉴定与精细定位

万应春1**(), 班义结1**(), 蒋钰东2**(), 王亚欣1, 刘晶晶1, 刘晓晴1, 程育林1, 王楠1,*(), 冯萍1,*()   

  1. 1西南大学水稻研究所 / 转基因植物与安全控制重庆市市级重点实验室 / 南方山地农业教育部工程研究中心, 重庆 400716
    2四川省农业科学院水稻高粱研究所(四川省农业科学院德阳分院), 国家水稻改良中心四川泸州分中心 / 农业农村部西南水稻生物学与遗传育种重点实验室, 四川德阳 618000
  • 收稿日期:2023-10-17 接受日期:2024-01-12 出版日期:2024-05-12 网络出版日期:2024-02-08
  • 通讯作者: 冯萍, E-mail: 554180353@qq.com; 王楠, E-mail: wangnan_xndx@126.com
  • 作者简介:万应春, E-mail: wanyc1221@126.com;
    班义结, E-mail: 2263889500@qq.com;
    蒋钰东, E-mail: 289482100@qq.com第一联系人:

    **同等贡献

  • 基金资助:
    重庆市研究生科研创新项目(CYS22224);重庆市技术创新与应用发展专项重点项目(CSTB2022TIAD-KPX0014)

Phenotypic identification and fine mapping of male sterile mutant tpa1 in rice

WAN Ying-Chun1**(), BAN Yi-Jie1**(), JIANG Yu-Dong2**(), WANG Ya-Xin1, LIU Jing-Jing1, LIU Xiao-Qing1, CHENG Yu-Lin1, WANG Nan1,*(), FENG Ping1,*()   

  1. 1Rice Research Institute of Southwest University / Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops / Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400716, China
    2Key Laboratory of Southwest Rice Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs / Luzhou Branch of National Rice Improvement Center, Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences (Deyang Branch of Sichuan Academy of Agricultural Sciences), Deyang 618000, Sichuan, China
  • Received:2023-10-17 Accepted:2024-01-12 Published:2024-05-12 Published online:2024-02-08
  • Contact: E-mail: 554180353@qq.com; E-mail: wangnan_xndx@126.com
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    Chongqing Graduate Research and Innovation Project(CYS22224);Chongqing Technology Innovation and Application Development Special Key Project(CSTB2022TIAD-KPX0014)

摘要:

雄性不育材料是杂交水稻育种的关键。本研究通过甲基磺酸乙酯(ethyl methane sulfonate, EMS)诱变优良籼稻保持系西农1B, 筛选得到一个雄性不育突变体tpa1tpa1在营养生长阶段与野生型无差异, 生殖生长阶段表现雄配子不育, 雌配子发育正常。表型观察发现, tpa1花粉完全破碎消失, 花药外壁角质层异常, 花药内壁乌式体排列异常, 胼胝质合成异常, 绒毡层凋亡异常, 且花粉外壁缺失柱状层。遗传分析表明该突变性状受1对隐性核基因控制, 利用突变体tpa1与缙恢10号构建遗传群体, 最终将TPA1基因定位于4号染色体引物标记N9和N11之间, 物理距离为74 kb, 该区间共15个预测基因, 通过重测序仅发现在LOC_Os04g53380的外显子上发生了单碱基替换, 导致了翻译的提前终止, 随后对野生型和突变体tpa1该位点进行测序证实了这一突变, 因此将该基因确定为TPA1的候选基因, TPA1是一个未被报道过的新的雄性不育基因。本研究将为TPA1基因的功能研究奠定基础。

关键词: 水稻(Oryza sativa L.), 雄性隐性核不育, tpa1, 精细定位

Abstract:

Male sterile material is the key to hybrid rice breeding. In this study, a male sterile mutant tpa1 was screened by ethyl methane sulfonate (EMS) mutagenesis of excellent indica cultivar Xinong 1B. There was no difference between tpa1 and wild type at vegetative growth stage. At reproductive stage, male gametes were sterile and female gametes developed normally. Phenotypic observation showed that the pollen of tpa1 was completely broken and disappeared, the stratum corneum of the outer wall of the anther was abnormal, the Ubisch body of the inner wall of the anther was abnormal, the callose synthesis was abnormal, the tapetum apoptosis was abnormal, and the outer wall of the pollen was missing bacula layer. Genetic analysis showed that the mutant trait was controlled by a pair of recessive nuclear genes. A genetic population was constructed using the tpa1 mutant and Jinhui 10. Finally, TPA1 gene was located between the markers N9 and N11 on chromosome 4, with a physical distance of 74 kb. There were 15 predicted genes in this interval. Resequencing identified that only a single base substitution occurred in the exon of LOC_Os04g53380, leading to an early termination of translation. Subsequent sequencing of the wild-type and mutant tpa1 confirmed this mutation, thus identified the gene as a candidate gene for TPA1, indicating that TPA1 was a new male sterile gene. This study will lay a foundation for the functional study of TPA1 gene.

