欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (08): 1397-1406.doi: 10.3724/SP.J.1006.2012.01397

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻叶色白化转绿及多分蘖矮秆基因hw-1(t)的图位克隆

郭涛**,黄永相**,黄宣,刘永柱,张建国,陈志强*,王慧*   

  1. 华南农业大学 / 国家植物航天育种工程技术研究中心, 广东广州510642
  • 收稿日期:2012-01-06 修回日期:2012-04-16 出版日期:2012-08-12 网络出版日期:2012-06-04
  • 通讯作者: 王慧, E-mail: wanghui@scau.edu.cn; 陈志强, E-mail: chenlin@scau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30771313)和国家科技支撑计划项目(2008BAD97B02)资助。

Map-Based Cloning of a Green-Revertible Albino and High-Tillering Dwarf Gene hw-1(t) in Rice

GUO Tao**,HUANG Yong-Xiang**,HUANG Xuan,LIU Yong-Zhu,WANG Hui,ZHANG Jian-Guo,CHEN Zhi-Qiang*,WANG Hui*   

  1. South China Agricultural University, National Engineering Research Center of Plant Space Breeding, Guangzhou 510642, China
  • Received:2012-01-06 Revised:2012-04-16 Published:2012-08-12 Published online:2012-06-04
  • Contact: 王慧, E-mail: wanghui@scau.edu.cn; 陈志强, E-mail: chenlin@scau.edu.cn

摘要: 通过增加作图群体的样本量, 将控制水稻白化转绿和多分蘖矮秆的基因hw-1(t)定位在第4染色体长臂2个InDel标记HW36和HW7之间24.9 kb的物理距离内, 该区域含有5个阅读框架。测序及酶切分析表明, 突变体hfa-1仅在LOC_Os04g57320产生一个碱基(G→A)的突变, 导致翻译提取终止, 推断LOC_Os04g57320为hw-1(t)。进一步分析发现hw-1(t)在水稻基因组中为单拷贝, 与拟南芥im和番茄PTOX基因同源性较高, 但在转录子和蛋白质结构上存在一定差异;基因表达分析显示HW-1(t)属组成型表达基因, 表达不受光照影响。

关键词: 水稻, 白化转绿, 多分蘖矮秆, hw-1(t), 克隆

Abstract: In this study, the green-revertible albino and high-tillering dwarf gene hw-1(t) was fine mapped with a 24.9 kb physical distance between two InDel markers, HW36 and HW7 on chromosome 5, where five open reading frames were predicted. Sequencing and restriction enzyme digestion analysis revealed hfa-1 mutant carried a single nucleotide substitution (G→A) in the putative gene LOC_Os4g57320, which resulted in a premature stop codon. Therefore, we deduced that LOC_Os4g57320 is hw-1(t). BLAST analysis indicated that hw-1(t) exits as a single copy in rice genome. Sequence alignment revealed that hw-1(t) was highly homologous to AtIM and SiPTOX, except some variation on transcript and protein structure. Gene expression analysis indicated HW-1(t) was constitutive gene, which did not be affected by light.

Key words: Rice (Oryza sativa L.), Green-revertible albino, High-tillering dwarf, hw-1(t), Cloning

[1]Beale S I. Green genes gleaned. Trends Plant Sci, 2005, 10: 301–312

[2]Morita R, Sato Y, Masuda Y, Nishimura M, Kusaba M. Defect in non-yellow coloring 3, an alpha/beta hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J, 2009, 59: 940–?952

[3]Terry M J, Kendrick R E. Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato. Plant Physiol, 1999, 119: 143?–152

[4]Chen G, Bi Y R, Li N. EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development. Plant J, 2005, 41: 364?–375

[5]Kushnir S, Babiychuk E, Storozhenko S, Davey M W, Papenbrock J, Rycke R D, Engler G, Stephan U W, Lange H, Kispal G, Lill R, Van M M. A mutation of the mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell, 2001, 13: 89?–100

[6]Wu Z, Zhang X, He B, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J. A chlorophyll-deficient rice mutant with impaired chlorophylide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40

[7]Jiang H, Li M, Liang N, Yan H, Wei Y, Xu X, Liu J, Xu Z, Chen F, Wu G. Molecular cloning and analysis of the stay green gene in rice. Plant J, 2007, 52: 197–209

[8]Park S Y, Yu J W, Park J S, Li J, Yoo SC, Lee N Y, Lee S K, Jeong S W, Seo H S, Koh H J, Jeon J S, Park Y I, Paek N C. The senescence-induced stay green protein regulates chlorophyll degradation. Plant Cell, 2007, 19: 1649–1664

