欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (02): 194-203.doi: 10.3724/SP.J.1006.2020.94065

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

诸葛菜小孢子培养及其单倍体减数分裂染色体配对观察

殷家明1,2,钟荣棋1,2,林呐1,2,唐章林1,2,李加纳1,2   

  1. 1 西南大学农学与生物科技学院, 重庆 400715
    2 重庆市油菜工程技术研究中心, 重庆 400715
  • 收稿日期:2019-04-24 接受日期:2019-08-09 出版日期:2020-02-12 网络出版日期:2019-10-12
  • 作者简介:殷家明, E-mail: 1661096534@qq.com|钟荣棋, 1457139712@qq.com
  • 基金资助:
    本研究由国家重点研发计划项目(2018YFD0100503);国家现代农业产业技术体系建设专项(CARS-12);重庆市社会事业与民生保障科技创新专项(cstc2016shms-ztzx80010);重庆市社会事业与民生保障科技创新专项资助(cstc2017shms-xdny80009)

Microspore culture and observations on meiotic chromosome pairing of the haploid in Orychophragmus violaceus

YIN Jia-Ming1,2,ZHONG Rong-Qi1,2,LIN Na1,2,TANG Zhang-Lin1,2,LI Jia-Na1,2   

  1. 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
    2 Chongqing Rapeseed Eengineering and Technology Research Center, Chongqing 400715, China
  • Received:2019-04-24 Accepted:2019-08-09 Published:2020-02-12 Published online:2019-10-12
  • Supported by:
    This study was supported by the National Key Research and Development Plan(2018YFD0100503);the China Agriculture Research System(CARS-12);the Chongqing Science and Technology Innovation Special Project for Social Affairs and People’s Livelihood Insurance(cstc2016shms-ztzx80010);the Chongqing Science and Technology Innovation Special Project for Social Affairs and People’s Livelihood Insurance(cstc2017shms-xdny80009)

摘要:

诸葛菜是一种极有价值的观赏、蔬菜、饲料和油料作物种质资源。为建立诸葛菜小孢子胚状体诱导再生植株技术, 并为诸葛菜染色体组的起源与进化研究提供相关数据资料, 本研究通过对诸葛菜游离小孢子的培养, 研究了热激培养时间和活性炭浓度对胚状体产量的影响, 并采用常规压片法对诸葛菜单倍体减数分裂染色体配对行为进行了观察。结果表明, 添加活性炭和热激培养对胚状体诱导是必需的。在直径6 cm培养皿中培养4 mL密度为1花蕾花粉 mL -1的小孢子NLN悬液时, 每皿添加1 mg活性炭和32℃热激3 d的培养条件下子叶形胚状体和总胚状体产量最高, 分别为每花蕾0.92±0.18个和1.32±0.25个。子叶形胚状体在1/2 MS培养基上萌发率为27.73%。花粉植株中自然加倍率为25%, 加倍植株染色体数为24, 单倍体植株染色体数为12。诸葛菜单倍体减数分裂染色体的平均配对构型为n = 12 = 6.352I + 2.008II + 0.384III + 0.12IV, 具有二价体及三价体和四价体的细胞比例高达96%, 少量细胞的12条染色体联会形成3个四价体, 说明诸葛菜很可能是起源于染色体基数x = 3的同源八倍体。本试验结果对于诸葛菜新材料新品种选育和基础研究具有重要参考价值。

关键词: 诸葛菜, 小孢子培养, 胚状体, 单倍体, 减数分裂, 染色体配对

Abstract:

