作物学报 ›› 2012, Vol. 38 ›› Issue (08): 1407-1415.doi: 10.3724/SP.J.1006.2012.01407
童治军1,2,焦芳婵2,吴兴富2,王丰青1,陈学军2,李绪英2,3,高玉龙2,张谊寒2,肖炳光2,*,吴为人1,4,*
TONG Zhi-Jun1,2,JIAO Fang-Chan2,WU Xing-Fu2,WANG Feng-Qing1,CHEN Xue-Jun2,LI Xu-Ying2,3,GAO Yu-Long2,ZHANG Yi-Han2,XIAO Bing-Guang2,*,WU Wei-Ren1,4,*
摘要: 由于烟草的分子标记开发和遗传图谱构建十分困难,迄今烟草中有关数量性状基因座(QTL)的定位研究仍非常有限。本研究利用一个由207个株系组成的烤烟DH群体及基于该群体所构建的含有24个连锁群、611个SSR标记,总长为1 882.1 cM的遗传图谱,采用复合区间作图方法,对株高(PH)、茎围(SG)、节距(IL)、叶片数(LN)、最大腰叶长(LWL)和最大腰叶宽(WWL) 6个与叶片产量有关的农艺性状进行QTL定位分析。共检测到69个QTL,大部分QTL的效应值较小,仅有4个具有较大的效应值,可解释大约15%~20%的表型变异。6个性状之间大多彼此相关。与此相符,在基因组中发现存在许多小区域,每个区域包含两个或两个以上紧密连锁的不同性状的QTL。
[1]Legg P D, Collins G B. Genetic parameters in a Ky 14 × Ky Ex 42 burley population of Nicotiana tabacum L. Theor Appl Genet, 1975, 45: 264–267[2]White F H, Pandeya R S, Dirks V A. Correlation studies among and between agronomic, chemical, physical and smoke characteristics in flue-cured tobacco (Nicotiana tabaccum L.). Can J Plant Sci, 1979, 59:111–120 [3]Honarnejed R, Shoai-Deylami M. Gene effect, combining ability and correlation of characterstics in F2 populations of burley tobacco. J Sci Technol Agric Nat Resour, 2004, 8: 135–148[4]Xiao B G, Zhu J, Lu X P, Bai Y F, Li Y P. Analysis on genetic contribution of agronomic traits to total sugar in flue-cured tobacco (Nicotiana tabacum L.). Field Crops Res, 2007, 102: 98–103[5]Mohan M, Nair S, Bhagwat A, Krishna T G, Yano M, Bhatia C R, Sasaki T. Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed, 1997, 3: 87–103[6]Ren N, Timko M P. ALFP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome, 2001, 44: 559–571[7]Rossi L, Bindler G, Pijnenburg H, Isaac P G, Giraud-Henri I, Mahe M, Orvain C, Gadani F. Potential of molecular marker analysis for variety identification in processed tobacco. Plant Varieties Seeds, 2001, 14: 89–101[8]Moon H S, Nicholson J S, Lewis R S. Use of transferable Nicotiana tabacum L. microsatellite markers for investigating genetic diversity in the genus Nicotiana. Genome, 2008, 51: 547–559[9]Moon H S, Nicholson J S, Heineman A, Lion K, der Hoeven R V, Hayes A J, Lewis R S. Changes in genetic diversity of U.S. Flue-Cured tobacco germplasm over seven decades of cultivar development. Crop Sci, 2009, 49: 498–506[10]Moon H S, Nifong J M, Nicholson J S, Heineman A, Lion K, der Hoeven R V, Hayes A J, Lewis R S. Microsatellite-based analysis of tobacco (Nicotiana tabacum L.) genetic resources. Crop Sci, 2009, 49: 2149–2157[11]Bai D, Reeleder R, Brandle J E. Identification of two RAPD markers tightly linked with the Nicotiana debneyi gene for resistance to black root of tobacco. Theor Appl Genet, 1995, 91: 1184–1189[12]Yi H Y, Rufty R C, Wernsman E A. Mapping the root-knot nematode resistance gene (Rk) in tobacco with RAPD markers. Plant Dis, 1998, 82: 1319–1322[13]Noguchi S, Tajima T, Yamamoto Y, Ohno T, Kubo T. Deletion of a large genomic segment in tobacco varieties that are resistant to potato virus Y (PVY). Mol Gen Genet, 1999, 262: 822–829[14]Johnson E S, Wolff M F, Wernsmann E A. Marker assisted selection for resistance to black shank disease in tobacco. Plant Dis, 2002, 12: 1303–1309[15]Julio E, Denoyes R B, Verrier J L, de Borne F D. Detection of QTLs linked to leaf and smoke properties in Nicotiana tabacum based on a study of 114 recombinant inbred lines. Mol Breed, 2006, 18: 69–91[16]Julio E, Verrier J L, de Borne F D. Development of SCAR markers linked to three disease resistances based on AFLP within Nicotiana tabacum L. Theor Appl Genet, 2006b,112: 335–346.