[9]Fang J, Chai C, Qian Q, Li C, Tang J, Sun L, Huang Z, Guo X, Sun C, Liu M, Zhang Y, Lu Q, Wang Y, Lu C, Han B, Chen F, Cheng Z, Chu C. Mutations of genes in synthesis of the carotenoid precursors of ABA lead to preharvest sprouting and photo-oxidation in rice. Plant J, 2008, 54: 177–189

[10]Guo T(郭涛), Huang X(黄宣), Huang Y-X(黄永相), Liu Y-Z(刘永柱), Zhang J-G(张建国), Chen Z-Q(陈志强), Wang H(王慧). Characterizations of a mutant gene hw-1(t) for green-revertible albino, high tillering and dwarf in rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2012, 38(1): 23–35 (in Chinese with English abstract)

[11]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4325

[12]Kumar S, Tamura K, Jakobsen I B, Nei M. MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics, 2001, 17: 1244–1245

[13]Meijer H J G, Divecha N, van den Ende H, Munnik T. Hyperosmotic stress induces rapid synthesis of phosphatidyl-D-inositol 3,5-bisphosphate in plant cells. Planta, 1999, 208: 294–298

[14]Wilson M P, Sun Y, Cao L, Majerus P W. Inositol 1,3,4-trisphosphate 5/6-kinase is a protein kinase that phosphorylates the transcription factors c-Jun and ATF-2. J Biol Chem, 2001, 276: 40998–41004

[15]Ginalski K, Kinch L, Rychlewski L, Grishin N V. DCC proteins: a novel family of thiol-disulfide oxidoreductases. Trends Biochem Sci, 2004, 29: 339–342

[16]Nelson N, Perzov N, Cohen A, Hagai K, Padler V, Nelson H. The cellular biology of proton-motive force generation by V-ATPases. J Exp Biol, 2000, 203: 89–95

[17]Worley C K, Zenser N, Ramos J, Rouse D, Leyser O, Theologis A, Callis1 J. Degradation of Aux/IAA proteins is essential for normal auxin signaling. Plant J, 2000, 21: 553–562

[18]Dieterle M, Zhou Y C, Schafer E, Funk M, Kretsch T. EID1, an F-box protein involved in phytochrome A-specific light signaling. Genes Dev, 2001, 15: 939–944

[19]Carol P, Stevenson D, Bisanz, C, Breitenbach J, Sandmann G, Mache R, Coupland G, Kuntz M. Mutations in the Arabidopsis gene immutans cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell, 1999, 11: 57–68

[20]Wu D, Wright D A, Wetzel C, Voytas D F, Rodermel S. The IMMUTANS variegation locus of Arabidopsis defines a mitochondrial alternative oxidase homolog that functions during early chloroplast biogenesis. Plant Cell, 1999, 11: 43–55

[21]Josse E M, Simkin A J, Gaffé J, Labouré A M, Kuntz M, Carol P. A plastid terminal oxidase associated with carotenoid desaturation during chromoplast differentiation. Plant Physiol, 2000, 123: 1427–1436

[22]Barr J, White W S, Chen L, Bae H, Rodermel S. The GHOST terminal oxidase regulates developmental programming in tomato fruit. Plant Cell Environ, 2004, 27: 840–852

[23]Fu A, Aluru M, Rodermel S R. Conserved active site sequences in Arabidopsis plastid terminal oxidase (PTOX): in vitro and in planta mutagenesis studies. J Biol Chem, 2009, 284: 22625–22632

[24]Fu A, Park S, Rodermel S. Sequences required for the activity of PTOX (IMMUTANS), a plastid terminal oxidase: in vitro and in planta mutagenesis of iron-binding sites and a conserved sequence that corresponds to exon 8. J Biol Chem, 2005, 280: 42489–42496

[25]Wetzel C M, Jiang C Z, Meehan L J, Voytas D F, Rodermel S R. Nuclear-organelle interactions: the immutans variegation mutant of Arabidopsis is plastid autonomous and impaired in carotenoid biosynthesis. Plant J, 1994, 6: 161–175

[26]Aluru M, Bae H, Wu D, Rodermel S R. The Arabidopsis immutans mutation affects plastid differentiation and the morphogenesis of white and green sectors in variegated plants. Plant Physiol, 2001, 127: 67–77

[27]Beveridge C A, Kyozuka J. New genes in the strigolactone-related shoot branching pathway. Curr Opin Plant Biol, 2010, 13: 34–39

[28]Domagalska M A, Leyser O. Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol, 2011, 12: 211–221

[29]Wang Y, Li J. Branching in rice. Curr Opin Plant Biol, 2011, 14: 94–99
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[3] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[4] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[5] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[6] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[7] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[8] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[9] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[10] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[11] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[12] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[13] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[14] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[15] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!