Key words: rice (Oryza sativa L.), male recessive nuclear infertility, tpa1, fine mapping

表1

本研究使用的部分引物"

用途
Usage
引物名称
Primer name
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5′-3′)
Fine mapping R1 ATCCATCCTTCAGGCTTCG CCTGTGGTGTCCTAAATCCC
R2 TGCCATCATACAAGCGATTTT ATCAGCGTTAGGGTTCGGT
R3 AGGCTGGGAGATCAATGTCTT CATGCTCAAAAACTGAGCTACTG
R4 CACCGATCCTCCCACAAGT CTCTTTGAATCTGTTGTTATGCC
R5 GGGATGCAGTGTGAACTTATTC CTTTTGTGAAAAAATGGGAGG
R6 CGTTACCAGGTTGCTCTTGG CATAGCGCTTGGCCTGTTAC
R7 CTCTCTTCCACGTATGCTTATAGC CATAGTTGCATCCAACGAGC
R8 GAGATTATCCTGCGGTCTTAATC TTGATGATACGATGACCAAGTTC
R9 CACCGATCCTCCCACAAGT CTCTTTGAATCTGTTGTTATGCC
R10 GCAATCTTGTGACCTAATCTTAGTAC GACCATCTAATCAGTACTTCCTCC
N8 TCAGATCCGACCTTTGCGAC CTTTCCTCCTTCCTACCGTA
N9 TAGGTTTAAAATATTCATCT TGATTGCGTGCTGCCGTGCT
N10 AAGGTTGTCCCCTGGTAAAC TGAAGACAGCATCCGTTGGA
N11 GTACTACGGCGGCTAAACGC ACTTCTGGGTTTTTGACTCG
TPA1-check CAATTCTAGGTCTAACATGCGC ATTGCCATTGGGCTCTGGGA
RT-qPCR Actin GACCCAGATCATGTTTGAGACCT CAGTGTGGCTGACACCATCAC
TPA1 CATATCCCTAGCAGCGGACA GCTCGAGTGCACATATTGGG
TDR TGGAGGTGGCACCAGTTTGGATGCT CTGTGCTTCAAGCTCACTGCTGCA
EAT1 CAGAGGAGGTCAAAGGAATG TCCAATCCTGGTCAAATAAG
OsAP37 CGACGCGAACAGGTACGGAAT GCGGCAGCCGGATCTCCA
OsAP25 AGGACGCCATCCCGAACTA AGCGAGCCGGAGAAGTAGTA
OsCYP703B2 TGTTGTCCTCTCATGGATCTTGG GGTAATTGGTGAAGTTGGTCTTCA
PTC2 TTCCATTGGAGGACATGATGAT AACAAATTAAGTAGCAGCAGCATA
TIP2 AAGGAGGATAGAGCGACGGT GATGTTCACGTCGTCCTCCA
WDA1 CCTACTATACCTCGGCGCAC ATGTGATGGGCTCAGTGACG

图1

野生型西农1B与突变体tpa1育性观察与扫描电镜观察 A, B: 野生型和突变体tpa1植株; C, D: 野生型和突变体tpa1小穗; E: 野生型花粉碘染; F: 野生型去壳后小花; G: 突变体tpa1去壳后小花; H: 突变体tpa1花粉碘染; I~P: 扫描电镜观察; I, J: 野生型和突变体tpa1花药; K: 野生型花药外壁; L: 野生型花药内壁; M: 野生型花药剥开露出花粉; N: 突变体tpa1花药外壁; O: 突变体tpa1花药内壁; P: 突变体tpa1花药剥开露出花粉。标尺: 10 cm (A, B); 1 mm (C, F); 0.5 mm (D, G); 0.1 mm (E, H); 100 μm (I, J); 10 μm (K~P)。"

