作物学报 ›› 2020, Vol. 46 ›› Issue (02): 204-213.doi: 10.3724/SP.J.1006.2020.92020
谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华()
XIE Yuan-Hua,LI Feng-Fei,MA Xiao-Hui,TAN Jia,XIA Sai-Sai,SANG Xian-Chun,YANG Zheng-Lin,LING Ying-Hua()
摘要:
适度卷曲有利于提高水稻叶片的光合效率, 增加植株光合产物的有效积累量。我们利用甲基磺酸乙酯(EMS)处理籼型水稻保持系西农1B, 获得一个稳定遗传的水稻半外卷叶突变体。该突变体从十叶期开始各叶片逐渐向外卷曲直至半卷状, 并伴随茎秆半矮化和叶片披垂, 暂被命名为semi-outcurved leaf 1 (sol1)。与野生型(WT)相比, sol1的叶片卷曲指数均达到30%以上(P<0.01); 倒一、倒二、倒三、倒四节节间长度和穗长极显著缩短, 倒一、倒二、倒三叶的叶夹角显著或极显著增加; 有效穗数、千粒重、每穗实粒数、结实率显著或极显著下降, 一次枝梗数则增加11.3% (P<0.05)。sol1的蒸腾速率、胞间CO2浓度、气孔导度显著高于野生型。石蜡切片显示, sol1倒一叶的泡状细胞体积变小, 数量显著增多, 表皮细胞体积略微增大。遗传分析表明, sol1的半外卷叶性状受1对隐性核基因调控, 定位于6号染色体标记JY6-3和JY6-10之间165 kb的物理范围内, 共含15个注释基因。qRT-PCR结果表明, 与泡状细胞相关的内卷基因和外卷叶基因RL14、Roc5、REL1在突变体sol1中呈不同程度的上调, NRL、BRD1、OsHox32、ADL1、LC2则呈不同程度的下调。研究结果为SOL1基因的克隆和功能研究奠定了基础。
[1] |
Wang B, Smith S M, Li J . Genetic regulation of shoot architecture. Annu Rev Plant Biol, 2018,69:437-468.
doi: 10.1146/annurev-arplant-042817-040422 pmid: 29553800 |
[2] |
Zhang G H, Xu Q, Zhu X D, Qian Q, Xue H W . SHALLOT-LIKE1 is aKANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. Plant Cell, 2009,21:719-735.
doi: 10.1105/tpc.108.061457 pmid: 19304938 |
[3] |
Ma L, Sang X C, Zhang T, Yu Z Y, Li Y F, Zhao F M, Wang Z W, Wang Y T, Yu P, Wang N, Zhang C W, Ling Y H, Yang Z L, He G H . ABNORMAL VASCULAR BUNDLES regulates cell proliferation and procambium cell establishment during aerial organ development in rice. New Phytol, 2017,213:275-286.
doi: 10.1111/nph.14142 pmid: 27545518 |
[4] |
Itoh J I, Hibara K I, Sato Y, Nagato Y . Developmental role and auxin responsiveness ofClass III Homeodomain Leucine Zipper gene family members in rice. Plant Physiol, 2008,147:1960-1975.
doi: 10.1104/pp.108.118679 pmid: 18567825 |
[5] |
Izhaki A, Bowman J L . KANADI and Class III HD-Zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis. Plant Cell, 2007,19:495-508.
doi: 10.1105/tpc.106.047472 pmid: 17307928 |
[6] |
Shi Z Y, Wang J, Wan X, Shen G, Wang X, Zhang J . Over-expression of riceOsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Planta, 2007,226:99-108.
doi: 10.1007/s00425-006-0472-0 |
[7] |
Hu J, Zhu L, Zeng D L, Gao Z Y, Guo L B, Fang Y X, Zhang G H, Dong G J, Yan M X, Liu J, Qian Q . Identification and characterization ofNARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Mol Biol, 2010,73:283-292.
doi: 10.1007/s11103-010-9614-7 |
[8] |
Wu C, Fu Y, Hu G, Si H, Cheng S, Liu W . Isolation and characterization of a rice mutant with narrow and rolled leaves. Planta, 2010,232:313-324.
doi: 10.1007/s00425-010-1180-3 |
[9] |
Li Y Y, Shen A, Xiong W, Sun Q L, Luo Q, Song T, Li Z L, Luan W J . Over-expression ofOsHox32 results in pleiotropic effects on plant type architecture and leaf development in Rice. Rice, 2016,9:46.
doi: 10.1186/s12284-016-0118-1 pmid: 27624698 |
[10] |
Hibara K, Obara M, Hayashida E, Abe M, Ishimaru T, Satoh H, Itoh J, Nagato Y . TheADAXIALIZED LEAF1 gene functions in leaf and embryonic pattern formation in rice. Dev Biol, 2009,334:345-354.