[17]Bindler G, Plieske J, Bakaher N, Gunduz I, Ivanov N, der Hoeven R V, Ganal M, Donini P. A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theor Appl Genet, 2011, 123: 219–230[18]Nishi T, Tajima T, Noguchi S, Ajisaka H, Negishi H. Identification of DNA markers of tobacco linked to bacterial wilt resistance. Theor Appl Genet, 2003, 106: 765–770[19]Vontimitta V, Lewis R S. Mapping of quantitative trait loci affecting resistance to Phytophthora nicotianae in tobacco (Nicotiana tabacum L.) line Beihart-1000. Mol Breed, 2012, 29: 89–98[20]Vontimitta V, David A, Danehower, Steede T, Moon H S, Lewis R S. Analysis of a Nicotiana tabacum L. genomic region controlling two leaf surface chemistry traits. Agric Food Chem, 2010, 58: 294–300[21]Vontimitta V, Lewis R S. Growth chamber evaluation of a tobacco ‘Beinhart 1000’ × ‘Hicks’ mapping population for quantitative trait loci affecting resistance to multiple races of Phytophthora nicotianae. Crop Sci, 2012, 52: 91–98[22]Milla S R, Levin J S, Lewis R S, Rufty R C. RAPD and SCAR markers linked to an introgressed gene conditioning resistance to Peronospora tabacina D.B. Adam. in tobacco. Crop Sci, 2005, 45: 2346–2354[23]Lewis R S, Milla S R, Kernodle S P. Analysis of an introgressed Nicotiana tomentosa genomic region affecting leaf number and correlated traits in Nicotiana tabacum. Theor Appl Genet, 2007, 114: 841–854[24]Cai C-C(蔡长春), Chai L-G(柴利广), Wang Y(王毅), Xu F-S(徐芳森), Zhang J-J(张俊杰), Lin G-P(林国平). Construction of genetic linkage map of burley tobacco (Nicotiana tabacum L.) and genetic dissection of partial traits. Acta Agron Sin (作物学报), 2009, 35(9): 1646–1654 (in Chinese with English abstract)[25]Xiao B-G(肖炳光), Lu X-P(卢秀萍), Jiao F-C(焦芳蝉), Li Y-P(李永平), Sun Y-H(孙玉合), Guo Z-K(郭兆奎). Preliminary QTL analysis of several chemical components in flue-cured tobacco (Nicotiana tabacum L.). Acta Agron Sin (作物学报), 2008, 34(10): 1762–1769 (in Chinese with English absract)[26]Chen X-J(陈学军), Peng S-Y(彭双玉), Luo J-R(罗建蓉), Yang Y-M(杨彦明), Xiao B-G(肖炳光). Culture of regenerated seedlings from anthers and construction of DH populations of six cross combinations of Nicotiana tabacum. J Plant Resour & Environ (植物资源与环境学报), 2011, 20(1): 65–68 (in Chinese with English abstract)[27]Murry H G, Thomspon W F. Rapid isolation of weight DNA. Nucl Acids Res, 1980, 8: 4321–4322[28]Xu S-B(许绍斌), Tao Y-F(陶玉芬), Yang Z-Q(杨昭庆), Chu J(褚嘉). A simple and rapid methods used for silver staining and gel preservation. Heredtas (遗传), 2002, 24(3): 335–336 (in Chinese wit English abstract)[29]Van Ooijen J W. JoinMap 4.0, Software for the calculation of genetic linkage maps in experimental populations. Kyazma B V, Wageningen[30]Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457–1468[31]Doerge R W, Churchill G A. Permutation tests for multiple loci affecting a quantitative character. Genetics, 1996, 142: 285–294[32]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 14: 11–13[33]Voorrips R E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77–78 |
[1] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[2] | 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462. |
[3] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[6] | 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545. |
[7] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[8] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[9] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[10] | 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016. |
[11] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[14] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[15] | 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681. |
|