图2

野生型与突变体tpa1半薄切片与透射电镜观察 A~E: 野生型st8b~st12期花药半薄切片横切; F~J: 突变体tpa1 st8a~st12期花药半薄切片横切; K~M: 野生型st10期花药超薄切片透射电镜观察; N~P: 突变体tpa1 st10期花药超薄切片透射电镜观察。Ba: 柱状层; BP: 双核花粉; dMsp: 异常小孢子母细胞; Dy: 二分体细胞; E: 表皮; En: 内皮; ML: 中间层; MP: 成熟花粉; Msp: 小孢子母细胞; N: 细胞核; Ne: 外壁内层; Nm: 核膜; T: 绒毡层; Tds: 四分体; Ub: 乌式体。标尺: 200 μm (A~J); 2 μm (K, N); 1 μm (L, O); 0.5 μm (M, P)。"

图3

野生型与突变体tpa1胼胝质染色 A~D: 野生型st7~st9期胼胝质染色; E~H: tpa1突变体st7~st9期胼胝质染色。标尺: 200 μm (A~H)。"

表2

突变体tpa1的遗传分析"

群体
Population
总株数
Total plant number
可育植株
Fertile plants
不育植株
Sterile plans
期望分离比
Segregation ratio
P
P-value
χ2 3:1
(JH10×tpa1) F2 1624 1202 422 3∶1 0.52 0.41

表3

精细定位区间预测基因"

序号
Serial number
基因编号
Gene number
基因功能注释
Gene function annotation
Gene1 LOC_Os04g53310 OsSSIIIb Soluble starch synthase III
Gene2 LOC_Os04g53320 The expressed protein
Gene3 LOC_Os04g53330 RNA recognition motif containing protein
Gene4 LOC_Os04g53340 The expressed protein
Gene5 LOC_Os04g53350 The expressed protein
Gene6 LOC_Os04g53360 The expressed protein
Gene7 LOC_Os04g53370 The acyltransferase
Gene8 LOC_Os04g53380 The expressed protein
Gene9 LOC_Os04g53390 MBTB2-Bric-a-Brac, Tramtrack, Broad Complex BTB domain with Meprin and TRAF Homology MATH-related domain
Gene10 LOC_Os04g53400 MBTB6-Bric-a-Brac, Tramtrack, Broad Complex BTB domain with Meprin and TRAF Homology MATH domain
Gene11 LOC_Os04g53410 MBTB7-Bric-a-Brac, Tramtrack, Broad Complex BTB domain with Meprin and TRAF Homology MATH domain
Gene12 LOC_Os04g53420 The expressed protein
Gene13 LOC_Os04g53430 MBTB8-Bric-a-Brac, Tramtrack, Broad Complex BTB domain with Meprin and TRAF Homology MATH domain
Gene14 LOC_Os04g53440 RNA recognition motif containing protein
Gene15 LOC_Os04g53450 The expressed protein

图4

TPA1基因的精细定位 A: tpa1初步定位与精细定位; B: 野生型与突变体tpa1重测序结果分析; C: 野生型与突变体tpa1突变位点测序结果。"

图5

RT-qPCR分析 A: TPA1在野生型水稻抽穗期各部位以及第6~12期的小穗中的表达水平; B: 绒毡层发育相关基因在野生型与突变体tpa1第6~9期的表达水平。"