doi: 10.1016/j.ydbio.2009.07.042 pmid: 19665012 |
[11] |
Xu Y, Wang Y H, Long Q Z, Huang J X, Wang Y L, Zhou K N, Zheng M, Sun J, Chen H, Chen S H, Jiang L, Wang C M, Wan J M . Overexpression ofOsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice. Planta, 2014,239:803-816.
doi: 10.1007/s00425-013-2009-7 |
[12] |
Wang L, Xu J, Nian J Q, Shen N W, Lai K K, Hu J, Zeng D L, Ge C W, Fang Y X, Zhu L, Qian Q, Zhang G H . Characterization and fine mapping of the rice geneOsARVL4 regulating leaf morphology and leaf vein development. Plant Growth Regul, 2016,78:345-356.
doi: 10.1007/s10725-015-0097-z |
[13] |
Li C, Zou X H, Zhang C Y, Shao Q H, Liu J, Liu B, Li H Y, Zhao T . OsLBD3-7 overexpression induced adaxially rolled leaves in rice. PLoS One, 2016,11:e0156413.
doi: 10.1371/journal.pone.0156413 pmid: 27258066 |
[14] |
Yan S, Yan C J, Zeng X H, Yang Y C, Fang Y W, Tian C Y, Sun Y W, Cheng Z K, Gu M H . ROLLED LEAF 9, encoding a GARP protein, regulates the leaf abaxial cell fate in rice. Plant Mol Biol, 2008,68:239-250.
doi: 10.1007/s11103-008-9365-x |
[15] |
Wu R, Li S, He S, Wassmann F, Yu C, Qin G, Schreiber L, Qu L J, Gu H . CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis. Plant Cell, 2011,23:3392-3411.
doi: 10.1105/tpc.111.088625 |
[16] | 高艳红, 吕川根, 王茂青, 王彭, 闫晓燕, 谢坤, 万建民 . 水稻卷叶性状QTL的初步定位. 江苏农业学报, 2007,23:5-10. |
Gao Y H, Lyu C G, Wang M Q, Wang P, Yan X Y, Xie K, Wan J M . QTL mapping for rolled leaf gene in rice. Jiangsu J Agric Sci, 2007,23:5-10 (in Chinese with English abstract). | |
[17] |
Sang X C, Li Y F, Luo Z K, Wang N, Ling Y H, Zhao F M, Yang Z L, Luo H F, Liu Y S, He G H . CHIMERIC FLORAL ORGANS 1, encoding a monocot-specific MADS box protein, regulates floral organ identity in rice. Plant Physiol, 2012,160:788-807.
doi: 10.1104/pp.112.200980 pmid: 22891238 |
[18] |
Michelmore R W, Paran I, Kesseli R V . Identification of markers linked to disease-resistance genes by bulked segregantion analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991,88:9828-9832.
doi: 10.1073/pnas.88.21.9828 pmid: 1682921 |
[19] |
Mori M, Nomura T, Ooka H, Ishizaka M, Yokota T, Sugimoto K, Okabe K, Kajiwara H, Satoh K, Yamamoto K, Hirochika H, Kikuchi S . Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiol, 2002,130:1152-1161.
doi: 10.1104/pp.007179 pmid: 12427982 |
[20] |
Martin C, Glover B J . Functional aspects of cell patterning in aerial epidermis. Curr Opin Plant Biol, 2007,10:70-82.
doi: 10.1016/j.pbi.2006.11.004 pmid: 17140837 |
[21] |
徐静, 王莉, 钱前, 张光恒 . 水稻叶片形态建成分子调控机制研究进展. 作物学报, 2013,39:767-774.
doi: 10.3724/SP.J.1006.2013.00767 |
Xu J, Wang L, Qian Q, Zhang G H . Research advance in molecule regulation mechanism of leaf morphogenesis in rice (Oryza sativa L.). Acta Agron Sin, 2013,39:767-774 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2013.00767 |
|
[22] |
Figueiredo D D, Barros P M, Cordeiro A M, Serra T S, Lourenço T, Chander S, Oliveira M M, Saibo N J M . Seven zinc-finger transcription factors are novel regulators of the stress responsive gene OsDREB1B. J Exp Bot, 2012,63:3643-3656.
doi: 10.1093/jxb/ers035 |
[23] |
Li L, Shi Z Y, Li L, Shen G Z, Wang X Q, An L S, Zhang J L . Overexpression of ACL1 (abaxially curled leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice. Mol Plant, 2010,3:807-817.
doi: 10.1093/mp/ssq022 pmid: 20494951 |
[24] |
Zou L P, Sun X H, Zhang Z G, Liu P, Wu J X, Tian C J, Qiu J L, Lu T G . Leaf rolling controlled by the homeodomain leucine zipper class IV geneRoc5 in rice. Plant Physiol, 2011,156:1589-1602.
