欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (08): 1407-1415.doi: 10.3724/SP.J.1006.2012.01407

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

烤烟6个农艺性状的QTL定位

童治军1,2,焦芳婵2,吴兴富2,王丰青1,陈学军2,李绪英2,3,高玉龙2,张谊寒2,肖炳光2,*,吴为人1,4,*   

  1. 1浙江大学农业与生物技术学院,浙江杭州 310058;2云南省烟草农业科学研究院,云南玉溪 653100;3云南农业大学农业与生物技术学院,云南昆明 650201;4福建农林大学生命科学学院,福建福州 350002
  • 收稿日期:2012-02-07 修回日期:2012-04-20 出版日期:2012-08-12 网络出版日期:2012-06-04

Mapping of Quantitative Trait Loci Underlying Six Agronomic Traits in Flue-Cured Tobacco (Nicotiana tabacum L.)

TONG Zhi-Jun1,2,JIAO Fang-Chan2,WU Xing-Fu2,WANG Feng-Qing1,CHEN Xue-Jun2,LI Xu-Ying2,3,GAO Yu-Long2,ZHANG Yi-Han2,XIAO Bing-Guang2,*,WU Wei-Ren1,4,*   

  1. 1 Department of Agronomy, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; 2 Yunnan Academy of Tobacco Agricultural Sciences, Yuxi 653100, China; 3 College of Agriculture & Biotechnology, Yunnan Agricultural University, Kunming 650201, China; 4 College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou 350002, China
  • Received:2012-02-07 Revised:2012-04-20 Published:2012-08-12 Published online:2012-06-04

摘要: 由于烟草的分子标记开发和遗传图谱构建十分困难,迄今烟草中有关数量性状基因座(QTL)的定位研究仍非常有限。本研究利用一个由207个株系组成的烤烟DH群体及基于该群体所构建的含有24个连锁群、611个SSR标记,总长为1 882.1 cM的遗传图谱,采用复合区间作图方法,对株高(PH)、茎围(SG)、节距(IL)、叶片数(LN)、最大腰叶长(LWL)和最大腰叶宽(WWL) 6个与叶片产量有关的农艺性状进行QTL定位分析。共检测到69个QTL,大部分QTL的效应值较小,仅有4个具有较大的效应值,可解释大约15%~20%的表型变异。6个性状之间大多彼此相关。与此相符,在基因组中发现存在许多小区域,每个区域包含两个或两个以上紧密连锁的不同性状的QTL。

关键词: 烤烟, 数量性状基因座, 遗传作图, 加倍单倍体, 产量

Abstract: Studies of genetic mapping of quantitative trait loci (QTLs) in tobacco have still been very limited up to date due to the difficulty of molecular marker development and genetic map construction in this species. In this study, with a doubled haploid (DH) population of flue-cured tobacco and a genetic map consisting of 611 SSR markers on 24 linkage groups (LGs) and spanning a total length of 1 882.1 cM constructed based on this population, QTL mapping was performed using the method of composite interval mapping for six agronomic traits related to leaf yield, including plant height (PH), stem girth (SG), internode length (IL), leaf number (LN), length of the largest waist leaf (LWL) and width of the largest waist leaf (WWL). A total of 69 QTLs were detected. Most of the QTLs had small effects, but there were four with relatively large effects, explaining 15–20% of the phenotypic variation in the DH population. The six traits were largely correlated with each other. Consistent with this, many small regions harboring two or more closely linked QTLs of different traits were found in the genome.

Key words: Flue-cured tobacco (Nicotiana tabacum L.), Quantitative trait locus (QTL), Gene

[1]Legg P D, Collins G B. Genetic parameters in a Ky 14 × Ky Ex 42 burley population of Nicotiana tabacum L. Theor Appl Genet, 1975, 45: 264–267

[2]White F H, Pandeya R S, Dirks V A. Correlation studies among and between agronomic, chemical, physical and smoke characteristics in flue-cured tobacco (Nicotiana tabaccum L.). Can J Plant Sci, 1979, 59:111–120

[3]Honarnejed R, Shoai-Deylami M. Gene effect, combining ability and correlation of characterstics in F2 populations of burley tobacco. J Sci Technol Agric Nat Resour, 2004, 8: 135–148

[4]Xiao B G, Zhu J, Lu X P, Bai Y F, Li Y P. Analysis on genetic contribution of agronomic traits to total sugar in flue-cured tobacco (Nicotiana tabacum L.). Field Crops Res, 2007, 102: 98–103

[5]Mohan M, Nair S, Bhagwat A, Krishna T G, Yano M, Bhatia C R, Sasaki T. Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed, 1997, 3: 87–103

[6]Ren N, Timko M P. ALFP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome, 2001, 44: 559–571

[7]Rossi L, Bindler G, Pijnenburg H, Isaac P G, Giraud-Henri I, Mahe M, Orvain C, Gadani F. Potential of molecular marker analysis for variety identification in processed tobacco. Plant Varieties Seeds, 2001, 14: 89–101

[8]Moon H S, Nicholson J S, Lewis R S. Use of transferable Nicotiana tabacum L. microsatellite markers for investigating genetic diversity in the genus Nicotiana. Genome, 2008, 51: 547–559

[9]Moon H S, Nicholson J S, Heineman A, Lion K, der Hoeven R V, Hayes A J, Lewis R S. Changes in genetic diversity of U.S. Flue-Cured tobacco germplasm over seven decades of cultivar development. Crop Sci, 2009, 49: 498–506