[1] Hochholdinger F, Baldauf J A. Heterosis in plants. Curr Biol, 2018, 28: R1089-R1092.
doi: 10.1016/j.cub.2018.06.041
[2] Bhatt A M, Canales C, Dickinson H G. Plant meiosis: the means to 1N. Trends Plant Sci, 2001, 6(3): 114-121.
doi: 10.1016/s1360-1385(00)01861-6 pmid: 11239610
[3] 胡骏, 黄文超, 朱仁山, 李绍清, 朱英国. 水稻雄性不育与杂种优势的利用. 武汉大学学报(理学版), 2013, 59(1): 1-9.
Hu J, Huang W C, Zhu R S, Li S Q, Zhu Y G. Male sterility and utilization of heterosis in rice. J Wuhan Univ (Sci Edn), 2013, 59(1): 1-9 (in Chinese with English abstract).
[4] Abbas A, Yu P, Sun L, Yang Z, Chen D, Cheng S, Cao L. Exploiting genic male sterility in rice: from molecular dissection to breeding applications. Front Plant Sci, 2021, 12: 629314.
doi: 10.3389/fpls.2021.629314
[5] Zhu Q H, Ramm K, Shivakkumar R, Dennis E S, Upadhyaya N M. The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice. Plant Physiol, 2004, 135: 1514-1525.
doi: 10.1104/pp.104.041459
[6] Tariq N, Yaseen M, Xu D, Rehman H M, Bibi M, Uzair M. Rice anther tapetum: a vital reproductive cell layer for sporopollenin biosynthesis and pollen exine patterning. Plant Biol, 2022, 25: 233-245.
doi: 10.1111/plb.v25.2
[7] 张秋云, 沈亚琦, 蒋文翔, 刘家林, 王联红, 贺浩华, 胡丽芳. 水稻绒毡层发育相关转录因子研究进展. 湖北农业科学, 2021, 60(19): 5-10.
Zhang Q Y, Shen Y Q, Jiang W X, Liu J L, Wang L H, He H H, Hu L F. Research progress on transcription factors related to rice tapetum development. Hubei Agric Sci, 2021, 60(19): 5-10 (in Chinese with English abstract).
[8] Hu L, Liang W, Yin C, Cui X, Zong J, Wang X, Hu J, Zhang D. Rice MADS3 regulates ROS homeostasis during late anther development. Plant Cell, 2011, 23: 515-533.
doi: 10.1105/tpc.110.074369
[9] Cui R, Han J, Zhao S, Su K, Wu F, Du X, Xu Q, Chong K, Theissen G, Meng Z. Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Plant J, 2010, 61: 767-781.
doi: 10.1111/tpj.2010.61.issue-5
[10] Jiang D, Li J, Wu, P, Liu Z L, Zhuang C X. Isolation and characterization of a microsporocyte-specific gene, OsMSP, in rice. Plant Mol Biol Rep, 2009, 27: 469-475.
doi: 10.1007/s11105-009-0109-0
[11] Jung K H, Han M J, Lee Y S, Kim Y W, Hwang I, Kim M J, Kim Y K, Nahm B H, An G. Rice undeveloped tapetum1 is a major regulator of early tapetum development. Plant Cell, 2005, 17: 2705-2722.
doi: 10.1105/tpc.105.034090 pmid: 16141453
[12] Li N, Zhang D S, Liu H S, Yin C S, Li X X, Liang W Q, Yuan Z, Xu B, Chu H W, Wang J, Wen T Q, Huang H, Luo D, Ma H, Zhang D B. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell, 2006, 18: 2999-3014.
doi: 10.1105/tpc.106.044107 pmid: 17138695
[13] Li H, Yuan Z, Vizcay-Barrena G, Yang C, Liang W, Zong J, Wilson Z A, Zhang D. PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiol, 2011, 156: 615-630.
doi: 10.1104/pp.111.175760 pmid: 21515697
[14] Niu N, Liang W, Yang X, Jin W, Wilson Z A, Hu J, Zhang D. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Commun, 2013, 4: 1445.
doi: 10.1038/ncomms2396 pmid: 23385589
[15] Liu Z, Bao W, Liang W, Yin J, Zhang D. Identification of gamyb-4 and analysis of the regulatory role of GAMYB in rice anther development. J Integr Plant Biol, 2010, 52: 670-678.
doi: 10.1111/jipb.2010.52.issue-7