doi: 10.1104/pp.111.176016 |
[25] |
Fang L, Zhao F, Cong Y, Sang X, Du Q, Wang D, Li Y, Ling Y, Yang Z, He G . ROLLING-LEAF14 is a 2OG-Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves. Plant Biotechnol J, 2012,10:524-532.
doi: 10.1111/j.1467-7652.2012.00679.x |
[26] |
Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, Inukai Y, Fujioka S, Shimada Y, Takatsuto S, Agetsuma M, Yoshida S, Watanabe Y, Uozu S, Kitano H, Ashikari M, Matsuoka M . Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J, 2002,32:495-508.
doi: 10.1046/j.1365-313x.2002.01438.x pmid: 12445121 |
[27] |
Chen Q L, Xie Q J, Gao J, Wang W Y, Sun B, Liu B H, Zhu H T, Peng H F, Zhao H B, Liu C H, Wang J, Zhang J L, Zhang G Q, Zhang Z M . Characterization ofRolled and Erect Leaf 1 in regulating leave morphology in rice. J Exp Bot, 2015,66:6047-6058.
doi: 10.1093/jxb/erv319 pmid: 26142419 |
[28] |
Xiang J J, Zhang G H, Qian Q, Xue H W . SEMI-ROLLED LEAF1 encodes a putative glycosyl phosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells. Plant Physiol, 2012,159:1488-1500.
doi: 10.1104/pp.112.199968 |
[29] | 夏令, 陈亮, 郭迟鸣, 张红心, 赵政, 沈明山, 陈亮 . 一个新的水稻矮秆突变体sd-sl的遗传与基因定位研究. 厦门大学学报(自然科学版), 2007,46:847-851. |
Xia L, Chen L, Guo C M, Zhang H X, Zhao Z, Shen M S, Chen L . Heredity and gene mapping of a new dwarf mutant sd-sl in rice. J Xiamen Univ, 2007,46:847-851 (in Chinese with English abstract). | |
[30] |
田晓庆, 桑贤春, 赵芳明, 李云峰, 凌英华, 杨正林, 何光华 . 水稻卷叶基RL13的遗传分析和分子定位. 作物学报, 2012,38:423-428.
doi: 10.3724/SP.J.1006.2012.00423 |
Tian X Q, Sang X C, Zhao F M, Li Y F, Ling Y H, Yang Z L, He G H . Genetic analysis and molecular mapping of a rolled leaf gene RL13 in rice(Oryza sativa L.). Acta Agron Sin, 2012,38:423-428 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.00423 |
[1] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[2] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[3] | 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293. |
[4] | 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172. |
[5] | 黄妍, 贺焕焕, 谢之耀, 李丹莹, 赵超越, 吴鑫, 黄福灯, 程方民, 潘刚. 水稻矮化宽叶突变体osdwl1的生理特性和基因定位[J]. 作物学报, 2021, 47(1): 50-60. |
[6] | 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79. |
[7] | 石慧敏, 蒋成功, 王红武, 马庆, 李坤, 刘志芳, 吴宇锦, 李树强, 胡小娇, 黄长玲. 玉米籽粒突变体dek48的表型鉴定与基因定位[J]. 作物学报, 2020, 46(9): 1359-1367. |
[8] | 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996. |
[9] | 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227. |
[10] | 莫祎,孙志忠,丁佳,余东,孙学武,盛夏冰,谭炎宁,袁贵龙,袁定阳,段美娟. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位[J]. 作物学报, 2019, 45(7): 1050-1058. |
[11] | 王瑞,陈阳松,孙明昊,张秀艳,杜依聪,郑军. 玉米穗发芽突变体vp-like8的遗传分析及突变基因鉴定[J]. 作物学报, 2019, 45(5): 656-661. |
[12] | 尚丽娜,陈新龙,米胜南,委刚,王玲,张雅怡,雷霆,林永鑫,黄兰杰,朱美丹,王楠. 水稻温敏型叶片白化转绿突变体tsa2的表型鉴定与基因定位[J]. 作物学报, 2019, 45(5): 662-675. |
[13] | 张莉莎,米胜南,王玲,委刚,郑尧杰,周恺,尚丽娜,朱美丹,王楠. 水稻短根白化突变体sra1生理生化分析及基因定位[J]. 作物学报, 2019, 45(4): 556-567. |
[14] | 王晓娟,潘振远,刘敏,刘忠祥,周玉乾,何海军,邱法展. 一个新的玉米silky1基因等位突变体的遗传分析与分子鉴定[J]. 作物学报, 2019, 45(11): 1649-1655. |
[15] | 陈芳,乔麟轶,李锐,刘成,李欣,郭慧娟,张树伟,常利芳,李东方,阎晓涛,任永康,张晓军,畅志坚. 小麦新种质CH1357抗白粉病遗传分析及染色体定位[J]. 作物学报, 2019, 45(10): 1503-1510. |
|