[10]Moon H S, Nifong J M, Nicholson J S, Heineman A, Lion K, der Hoeven R V, Hayes A J, Lewis R S. Microsatellite-based analysis of tobacco (Nicotiana tabacum L.) genetic resources. Crop Sci, 2009, 49: 2149–2157

[11]Bai D, Reeleder R, Brandle J E. Identification of two RAPD markers tightly linked with the Nicotiana debneyi gene for resistance to black root of tobacco. Theor Appl Genet, 1995, 91: 1184–1189

[12]Yi H Y, Rufty R C, Wernsman E A. Mapping the root-knot nematode resistance gene (Rk) in tobacco with RAPD markers. Plant Dis, 1998, 82: 1319–1322

[13]Noguchi S, Tajima T, Yamamoto Y, Ohno T, Kubo T. Deletion of a large genomic segment in tobacco varieties that are resistant to potato virus Y (PVY). Mol Gen Genet, 1999, 262: 822–829

[14]Johnson E S, Wolff M F, Wernsmann E A. Marker assisted selection for resistance to black shank disease in tobacco. Plant Dis, 2002, 12: 1303–1309

[15]Julio E, Denoyes R B, Verrier J L, de Borne F D. Detection of QTLs linked to leaf and smoke properties in Nicotiana tabacum based on a study of 114 recombinant inbred lines. Mol Breed, 2006, 18: 69–91

[16]Julio E, Verrier J L, de Borne F D. Development of SCAR markers linked to three disease resistances based on AFLP within Nicotiana tabacum L. Theor Appl Genet, 2006b,112: 335–346.

[17]Bindler G, Plieske J, Bakaher N, Gunduz I, Ivanov N, der Hoeven R V, Ganal M, Donini P. A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theor Appl Genet, 2011, 123: 219–230

[18]Nishi T, Tajima T, Noguchi S, Ajisaka H, Negishi H. Identification of DNA markers of tobacco linked to bacterial wilt resistance. Theor Appl Genet, 2003, 106: 765–770

[19]Vontimitta V, Lewis R S. Mapping of quantitative trait loci affecting resistance to Phytophthora nicotianae in tobacco (Nicotiana tabacum L.) line Beihart-1000. Mol Breed, 2012, 29: 89–98

[20]Vontimitta V, David A, Danehower, Steede T, Moon H S, Lewis R S. Analysis of a Nicotiana tabacum L. genomic region controlling two leaf surface chemistry traits. Agric Food Chem, 2010, 58: 294–300

[21]Vontimitta V, Lewis R S. Growth chamber evaluation of a tobacco ‘Beinhart 1000’ × ‘Hicks’ mapping population for quantitative trait loci affecting resistance to multiple races of Phytophthora nicotianae. Crop Sci, 2012, 52: 91–98

[22]Milla S R, Levin J S, Lewis R S, Rufty R C. RAPD and SCAR markers linked to an introgressed gene conditioning resistance to Peronospora tabacina D.B. Adam. in tobacco. Crop Sci, 2005, 45: 2346–2354

[23]Lewis R S, Milla S R, Kernodle S P. Analysis of an introgressed Nicotiana tomentosa genomic region affecting leaf number and correlated traits in Nicotiana tabacum. Theor Appl Genet, 2007, 114: 841–854

[24]Cai C-C(蔡长春), Chai L-G(柴利广), Wang Y(王毅), Xu F-S(徐芳森), Zhang J-J(张俊杰), Lin G-P(林国平). Construction of genetic linkage map of burley tobacco (Nicotiana tabacum L.) and genetic dissection of partial traits. Acta Agron Sin (作物学报), 2009, 35(9): 1646–1654 (in Chinese with English abstract)

[25]Xiao B-G(肖炳光), Lu X-P(卢秀萍), Jiao F-C(焦芳蝉), Li Y-P(李永平), Sun Y-H(孙玉合), Guo Z-K(郭兆奎). Preliminary QTL analysis of several chemical components in flue-cured tobacco (Nicotiana tabacum L.). Acta Agron Sin (作物学报), 2008, 34(10): 1762–1769 (in Chinese with English absract)

[26]Chen X-J(陈学军), Peng S-Y(彭双玉), Luo J-R(罗建蓉), Yang Y-M(杨彦明), Xiao B-G(肖炳光). Culture of regenerated seedlings from anthers and construction of DH populations of six cross combinations of Nicotiana tabacum. J Plant Resour & Environ (植物资源与环境学报), 2011, 20(1): 65–68 (in Chinese with English abstract)

[27]Murry H G, Thomspon W F. Rapid isolation of weight DNA. Nucl Acids Res, 1980, 8: 4321–4322

[28]Xu S-B(许绍斌), Tao Y-F(陶玉芬), Yang Z-Q(杨昭庆), Chu J(褚嘉). A simple and rapid methods used for silver staining and gel preservation. Heredtas (遗传), 2002, 24(3): 335–336 (in Chinese wit English abstract)

[29]Van Ooijen J W. JoinMap 4.0, Software for the calculation of genetic linkage maps in experimental populations. Kyazma B V, Wageningen

[30]Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457–1468

[31]Doerge R W, Churchill G A. Permutation tests for multiple loci affecting a quantitative character. Genetics, 1996, 142: 285–294

[32]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 14: 11–13

[33]Voorrips R E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77–78
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[11] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!