[16] Wang N, Deng Y, Zhang L S, Wan Y C, Lei T, Yang Y M, Wu C, Du H, Feng P, Yin W Z, He G H. UDP-glucose epimerase 1, moonlighting as a transcriptional activator, is essential for tapetum degradation and male fertility in rice. Mol Plant, 2023, 16: 829-848.
doi: 10.1016/j.molp.2023.03.008
[17] Marchant D B, Walbot V. Anther development: the long road to making pollen. Plant Cell, 2022, 34: 4677-4695.
doi: 10.1093/plcell/koac287
[18] Ma X, Wu Y, Zhang G. Formation pattern and regulatory mechanisms of pollen wall in Arabidopsis. J Plant Physiol, 2021, 260: 153388.
doi: 10.1016/j.jplph.2021.153388
[19] Li N, Zhang D S, Liu H S, Yin C S, Li X X, Liang W Q, Yuan Z, Xu B, Chu H W, Wang J, Wen T Q, Huang H, Luo D, Ma H, Zhang D B. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell, 2006, 18: 2999-3014.
doi: 10.1105/tpc.106.044107 pmid: 17138695
[20] Shi J, Tan H, Yu X H, Liu Y, Liang W, Ranathunge K, Franke R B, Schreiber L, Wang Y, Kai G, Shanklin J, Ma H, Zhang D. Defective pollen wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. Plant Cell, 2011, 23: 2225-2246.
doi: 10.1105/tpc.111.087528
[21] Xu D, Shi J, Rautengarten C, Yang L, Qian X, Uzair M, Zhu L, Luo Q, An G, Waßmann F, Schreiber L, Heazlewood J L, Scheller H V, Hu J, Zhang D, Liang W. Defective pollen wall 2 (DPW2) encodes an acyl transferase required for rice pollen development. Plant Physiol, 2017, 173: 240-255.
doi: 10.1104/pp.16.00095 pmid: 27246096
[22] Mondol P C, Xu D, Duan L, Shi J, Wang C, Chen X, Chen M, Hu J, Liang W, Zhang D. Defective Pollen Wall 3 (DPW3), a novel alpha integrin-like protein, is required for pollen wall formation in rice. New Phytol, 2020, 225: 807-822.
doi: 10.1111/nph.16161 pmid: 31486533
[23] Zhang D, Luo X, Zhu L. Cytological analysis and genetic control of rice anther development. J Genet Genomics, 2011, 38: 379-390.
doi: 10.1016/j.jgg.2011.08.001 pmid: 21930097
[24] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8: 4321-4325.
doi: 10.1093/nar/8.19.4321 pmid: 7433111
[25] Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Genet Genomics, 1996, 252: 597-607.
[26] Shi X, Sun X, Zhang Z, Feng D, Zhang Q, Han L, Wu J, Lu T. GLUCAN SYNTHASE-LIKE 5 (GSL5) plays an essential role in male fertility by regulating callose metabolism during microsporogenesis in rice. Plant Cell Physiol, 2015, 56: 497-509.
doi: 10.1093/pcp/pcu193 pmid: 25520407
[27] Wei S, Ma L. Comprehensive insight into tapetum-mediated pollen development in Arabidopsis thaliana. Cells, 2023, 12: 247.
doi: 10.3390/cells12020247
[28] Li H, Zhang D. Biosynthesis of anther cuticle and pollen exine in rice. Plant Signal Behav, 2010, 5: 1121-1123.
doi: 10.4161/psb.5.9.12562 pmid: 20930527
[29] Marchant D B, Walbot V. Anther development: the long road to making pollen. Plant Cell, 2022, 34: 4677-4695.
doi: 10.1093/plcell/koac287
[30] Rosado I V, de la Cruz J. Npa1p is an essential trans-acting factor required for an early step in the assembly of 60S ribosomal subunits in Saccharomyces cerevisiae. RNA, 2004, 10: 1073-1083.
pmid: 15208443
[31] He J, Yang Y, Zhang J, Chen J, Wei X, He J, Luo L. Ribosome biogenesis protein Urb1 acts downstream of mTOR complex 1 to modulate digestive organ development in zebrafish. J Genet Genomics, 2017, 44: 567-576.
doi: S1673-8527(17)30198-4 pmid: 29246861
