欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (02): 204-213.doi: 10.3724/SP.J.1006.2020.92020

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻半外卷叶突变体sol1的表型分析与基因定位

谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华()   

  1. 西南大学水稻研究所 / 转基因植物与安全控制重庆市重点实验室, 重庆 400715
  • 收稿日期:2019-04-09 接受日期:2019-08-09 出版日期:2020-02-12 网络出版日期:2019-09-03
  • 通讯作者: 凌英华
  • 作者简介:谢园华, E-mail: 402307420@qq.com|李凤菲, E-mail: 1071655475@qq.com
  • 基金资助:
    本研究由国家重点研发计划项目(2017YFD0100201);重庆市社会事业与民生保障科技创新专项项目(cstc2016shms-ztcx80012);中央高校基本科研业务费专项资助(XDJK2016A013)

Phenotype characterization and gene mapping of the semi-outcurved leaf mutant sol1 in rice (Oryza sativa L.)

XIE Yuan-Hua,LI Feng-Fei,MA Xiao-Hui,TAN Jia,XIA Sai-Sai,SANG Xian-Chun,YANG Zheng-Lin,LING Ying-Hua()   

  1. Rice Research Institute of Southwest University / Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Chongqing 400715, China
  • Received:2019-04-09 Accepted:2019-08-09 Published:2020-02-12 Published online:2019-09-03
  • Contact: Ying-Hua LING
  • Supported by:
    This study was supported by the National Key R&D Program of China(2017YFD0100201);the Special Project on Science and Technology Innovation for Social Undertakings and Livelihood Security in Chongqing(cstc2016shms-ztcx80012);the Fundamental Research Funds for the Central Universities(XDJK2016A013)

摘要:

适度卷曲有利于提高水稻叶片的光合效率, 增加植株光合产物的有效积累量。我们利用甲基磺酸乙酯(EMS)处理籼型水稻保持系西农1B, 获得一个稳定遗传的水稻半外卷叶突变体。该突变体从十叶期开始各叶片逐渐向外卷曲直至半卷状, 并伴随茎秆半矮化和叶片披垂, 暂被命名为semi-outcurved leaf 1 (sol1)。与野生型(WT)相比, sol1的叶片卷曲指数均达到30%以上(P<0.01); 倒一、倒二、倒三、倒四节节间长度和穗长极显著缩短, 倒一、倒二、倒三叶的叶夹角显著或极显著增加; 有效穗数、千粒重、每穗实粒数、结实率显著或极显著下降, 一次枝梗数则增加11.3% (P<0.05)。sol1的蒸腾速率、胞间CO2浓度、气孔导度显著高于野生型。石蜡切片显示, sol1倒一叶的泡状细胞体积变小, 数量显著增多, 表皮细胞体积略微增大。遗传分析表明, sol1的半外卷叶性状受1对隐性核基因调控, 定位于6号染色体标记JY6-3和JY6-10之间165 kb的物理范围内, 共含15个注释基因。qRT-PCR结果表明, 与泡状细胞相关的内卷基因和外卷叶基因RL14、Roc5、REL1在突变体sol1中呈不同程度的上调, NRLBRD1OsHox32ADL1LC2则呈不同程度的下调。研究结果为SOL1基因的克隆和功能研究奠定了基础。

关键词: 水稻(Oryza sativa L.), 半外卷突变体sol1, 表型鉴定, 基因定位, 泡状细胞

Abstract:

Moderate curling of leaves helps to improve the photosynthetic efficiency, and increase the overall effective accumulation of photosynthate. We identified a stable mutant from the library constructed by treating indica maintainer line Xinong 1B with ethyl methane sulfonate (EMS). Leaves of the mutant gradually curled outwards into a semi-coiled shape, accompanied by semi-dwarfing of the culm and leaf drooping from the 10-leaf stage, the mutant was temporarily named as semi-outcurved leaf 1 (sol1). The calculated leaf curl index of sol1 was 30%, statistically higher than that of wild type (WT, P < 0.01). Panicle length and internode length of Top 1 (the 1st leaf from top), Top 2 (the 2nd leaf from top), Top 3 (the 3rd leaf from top), and Top 4 (the 4th leaf from top) were very significantly decreased. The leaf angles of Top 1, Top 2, and Top 3 were significantly or very significantly increased. The number of effective panicles, 1000-grain weight, filled grain number per panicle, and seed setting rate of the mutant sol1 were significantly or very significantly decreased, while primary branch number increased by 11.3%, statistically higher than that of WT (P < 0.05). The transpiration rate, intercellular CO2 concentration and stomatal conductance of sol1 were significantly higher than those of wild type. The results of paraffin section showed that the bulliform cells of the Top1 of sol1 exhibited smaller, but their number increased significantly, and the volume of epidermal cells increased slightly. Genetic analysis indicated that sol1 was controlled by a recessive nuclear gene. SOL1 was precisely located in the physical distance of 165 kb between the markers of JY6-3 and JY6-10 on the short arm of chromosome 6, with 15 annotated genes. The results of qRT-PCR showed that RL14, Roc5, and REL1 related to bulliform cells were up- regulated in mutant sol1, while NRL, BRD1, OsHox32, ADL1, LC2 down-regulated. The results of the present study provide a basis for SOL1 cloning, and functional dissection as well.

Key words: rice (Oryza sativa L.), semi-outcurved leaf mutant sol1, phenotype characterization, gene mapping, bulliform cell

图1

野生型(WT)与突变体sol1的表型鉴定 A、B、C、D: 分别代表WT与sol1的五至六叶期、分蘖期、成熟期表型; E、F: 分别为WT与sol1未完全抽出时的叶基部; G: WT与sol1倒一叶近轴面基部; H: WT与sol1倒一叶远轴面叶尖; I: WT与sol1拔节期叶片卷曲指数; J: WT与sol1穗长及各节间长; K: 成熟期WT与sol1的各节间比较; L: WT与sol1拔节期叶夹角。图A、B、C、D、J中, Bar = 10 cm; 图E、F、G、H中, Bar = 2 cm。Top 1: 叶片顶端往下第一片叶; Top 2: 叶片顶端往下第二片叶; Top 3: 叶片顶端往下第三片叶。*: 在0.01 ≤ P < 0.05区间差异显著, **: P < 0.01差异极显著。"

图2

野生型(WT)与突变体sol1的农艺性状 A、B: 孕穗期倒一、倒二、倒三叶叶长及叶宽(cm); C: 有效穗数; D: 一次枝梗; E: 二次枝梗; F: 千粒重(g); G: 每穗实粒数; H: 结实率(%)。倒一叶: 叶片顶端往下第一片叶; 倒二叶: 叶片顶端往下第二片叶; 倒三叶: 叶片顶端往下第三片叶。*: 在0.01 ≤ P < 0.05区间差异显著, **: P<0.01差异极显著。"

图3

乳熟期野生型(WT)与突变体sol1叶片光合效率分析 A: 倒一、倒二、倒三叶净光合速率(Pn); B: 倒一、倒二、倒三叶蒸腾速率(Tr); C: 倒一、倒二、倒三叶胞间CO2浓度(Ci); D: 倒一、倒二、倒三叶叶尖、叶基气孔导度(Gs)。Top 1: 叶片顶端往下第一片叶; Top 2: 叶片顶端往下第二片叶; Top 3: 叶片顶端往下第三片叶。*: 在P < 0.05水平上差异显著, **: 在P < 0.01水平上差异显著。"

图4

叶片横切面石蜡切片分析 A、B: 分别为抽穗期WT和sol1倒一叶横切图, Bar = 1 mm; C、D: 分别为A、B图中红色线框的放大图; E、F: 分别为A、B图中黄色线框的放大图, Bar = 0.1 mm; G: 两小维管束之间的泡状细胞数量; H: 两小维管束之间的泡状细胞面积。BC: 泡状细胞, *: 在0.01 ≤ P < 0.05区间差异显著。"

图5

SOL1候选基因定位"

表1

第6号染色体上新开发的连锁标记引物"

引物名称
Primer
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
RM204 CTAGCTAGCCATGCTCTCGTACC CTGTGACTGACTTGGTCATAGGG
ZTQ54 AAATAGATAGTAACGGCTCTAACATG CTTGCACAACTGCTGTTCATG
ZZC6-6 TCCATTGCTCCCAAACACTC CGTGGAACCAAATACAGCCT
JY6-7 GTGAGTGCTAAGGATGATGTGTTG TGCAGGAAGGCATTGTATCC
JY6-4 GCAGCAAAGATCCATACGAGGT AATCTTGGCGGCTCGTGTAG
JY6-3 CGAACACATGCCACACACACA GGGCTAGACAAACAATAATGTGC
JY6-10 TGGCAGCGGTGGTGGTATAT CAATGAGAAGTTGGTGGTGTTCT

表2

定位区间内的候选基因注解"

基因命名
Gene nomenclature
基因注释
Gene annotation
LOC_Os06g10540 表达蛋白 Expressed protein
LOC_Os06g10550 反转录转座子 Retrotransposon protein, putative, unclassified, expressed
LOC_Os06g10560 叶片衰老相关蛋白 Leaf senescence related protein, putative, expressed
LOC_Os06g10570 表达蛋白 Expressed protein
LOC_Os06g10580 环核苷酸门控离子通道 Cyclic nucleotide-gated ion channel, putative, expressed
LOC_Os06g10590 表达蛋白 Expressed protein
LOC_Os06g10600 同源异型结构域和START结构域 Homeobox and START domains containing protein, putative, expressed
LOC_Os06g10610 表达蛋白 Expressed protein
LOC_Os06g10620 转录延伸因子复合物SPT5 Transcription elongation factor SPT5 homolog, putative, expressed
LOC_Os06g10650 蛋白质酪氨酸磷酸酶家族 Tyrosine phosphatase family protein, putative, expressed
LOC_Os06g10660 锚定蛋白前体LysM Domain-containing GPI-anchored protein 1 precursor, putative, expressed LysM-GPI
LOC_Os06g10670 天冬氨酸蛋白酶的猪笼草蛋白前体 Aspartic proteinase nepenthesin-1 precursor, putative, expressed
LOC_Os06g10680 表达蛋白 Expressed protein
LOC_Os06g10710 表达蛋白 Expressed protein
LOC_Os06g10720 表达蛋白 Expressed protein

图6

叶片卷曲相关基因的qRT-PCR A: 泡状细胞发育相关的卷叶基因; B: 远轴面卷曲的相关基因。"

[1] Wang B, Smith S M, Li J . Genetic regulation of shoot architecture. Annu Rev Plant Biol, 2018,69:437-468.
doi: 10.1146/annurev-arplant-042817-040422 pmid: 29553800
[2] Zhang G H, Xu Q, Zhu X D, Qian Q, Xue H W . SHALLOT-LIKE1 is aKANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. Plant Cell, 2009,21:719-735.
doi: 10.1105/tpc.108.061457 pmid: 19304938
[3] Ma L, Sang X C, Zhang T, Yu Z Y, Li Y F, Zhao F M, Wang Z W, Wang Y T, Yu P, Wang N, Zhang C W, Ling Y H, Yang Z L, He G H . ABNORMAL VASCULAR BUNDLES regulates cell proliferation and procambium cell establishment during aerial organ development in rice. New Phytol, 2017,213:275-286.
doi: 10.1111/nph.14142 pmid: 27545518
[4] Itoh J I, Hibara K I, Sato Y, Nagato Y . Developmental role and auxin responsiveness ofClass III Homeodomain Leucine Zipper gene family members in rice. Plant Physiol, 2008,147:1960-1975.
doi: 10.1104/pp.108.118679 pmid: 18567825
[5] Izhaki A, Bowman J L . KANADI and Class III HD-Zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis. Plant Cell, 2007,19:495-508.
doi: 10.1105/tpc.106.047472 pmid: 17307928
[6] Shi Z Y, Wang J, Wan X, Shen G, Wang X, Zhang J . Over-expression of riceOsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Planta, 2007,226:99-108.
doi: 10.1007/s00425-006-0472-0
[7] Hu J, Zhu L, Zeng D L, Gao Z Y, Guo L B, Fang Y X, Zhang G H, Dong G J, Yan M X, Liu J, Qian Q . Identification and characterization ofNARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Mol Biol, 2010,73:283-292.
doi: 10.1007/s11103-010-9614-7
[8] Wu C, Fu Y, Hu G, Si H, Cheng S, Liu W . Isolation and characterization of a rice mutant with narrow and rolled leaves. Planta, 2010,232:313-324.
doi: 10.1007/s00425-010-1180-3
[9] Li Y Y, Shen A, Xiong W, Sun Q L, Luo Q, Song T, Li Z L, Luan W J . Over-expression ofOsHox32 results in pleiotropic effects on plant type architecture and leaf development in Rice. Rice, 2016,9:46.
doi: 10.1186/s12284-016-0118-1 pmid: 27624698
[10] Hibara K, Obara M, Hayashida E, Abe M, Ishimaru T, Satoh H, Itoh J, Nagato Y . TheADAXIALIZED LEAF1 gene functions in leaf and embryonic pattern formation in rice. Dev Biol, 2009,334:345-354.
doi: 10.1016/j.ydbio.2009.07.042 pmid: 19665012
[11] Xu Y, Wang Y H, Long Q Z, Huang J X, Wang Y L, Zhou K N, Zheng M, Sun J, Chen H, Chen S H, Jiang L, Wang C M, Wan J M . Overexpression ofOsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice. Planta, 2014,239:803-816.
doi: 10.1007/s00425-013-2009-7
[12] Wang L, Xu J, Nian J Q, Shen N W, Lai K K, Hu J, Zeng D L, Ge C W, Fang Y X, Zhu L, Qian Q, Zhang G H . Characterization and fine mapping of the rice geneOsARVL4 regulating leaf morphology and leaf vein development. Plant Growth Regul, 2016,78:345-356.
doi: 10.1007/s10725-015-0097-z
[13] Li C, Zou X H, Zhang C Y, Shao Q H, Liu J, Liu B, Li H Y, Zhao T . OsLBD3-7 overexpression induced adaxially rolled leaves in rice. PLoS One, 2016,11:e0156413.
doi: 10.1371/journal.pone.0156413 pmid: 27258066
[14] Yan S, Yan C J, Zeng X H, Yang Y C, Fang Y W, Tian C Y, Sun Y W, Cheng Z K, Gu M H . ROLLED LEAF 9, encoding a GARP protein, regulates the leaf abaxial cell fate in rice. Plant Mol Biol, 2008,68:239-250.
doi: 10.1007/s11103-008-9365-x
[15] Wu R, Li S, He S, Wassmann F, Yu C, Qin G, Schreiber L, Qu L J, Gu H . CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis. Plant Cell, 2011,23:3392-3411.
doi: 10.1105/tpc.111.088625
[16] 高艳红, 吕川根, 王茂青, 王彭, 闫晓燕, 谢坤, 万建民 . 水稻卷叶性状QTL的初步定位. 江苏农业学报, 2007,23:5-10.
Gao Y H, Lyu C G, Wang M Q, Wang P, Yan X Y, Xie K, Wan J M . QTL mapping for rolled leaf gene in rice. Jiangsu J Agric Sci, 2007,23:5-10 (in Chinese with English abstract).
[17] Sang X C, Li Y F, Luo Z K, Wang N, Ling Y H, Zhao F M, Yang Z L, Luo H F, Liu Y S, He G H . CHIMERIC FLORAL ORGANS 1, encoding a monocot-specific MADS box protein, regulates floral organ identity in rice. Plant Physiol, 2012,160:788-807.
doi: 10.1104/pp.112.200980 pmid: 22891238
[18] Michelmore R W, Paran I, Kesseli R V . Identification of markers linked to disease-resistance genes by bulked segregantion analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991,88:9828-9832.
doi: 10.1073/pnas.88.21.9828 pmid: 1682921
[19] Mori M, Nomura T, Ooka H, Ishizaka M, Yokota T, Sugimoto K, Okabe K, Kajiwara H, Satoh K, Yamamoto K, Hirochika H, Kikuchi S . Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiol, 2002,130:1152-1161.
doi: 10.1104/pp.007179 pmid: 12427982
[20] Martin C, Glover B J . Functional aspects of cell patterning in aerial epidermis. Curr Opin Plant Biol, 2007,10:70-82.
doi: 10.1016/j.pbi.2006.11.004 pmid: 17140837
[21] 徐静, 王莉, 钱前, 张光恒 . 水稻叶片形态建成分子调控机制研究进展. 作物学报, 2013,39:767-774.
doi: 10.3724/SP.J.1006.2013.00767
Xu J, Wang L, Qian Q, Zhang G H . Research advance in molecule regulation mechanism of leaf morphogenesis in rice (Oryza sativa L.). Acta Agron Sin, 2013,39:767-774 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2013.00767
[22] Figueiredo D D, Barros P M, Cordeiro A M, Serra T S, Lourenço T, Chander S, Oliveira M M, Saibo N J M . Seven zinc-finger transcription factors are novel regulators of the stress responsive gene OsDREB1B. J Exp Bot, 2012,63:3643-3656.
doi: 10.1093/jxb/ers035
[23] Li L, Shi Z Y, Li L, Shen G Z, Wang X Q, An L S, Zhang J L . Overexpression of ACL1 (abaxially curled leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice. Mol Plant, 2010,3:807-817.
doi: 10.1093/mp/ssq022 pmid: 20494951
[24] Zou L P, Sun X H, Zhang Z G, Liu P, Wu J X, Tian C J, Qiu J L, Lu T G . Leaf rolling controlled by the homeodomain leucine zipper class IV geneRoc5 in rice. Plant Physiol, 2011,156:1589-1602.
doi: 10.1104/pp.111.176016
[25] Fang L, Zhao F, Cong Y, Sang X, Du Q, Wang D, Li Y, Ling Y, Yang Z, He G . ROLLING-LEAF14 is a 2OG-Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves. Plant Biotechnol J, 2012,10:524-532.
doi: 10.1111/j.1467-7652.2012.00679.x
[26] Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, Inukai Y, Fujioka S, Shimada Y, Takatsuto S, Agetsuma M, Yoshida S, Watanabe Y, Uozu S, Kitano H, Ashikari M, Matsuoka M . Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J, 2002,32:495-508.
doi: 10.1046/j.1365-313x.2002.01438.x pmid: 12445121
[27] Chen Q L, Xie Q J, Gao J, Wang W Y, Sun B, Liu B H, Zhu H T, Peng H F, Zhao H B, Liu C H, Wang J, Zhang J L, Zhang G Q, Zhang Z M . Characterization ofRolled and Erect Leaf 1 in regulating leave morphology in rice. J Exp Bot, 2015,66:6047-6058.
doi: 10.1093/jxb/erv319 pmid: 26142419
[28] Xiang J J, Zhang G H, Qian Q, Xue H W . SEMI-ROLLED LEAF1 encodes a putative glycosyl phosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells. Plant Physiol, 2012,159:1488-1500.
doi: 10.1104/pp.112.199968
[29] 夏令, 陈亮, 郭迟鸣, 张红心, 赵政, 沈明山, 陈亮 . 一个新的水稻矮秆突变体sd-sl的遗传与基因定位研究. 厦门大学学报(自然科学版), 2007,46:847-851.
Xia L, Chen L, Guo C M, Zhang H X, Zhao Z, Shen M S, Chen L . Heredity and gene mapping of a new dwarf mutant sd-sl in rice. J Xiamen Univ, 2007,46:847-851 (in Chinese with English abstract).
[30] 田晓庆, 桑贤春, 赵芳明, 李云峰, 凌英华, 杨正林, 何光华 . 水稻卷叶基RL13的遗传分析和分子定位. 作物学报, 2012,38:423-428.
doi: 10.3724/SP.J.1006.2012.00423
Tian X Q, Sang X C, Zhao F M, Li Y F, Ling Y H, Yang Z L, He G H . Genetic analysis and molecular mapping of a rolled leaf gene RL13 in rice(Oryza sativa L.). Acta Agron Sin, 2012,38:423-428 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.00423
[1] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[2] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[3] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[4] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[5] 黄妍, 贺焕焕, 谢之耀, 李丹莹, 赵超越, 吴鑫, 黄福灯, 程方民, 潘刚. 水稻矮化宽叶突变体osdwl1的生理特性和基因定位[J]. 作物学报, 2021, 47(1): 50-60.
[6] 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79.
[7] 石慧敏, 蒋成功, 王红武, 马庆, 李坤, 刘志芳, 吴宇锦, 李树强, 胡小娇, 黄长玲. 玉米籽粒突变体dek48的表型鉴定与基因定位[J]. 作物学报, 2020, 46(9): 1359-1367.
[8] 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996.
[9] 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227.
[10] 莫祎,孙志忠,丁佳,余东,孙学武,盛夏冰,谭炎宁,袁贵龙,袁定阳,段美娟. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位[J]. 作物学报, 2019, 45(7): 1050-1058.
[11] 王瑞,陈阳松,孙明昊,张秀艳,杜依聪,郑军. 玉米穗发芽突变体vp-like8的遗传分析及突变基因鉴定[J]. 作物学报, 2019, 45(5): 656-661.
[12] 尚丽娜,陈新龙,米胜南,委刚,王玲,张雅怡,雷霆,林永鑫,黄兰杰,朱美丹,王楠. 水稻温敏型叶片白化转绿突变体tsa2的表型鉴定与基因定位[J]. 作物学报, 2019, 45(5): 662-675.
[13] 张莉莎,米胜南,王玲,委刚,郑尧杰,周恺,尚丽娜,朱美丹,王楠. 水稻短根白化突变体sra1生理生化分析及基因定位[J]. 作物学报, 2019, 45(4): 556-567.
[14] 王晓娟,潘振远,刘敏,刘忠祥,周玉乾,何海军,邱法展. 一个新的玉米silky1基因等位突变体的遗传分析与分子鉴定[J]. 作物学报, 2019, 45(11): 1649-1655.
[15] 陈芳,乔麟轶,李锐,刘成,李欣,郭慧娟,张树伟,常利芳,李东方,阎晓涛,任永康,张晓军,畅志坚. 小麦新种质CH1357抗白粉病遗传分析及染色体定位[J]. 作物学报, 2019, 45(10): 1503-1510.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!