Orychophragmus violaceus is extremely valuable as the ornamental, vegetable, forage and oil germplasm resource. In order to develop the technique of microspore-derived embryoid induction and plant regeneration, and provide dada for the origin and evolution of the genome, the effects of the heat-shock incubation duration and the content of additional activated charcoal on embryoid yield were studied through microspore culture, and the meiotic chromosome pairing behavior of the haploid was observed by conventional squashing method in O. violaceus. The activated charcoal addition and heat shock culture were required for embryoid induction. When 4 mL microspore suspension with 1 bud per mL was incubated in a Φ6 cm petri dish at 32℃ of heat shock for three days and supplemented with 1 mg activated charcoal in each dish, the cotyledon-shaped embryoid yield and total embryoid yield were highest, which were 0.92 ± 0.18 and 1.32 ± 0.25 embryoids per bud, respectively. The germination rate of the cotyledon-shaped embryoids in 1/2MS medium was 27.73%. The natural chromosome doubling rate was 25% among the survival microspore-derived plantlets. The chromosome number of the double haploid plants and the haploid plants was 24 and 12, respectively. The meiotic chromosome pairing configuration of the haploid in O. violaceus was averaged as n = 12 = 6.352I + 2.008II + 0.384III + 0.12IV. The percentage of the pollen mother cells with bivalent, trivalent and tetravalent was up to 96%. The 12 chromosomes in 0.8% of pollen mother cells synapsed into three tetravalents. The chromosome pairing behavior strongly suggested that O. violaceus originated from a homologous octoploid with the basic chromosome number of x = 3. The above results provide a reference for breeding new materials and cultivars and for basic research in O. violaceus.

Key words: Orychophragmus violaceus, microspore culture, embryoid, haploid, meiosis, chromosome pairing

图1

诸葛菜小孢子胚胎发生过程 A: 部分小孢子膨大; B: 小孢子近均等分裂; C: 小孢子不均等分裂; D: 多细胞团; E: 具胚柄状结构的原胚; F: 球形原胚; G: 球形胚; H: 具胚柄状结构的圆球形胚状体; I: 卵球形胚状体; J: 桃心形胚状体; K: 心脏形胚状体; L: 培养28 d后的胚状体。"

图2

诸葛菜小孢子胚状体形态 A: 双子叶胚状体; B: 三子叶胚状体; C: 具1胚根状结构三子叶胚状体; D: 单子叶胚状体; E: 合生双胚; F: 鱼雷形胚状体; G: 心形胚状体; H: 球形胚状体; I: 不规则形胚状体; 标尺 = 2 mm。"

表1

不同热激时间下诸葛菜小孢子胚状体产量"

热激时间
Heat-shock duration (d)
子叶形胚状体
Cotyledonous embryoids (No. per bud)
总胚状体
All embryoids (No. per bud)
0 0 0
1 0.13±0.13 c 0.57±0.13 c
3 0.92±0.18 a 1.32±0.25 a
5 0.48±0.10 b 0.95±0.09 b
7 0.15±0.09 c 0.60±0.13 c

表2

不同活性炭浓度下诸葛菜小孢子胚状体产量"

活性炭浓度
Active charcoal content (mg dish-1)
子叶形胚状体
Cotyledonous embryoids (No. per bud)
总胚状体
All embryoids (No. per bud)
0 0 0
1 0.92±0.18 a 1.32±0.25 a
2 0.85±0.15 a 1.25±0.10 ab
3 0.37±0.10 b 0.80±0.17 b

图3

诸葛菜小孢子植株的再生、形态、育性和倍性 A: 胚状体萌发; B: 加倍的小孢子植株; C: 单倍体植株; D: 加倍和单倍体植株的花和花蕾; E: 加倍植株花粉; F: 单倍体植株花粉; G: 加倍植株花粉母细胞染色体(2n = 24); H: 单倍体植株花粉母细胞染色体(2n = 12); 标尺 = 10 μm。"

表3

诸葛菜单倍体减数分裂染色体配对构型"

序号
No.
染色体构型 Chromosome configuration 细胞数
No. of cells
百分比
Percentage (%)
IV III II I
1 0 0 0 12 5 4.0
2 0 0 1 10 16 12.8
3 0 0 2 8 21 16.8
4 0 0 3 6 22 17.6
5 0 0 4 4 6 4.8
6 0 0 5 2 3 2.4
7 0 0 6 0 3 2.4
8 0 1 0 9 3 2.4
9 0 1 1 7 9 7.2
10 0 1 2 5 15 12.0
11 0 1 3 3 2 1.6
12 0 2 0 6 2 1.6
13 0 2 1 4 3 2.4
14 0 2 2 2 2 1.6
15 0 2 3 0 1 0.8
16 1 0 0 8 1 0.8
17 1 0 1 6 3 2.4
18 1 0 2 4 2 1.6
19 1 0 3 2 1 0.8
20 1 0 4 0 1 0.8
21 1 1 0 5 1 0.8
22 1 1 1 3 1 0.8
23 2 1 0 1 1 0.8
24 3 0 0 0 1 0.8
合计Total 15 48 251 794 125 100.0
平均Average 0.12 0.384 2.008 6.352

图4

部分诸葛菜单倍体(2n = 12)花粉母细胞减数分裂染色体配对构型(标尺 = 10 μm)"

[1] 周太炎, 关克俭, 郭荣鳞 . 中国植物志(第33卷). 北京: 科学出版社, 1987. pp 40-43.
Zhou T Y, Guan K J, Guo R L. Flora of China (Vol 33). Beijing: Science Press, 1987. pp 40-43(in Chinese).
[2] 殷家明, 罗鹏, 蓝泽蘧, 黄邦全 . 芥蓝×诸葛菜属间杂种的获得. 园艺学报, 1998,25:297-299.
Yin J M, Luo P, Lan Z Q, Huang B Q . Production of intergeneric hybrids from Brassica alboglabra × Orychophragmus violaceus. Acta Hortic Sin, 1998,25:297-299 (in Chinese with English abstract).
[3] Fu W Q, Chen D Z, Pan Q, Li F F, Zhao Z G, Ge X H, Li Z Y . Production of red-flowered oilseed rape via the ectopic expression of Orychophragmus violaceus OvPAP2. Plant Biotechnol J, 2018,16:367-380.
doi: 10.1111/pbi.12777 pmid: 28640973
[4] Yang Y, Shen Y S, Li S D, Ge X H, Li Z Y . High density linkage map construction and QTL detection for three silique-related traits in Orychophragmus violaceus derived Brassica napus population. Front Plant Sci, 2017,8:1-13.
doi: 10.3389/fpls.2017.00001 pmid: 28220127
[5] Luo P, Huang B Q . A study on exploitation of new vegetable germplasm Orychophragmus violaceus O. E. Schulz, a member of Brassicaceae. Acta Hortic, 1996,407:75-79.
[6] Luo P, Huang B Q, Yin J M, Chen Z L, Chen Y H, Lan Z Q . A new forage genetic resource Orychophragmus violaceus(L.) O. E. Schulz. Genet Resour Crop Evol, 1998,45:491-494.
doi: 10.1023/A:1008668225306
[7] Huo X W, Liu C Q, Gao L, Xu X D, Zhu N L, Cao L . Hepatoprotective effect of aqueous extract from the seeds of Orychophragmus violaceus against liver injury in mice and HepG2 cells. Int J Mol Sci, 2017,18:1197-1212.
doi: 10.3390/ijms18061197 pmid: 28617329
[8] Zhu N L, Wu H F, Xu Z Q, Liu C Q, Tian Y, Hu M G, Sun Z H, Li P F, Ma G X, Xu X D . New alkaloids with unusual spermidine moieties from the seeds of Orychophragmus violaceus and their cytoprotective properties. Rsc Adv, 2017,7:41495-41498.
doi: 10.1039/C7RA02951A
[9] Bai J S, Cao W D, Xiong J, Zeng N H, Gao S J, Katsuyoshi S . Integrated application of February Orchid (Orychophragmus violaceus) as green manure with chemical fertilizer for improving grain yield and reducing nitrogen losses in spring maize system in northern China. J Integr Agric, 2017,14:2490-2499.
doi: 10.1016/S2095-3119(15)61212-6
[10] Sun G D, Xu Y, Liu Y, Liu Z P . Microbial community dynamics of soil mesocosms using Orychophragmus violaceus combined with Rhodococcus ruber Em1 for bioremediation of highly PAH-contaminated soil. Appl Microbiol Biotechnol, 2014,98:10243-10253.
doi: 10.1007/s00253-014-5971-5 pmid: 25081560
[11] Wang R, Wu Y Y, Hang H T, Liu Y, Xie T X, Zhang K Y, Li H T . Orychophragmus violaceus L., a marginal land-based plant for biodiesel feedstock: Heterogeneous catalysis, fuel properties, and potential. Energ Convers Manage, 2014,84:497-502.
doi: 10.1016/j.enconman.2014.04.047
[12] Li X J, Alicen M T, Asghar S, Ling J, Lucas B, Rebecca E C, Zhang W, Li Z Y, Kent D C, Diana B, Zhang C Y, Robert E M, Edgar B C . Discontinuous fatty acid elongation yields hydroxylated seed oil with improved function. Nat Plants, 2018,4:711-720.
doi: 10.1038/s41477-018-0225-7 pmid: 30150614
[13] 李子先, 曹熙德, 刘东旭, 刘俊, 张作仕, 贾勇炯 . 中国种诸葛菜变种群的核型研究. 作物学报, 1994,20:595-600.
Li Z X, Cao X D, Liu D X, Liu J, Zhang Z S, Jia Y J . A study on the karyotype of some Chinese variants of Zhuge Cai,Orychophragmus violaceus. Acta Agron Sin, 1994,20:595-600 (in Chinese with English abstract).
[14] Al-Shehbaz I A, Yang G . A revision of the Chinese endemic Orychophragmus(Brassicaceae). Novon, 2000,10:349-353.
doi: 10.2307/3392983
[15] Zhou L R, Liu Z B, Wu J, Wang J M, Yang Y, Li X F . Karyotype variation and evolution in populations of the Chinese endemic Orychophragmus violaceus complex (Brassicaceae). Nord J Bot, 2008,26:375-383.
doi: 10.1111/njb.2008.26.issue-5-6
[16] Zhang L J, Dai S L . Genetic variation within and among populations of Orychophragmus violaceus(Cruciferae) in China as detected by ISSR analysis. Genet Resour Crop Evol, 2010,57:55-64.
doi: 10.1007/s10722-009-9450-2
[17] Li M M, Wu L Y, Guo J L, Sun X Q, Hang Y Y . Analyses on allozyme variation and genetic diversity of four morphological types of Orychophragmus violaceus(Brassicaceae). J Plant Resour Environ, 2012,21:44-49.
[18] Wang L, Ma X J, Yang C P . Two new infraspecific taxa of Orychophragmus violaceus(Brassicaceae) in Northeast China. Novon, 2012,22:109-113.
doi: 10.3417/2009133
[19] 吴沿友, 罗鹏 . 诸葛菜的花药培养. 园艺学报, 1996,23:404-406.
Wu Y Y, Luo P . Anther culture of Orychophragmus violaceus. Acta Hortic Sin, 1996,23:404-406 (in Chinese).
[20] 贾勇炯, 唐琳, 林宏辉, 陈放, 王幼平 . 诸葛菜离体花粉粒诱导形成花粉植株的研究. 四川大学学报(自然科学版), 1999,36:1106-1110.
Jia Y J, Tang L, Lin H H, Chen F, Wang Y P . Studies on the plant regeneration from Orychophragmus violaceus pollen. J Sichuan Univ(Nat Sci Edn), 1999,36:1106-1110 (in Chinese with English abstract).
[21] Couvreur L P, Franzke A, Al-Shehbaz I A, Bakker F T, Koch M A, Mummenhoff K . Molecular phylogenetics, temporal diversification, and principles of evolution in the Mustard Family (Brassicaceae). Mol Biol Evol, 2010,27:55-71.
doi: 10.1093/molbev/msp202 pmid: 19744998
[22] 李再云, 刘后利 . 诸葛菜染色体的减数分裂配对研究. 华中农业大学学报, 1995,14:435-439.
Li Z Y, Liu H L . A study on meiotic pairing of Orychophragmus violaceus. J Huazhong Agric Univ, 1995,14:435-439 (in Chinese with English abstract).
[23] Li Z Y, Liu H L, Luo P . Production and cytogenetics of intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Theor Appl Genet, 1995,91:131-136.
doi: 10.1007/BF00220869 pmid: 24169678
[24] Li Z Y, Liu H L, Heneen W K . Meiotic behaviour in intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Hereditas, 1996,125:69-75.
doi: 10.3389/fpls.2018.01557 pmid: 30450106
[25] Wu J G, Li Z Y, Liu Y, Liu H L, Fu T D . Cytogenetics and morphology of the pentaploid hybrid between Brassica napus and Orychophragmus violaceus and its progeny. Plant Breed, 1997,116:251-257.
doi: 10.1111/pbr.1997.116.issue-3
[26] Li Z Y, Cartagena J, Fukui K . Simultaneous detection of 5S and 45S rRNA genes in Orychophragmus violaceus by double fluorescence in situ hybridization. Cytologia, 2005,70:1-8.
doi: 10.1508/cytologia.70.1
[27] Lysak M A, Cheung K, Kitschke M, Bureš P . Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size. Plant Physiol, 2007,145:402-410.
doi: 10.1104/pp.107.104380 pmid: 17720758
[28] Franzke A, Lysak M A, Al-Shehbaz I A, Koch M A, Mummenhoff K . Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci, 2011,16:108-116.
doi: 10.1016/j.tplants.2010.11.005 pmid: 21177137
[29] Lichter R . Induction of haploid plants from isolated pollen of Brassica napus. Zeitschrift für Pfanzenphysiologie, 1982,105:427-434.
doi: 10.1007/978-1-4939-8944-7_5 pmid: 30460559
[30] Nitta T, Takahata Y, Kaizuma N . Scanning electron microscopy of microspore embryogenesis in Brassica spp. Plant Cell Rep, 1997,16:406-410.
doi: 10.1007/BF01146783 pmid: 30727651
[31] Yeung E C . The canola microspore-derived embryo as a model system to study developmental processes in plants. J Plant Biol, 2002,45:119-133.
doi: 10.1007/BF03030304
[32] Joosen R, Cordewener J, Supena E D J, Vorst O, Lammers M, Maliepaard C, Zeilmaker T, Miki B, America T, Custers J, Boutilier K . Combined transcriptome and proteome analysis identifies pathways and markers associated with the establishment of rapeseed microspore-derived embryo development. Plant Physiol, 2007,144:155-172.
doi: 10.1104/pp.107.098723 pmid: 17384159
[33] Prem D, Solís M T, Bárány I, Rodríguez-Sanz H, Risueño M C, Testillano P S . A new microspore embryogenesis system under low temperature which mimics zygotic embryogenesis initials, expresses auxin and efficiently regenerates doubled- haploid plants in Brassica napus. BMC Plant Biol, 2012,12:127-145.
doi: 10.1186/1471-2229-12-127 pmid: 22857779
[34] Ilic-Grubor K, Attree S M, Fowke L C . Comparative morphological study of zygotic and microspore-derived embryos of Brassica napus L. as revealed by scanning electron microscopy. Ann Bot, 1998,82:157-165.
doi: 10.1006/anbo.1998.0661
[35] Supena E D J, Winarto B, Riksen T, Dubas E, Van Lammeren A, Offringa R, Boutilier K, Custers J . Regeneration of zygotic-like microspore-derived embryos suggests an important role for the suspensor in early embryo patterning. J Exp Bot, 2008,59:803-814.
doi: 10.1093/jxb/erm358 pmid: 18272920
[36] Chanana N P, Dhawan V, Bhojwani S S . Morphogenesis in isolated microspore cultures of Brassica juncea, Plant Cell Tiss Organ Cult, 2005,83:169-177.
doi: 10.1007/s00709-018-1268-3 pmid: 29922944
[37] Thomas T D . The role of activated charcoal in plant tissue culture. Biotechnol Adv, 2008,26:618-631.
doi: 10.1016/j.biotechadv.2008.08.003
[38] Da Silva Dias J C . Effect of activated charcoal on Brassica oleracea microspore culture embryogenesis. Euphytica, 1999,108:65-69.
pmid: 26415277
[39] 姜风英, 冯辉, 王超楠 . 羽衣甘蓝的小孢子胚诱导和植株再生. 植物生理学通讯, 2005,41:725-727.
Jiang F Y, Feng H, Wang C N . Embryogenesis and plant regeneration from isolated microspore culture of kale (Brassica oleracea L. var. acephala DC.). Bull Plant Physiol, 2005,41:725-727 (in Chinese).
[40] 方淑桂, 陈文辉, 曾小玲, 朱朝辉, 廖晓珍, 郑学立 . 结球甘蓝游离小孢子培养及植株再生. 园艺学报, 2006,33:158-160.
Fang S G, Chen W H, Zeng X L, Zhu C H, Liao X Z, Zheng X L . Isolated-microspore culture and plantlet regeneration in cabbage (Brassica oleracea L. var. capitata L.). Acta Hortic Sin, 2006,33:158-160 (in Chinese with English abstract).
[41] 申书兴, 赵前程, 刘世雄, 张成合, 李振秋 . 四倍体大白菜小孢子植株的获得与倍性鉴定. 园艺学报, 1999,26:232-237.
Shen S X, Zhao Q C, Liu S X, Zhang C H, Li Z Q . Plant regeneration from isolated microspore culture of autotetraploid Chinese cabbage [Brassica campestris L. ssp. pekinensis (Lour.) Olsson]. Acta Hortic Sin, 1999,26:232-237 (in Chinese with English abstract).
[42] Gu H H, Zhou W J, Hagberg P . High frequency spontaneous production of doubled haploid plants in microspore cultures of Brassica rapa ssp. chinensis. Euphytica, 2003,134:239-245.
doi: 10.1023/B:EUPH.0000004945.01455.6d
[43] 李菲, 张淑江, 章时蕃, 钮心恪, 孙日飞 . 大白菜游离小孢子培养胚胎发生中的加倍机制. 园艺学报, 2006,33:974-978.
Li F, Zhang S J, Zhang S F, Niu X K, Sun R F . Embryogenesis and doubling mechanism of isolated microspore culture in Chinese cabbage (Brassica rapa ssp. pekinensis). Acta Hortic Sin, 2006,33:974-978 (in Chinese with English abstract).
[44] 耿建峰, 侯喜林, 张晓伟, 蒋武生, 原玉香, 韩永平, 姚秋菊, 成妍, 李英 . 影响白菜游离小孢子培养关键因素分析. 园艺学报, 2007,34:111-116.
Geng J F, Hou X L, Zhang X W, Jiang W S, Yuan Y X, Han Y P, Yao Q J, Cheng Y, Li Y . Isolated microspore culture in Brassica campestris ssp. Chinensis. Acta Hortic Sin, 2007,34:111-116 (in Chinese with English abstract).
[45] Leelavathi S, Reddy V S, Sen S K . Somatic-cell genetic studies in Brassica species: 2. Production of androgenetic haploid plants in Brassica nigra(L.) Koch. Euphytica, 1987,36:215-219.
doi: 10.1007/BF00730666
[46] Margale E, Chevre A M . Factors effecting embryo production from microspore culture of Brassica nigra(Koch). Cruciferae Newsl, 1991,14:100-101.
[47] Gland A, Lichter R, Schweiger H G . Genetic and exogenous factors affecting embryogenesis in isolated microspore culture of Brassica napus L. J Plant Physiol, 1988,132:613-617.
doi: 10.1016/S0176-1617(88)80264-5
[48] Zhou W J, Hagberg P, Tang G X . Increasing embryogenesis and doubling efficiency by immediate colchicines treatment of isolated microspores in spring Brassica napus. Euphytica, 2002,128:27-34.
doi: 10.1023/A:1020687517888
[49] Gu H H, Hagberg P, Zhou W J . Cold pretreatment enhances microspore embryogenesis in oil seed rape (Brassica napus L.). Plant Growth Regul, 2004,42:137-143.
doi: 10.1023/B:GROW.0000017488.29181.fa
[50] Zhang G Q, Zhang D Q, Tang G X, He Y, Zhou W J . Plant development from microspore derived embryos in oilseed rape as affected by chilling, desiccation and cotyledon excision. Biol Plant, 2006,50:180-186.
doi: 10.1007/s10535-006-0004-6
[51] Shi Y, Xu G, Warrington T B, Murdoch G K, Kazala E C, Snyder C L . Microspore-derived cell suspension cultures of oilseed rape as a system for studying gene expression. Plant Cell Tiss Organ Cult, 2008,92:131-139.
doi: 10.1007/s11240-007-9313-5
[52] Prem D, Gupta K, Sarkar G, Agnihotri A . Activated charcoal induced high frequency microspore embryogenesis and efficient doubled haploid production in Brassica juncea. Plant Cell Tiss Organ Cult, 2008,93:269-282.
doi: 10.1007/s11240-008-9373-1
[53] Leskovšek L, Jakše M, Bohanec B . Doubled haploid production in rocket (Eruca sativa Mill.) through isolated microspore culture. Plant Cell Tiss Organ Cult, 2008,93:181-189.
doi: 10.1007/s11240-008-9359-z
[1] 文钦, 贾思思, 王加峰, 黄翠红, 王慧, 陈志强, 郭涛. 水稻单倍体诱导基因OsMATL突变体的创制与分析[J]. 作物学报, 2021, 47(5): 827-836.
[2] 陈新民,王凤菊,李思敏,张文祥. 小麦与玉米杂交产生小麦单倍体与双单倍体的稳定性[J]. 作物学报, 2013, 39(12): 2247-2252.
[3] 吴绍华,张红宇,薛晶晶,徐培洲,吴先军. 双胚苗水稻来源的单倍体、二倍体及其杂交F1的DNA甲基化位点分析[J]. 作物学报, 2013, 39(01): 50-59.
[4] 童治军,焦芳婵,吴兴富,王丰青,陈学军,李绪英,高玉龙,张谊寒,肖炳光,吴为人. 烤烟6个农艺性状的QTL定位[J]. 作物学报, 2012, 38(08): 1407-1415.
[5] 惠国强, 杜何为, 杨小红, 刘光辉, 王振通, 张义荣, 郑艳萍, 严建兵, 张铭堂, 李建生. 不同除草剂加倍玉米单倍体的效率[J]. 作物学报, 2012, 38(03): 416-422.
[6] 梁小红,仪治本,邓小敏,谢晓丽. 高粱A6型细胞质雄性不育系花粉母细胞减数分裂行为的观察和分析[J]. 作物学报, 2010, 36(4): 709-712.
[7] 何金华, 程杏安, 陈志雄, 郭海滨, 刘向东, 卢永根. 同源四倍体水稻花粉母细胞减数分裂期间微管骨架组织和结构变化[J]. 作物学报, 2010, 36(10): 1777-1785.
[8] 宋兆建,杜超群,胡亚平,唐志强,陈冬玲,何玉池,何光存,蔡得田. 栽培稻与疣粒野生稻杂种二倍体和四倍体的鉴定及比较[J]. 作物学报, 2010, 36(07): 1144-1152.
[9] 曹云英;段骅;杨立年;王志琴;周少川;杨建昌. 减数分裂期高温胁迫对耐热性不同水稻品种产量的影响及其生理原因[J]. 作物学报, 2008, 34(12): 2134-2142.
[10] 王爱云;李栒;胡大有. 芥菜型油菜和黑芥与诸葛菜属间杂种的获得及其特性[J]. 作物学报, 2008, 34(09): 1557-1562.
[11] 石春林;金之庆;郑建初;汤日圣. 减数分裂期高温对水稻颖花结实率影响的定量分析[J]. 作物学报, 2008, 34(04): 627-631.
[12] 阿加拉铁;曾龙军;薛大伟;胡江;曾大力;高振宇;郭龙彪;李仕贵;钱前. 水稻灌浆期不同阶段叶绿素含量的QTL分析[J]. 作物学报, 2008, 34(01): 61-66.
[13] 杨建昌;刘凯;张慎凤;王学明;王志琴;刘立军. 水稻减数分裂期颖花中激素对水分胁迫的响应[J]. 作物学报, 2008, 34(01): 111-118.
[14] 郭咏梅;穆平;刘家富;李自超;卢义宣. 水、旱栽培条件下稻谷粒型和粒重的相关分析及其QTL定位[J]. 作物学报, 2007, 33(01): 50-56.
[15] 仪治本;梁小红;赵威军;崔贵梅;孙毅;崔丽霞. 高粱A3细胞质雄性不育发生的细胞学观察及分析[J]. 作物学报, 2006, 32(12): 1909-1912.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!