[32] Wang H, Wang K, Du Q, Wang Y, Fu Z, Guo Z, Kang D, Li W X, Tang J. Maize Urb2 protein is required for kernel development and vegetative growth by affecting pre-ribosomal RNA processing. New Phytol, 2018, 218: 1233-1246.
doi: 10.1111/nph.15057 pmid: 29479724
[33] Shan L, Xu G, Yao R W, Luan P F, Huang Y, Zhang P H, Pan Y H, Zhang L, Gao X, Li Y, Cao S M, Gao S X, Yang Z H, Li S, Yang LZ, Wang Y, Wong C C L, Yu L, Li J, Yang L, Chen L L. Nucleolar URB1 ensures 3' ETS rRNA removal to prevent exosome surveillance. Nature, 2023, 615: 526-534.
doi: 10.1038/s41586-023-05767-5
[34] Zhou K, Zhang C, Xia J, Yun P, Wang Y, Ma T, Li Z. Albino seedling lethality 4; chloroplast 30S ribosomal protein S1 is required for chloroplast ribosome biogenesis and early chloroplast development in rice. Rice, 2021, 14: 47.
doi: 10.1186/s12284-021-00491-y pmid: 34046768
[35] Yan H, Chen D, Wang Y, Sun Y, Zhao J, Sun M, Peng X. Ribosomal protein L18aB is required for both male gametophyte function and embryo development in Arabidopsis. Sci Rep, 2016, 6: 31195.
doi: 10.1038/srep31195
[36] Uzair M, Long H, Zafar S A, Patil S B, Chun Y, Li L, Fang J, Zhao J, Peng L, Yuan S, Li X. Narrow Leaf21, encoding ribosomal protein RPS3A, controls leaf development in rice. Plant Physiol, 2021, 186: 497-518.
doi: 10.1093/plphys/kiab075 pmid: 33591317
[37] Li K, Wang P, Ding T, Hou L, Li G, Zhao C, Zhao S, Wang X, Li P. Mutation of an essential 60S ribosome assembly factor MIDASIN 1 induces early flowering in Arabidopsis. Int J Mol Sci, 2022, 23: 6509.
doi: 10.3390/ijms23126509
[38] Uzair M, Xu D, Schreiber L, Shi J, Liang W, Jung K H, Chen M, Luo Z, Zhang Y, Yu J, Zhang D. PERSISTENT TAPETAL CELL2 is required for normal tapetal programmed cell death and pollen wall patterning. Plant Physiol, 2020, 182: 962-976.
doi: 10.1104/pp.19.00688 pmid: 31772077
[1] 丁杰荣, 马雅美, 潘发枝, 江立群, 黄文洁, 孙炳蕊, 张静, 吕树伟, 毛兴学, 于航, 李晨, 刘清. 泛素受体蛋白OsDSK2b负向调控水稻叶瘟和渗透胁迫抗性[J]. 作物学报, 2023, 49(6): 1466-1479.
[2] 杨晔, 孙琦, 邢欣欣, 张海涛, 赵志超, 程治军. 包穗突变体sui1-5鉴定及OsPSS1互作蛋白筛选[J]. 作物学报, 2023, 49(3): 597-607.
[3] 周文期, 强晓霞, 李思雨, 王森, 卫万荣. 水稻卷叶等位突变体e202的鉴定和基因精细定位[J]. 作物学报, 2023, 49(11): 3029-3041.
[4] 委刚, 陈单阳, 任德勇, 杨宏霞, 伍靖雯, 冯萍, 王楠. 水稻细长秆突变体sr10的鉴定与基因定位[J]. 作物学报, 2022, 48(8): 2125-2133.
[5] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[6] 田彪, 丁仕林, 刘朝雷, 阮班普, 姜洪真, 郭锐, 董国军, 胡光莲, 郭龙彪, 钱前, 高振宇. 水稻苗期根部性状的遗传分析和最长根长QTL qLRL4的精细定位[J]. 作物学报, 2021, 47(10): 1863-1873.
[7] 周练, 刘朝显, 陈秋栏, 王文琴, 姚顺, 赵子堃, 朱思颖, 洪祥德, 熊雨涵, 蔡一林. 玉米籽粒缺陷突变基因dek54的精细定位及候选基因分析[J]. 作物学报, 2021, 47(10): 1903-1912.
[8] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
[9] 任蒙蒙, 张红伟, 王建华, 王国英, 郑军. 玉米耐深播主效QTL qMES20-10的精细定位及差异表达基因分析[J]. 作物学报, 2020, 46(7): 1016-1024.
[10] 秦利萍,董二飞,白洋,周练,任岚扬,张任凤,刘朝显,蔡一林. 玉米tasselseed突变体ts12的遗传分析与分子鉴定[J]. 作物学报, 2020, 46(5): 690-699.
[11] 宋欣冉, 胡书婷, 张凯, 崔则瑾, 李建生, 杨小红, 白光红. 玉米籽粒突变体dek101的表型分析和精细定位[J]. 作物学报, 2020, 46(12): 1831-1838.
[12] 孙琦, 赵志超, 张瑾晖, 张锋, 程治军, 邹德堂. 水稻包穗突变体sui2的遗传分析和基因精细定位[J]. 作物学报, 2020, 46(11): 1734-1742.
[13] 谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报, 2020, 46(02): 204-213.
[14] 金迪,王冬至,王焕雪,李润枝,陈树林,阳文龙,张爱民,刘冬成,詹克慧. 小麦芒长抑制基因B2的精细定位与候选基因分析[J]. 作物学报, 2019, 45(6): 807-817.
[15] 尚丽娜,陈新龙,米胜南,委刚,王玲,张雅怡,雷霆,林永鑫,黄兰杰,朱美丹,王楠. 水稻温敏型叶片白化转绿突变体tsa2的表型鉴定与基因定位[J]. 作物学报, 2019, 45(5): 662-675.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .