作物学报 ›› 2020, Vol. 46 ›› Issue (02): 214-227.doi: 10.3724/SP.J.1006.2020.94067
霍强1,2,杨鸿1,2,陈志友1,2,荐红举1,2,曲存民1,2,卢坤1,2,李加纳1,2,*()
HUO Qiang1,2,YANG Hong1,2,CHEN Zhi-You1,2,JIAN Hong-Ju1,2,QU Cun-Min1,2,LU Kun1,2,LI Jia-Na1,2,*()
摘要:
株高和一次有效分枝高度是与甘蓝型油菜结荚层厚度、收获指数紧密关联的重要农艺性状, 有关株高的数量性状位点(quantitative trait locus, QTL)和全基因组关联分析(genome-wide association study, GWAS)已有很多报道, 但对一次有效分枝高度的QTL和GWAS定位以及候选基因筛选的研究报道较少。本研究利用已构建的高密度遗传连锁图对2016和2017年2个环境的186个株系组成的重组自交系群体株高和一次有效分枝高度及其最佳线性无偏预测(best linear unbiased prediction, BLUP)值进行QTL定位共检测到8个株高的QTL, 分别位于A03、A04和A09染色体, 单个QTL解释4.60%~13.29%的表型变异, 其中位于A04染色体上的QTL (q-2017PH-A04-2和q-BLUP-PH-A04-2)在2017年和BLUP中均被检测到; 检测到9个一次有效分枝高度QTL, 分别位于A01、A02、A05、A09、C01和C05染色体上, 单个QTL解释5.12%~19.10%的表型变异, 其中q-2017BH-A09-1、q-BLUP-BH-A09-2和q-BLUP-BH-A09-3有重叠区段。同时, 利用课题组前期完成的588份重测序自然群体进行全基因组关联分析, 2年共检测到与株高显著关联的50个SNP位点和与一次有效分枝高度显著关联的12个SNP位点; 根据SNP的物理位置, 筛选出参与细胞增殖、细胞扩增、细胞周期和细胞壁活动的13个株高候选基因, 以及参与赤霉素、亚精胺等合成代谢途径、核糖体组成和在光合、萌发等过程中有一定作用的一次分枝高度的11个候选基因, 并利用荧光定量PCR技术验证候选基因在极端材料中的表达情况。本研究结果将为油菜株型改良及后续基因的功能研究提供理论依据。
[1] |
Wang B, Smith S M, Li J . Genetic regulation of shoot architecture. Annu Rev Plant Biol, 2018,69:437-468.
doi: 10.1146/annurev-arplant-042817-040422 pmid: 29553800 |
[2] |
Cai G, Yang Q, Chen H, Yang Q, Zhang C, Fan C, Zhou Y . Genetic dissection of plant architecture and yield-related traits in Brassica napus. Sci Rep, 2016,6:21625.
doi: 10.1038/srep21625 pmid: 26880301 |
[3] |
Wang Y, Li J . Genes controlling plant architecture. Curr Opin Biotechnol, 2006,17:123-129.
doi: 10.1016/j.copbio.2006.02.004 pmid: 16504498 |
[4] |
Liu C, Wang J, Huang T, Wang F, Yuan F, Cheng X, Zhang Y, Shi S, Wu J, Liu K . A missense mutation in the VHYNP motif of a DELLA protein causes a semi-dwarf mutant phenotype in Brassica napus. Theor Appl Genet, 2010,121:249-258.
doi: 10.1007/s00122-010-1306-9 |
[5] |
Khush G S . Green revolution: the way forward. Nat Rev Genet, 2001,2:815.
doi: 10.1038/35093585 pmid: 11584298 |
[6] |
Dill A, Jung H S, Sun T P . The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc Natl Acad Sci USA, 2001,98:14162-14167.
doi: 10.1073/pnas.251534098 pmid: 11717468 |
[7] |
Peng J, Carol P, Richards D E, King K E, Cowling R J, Murphy G P, Harberd N P . TheArabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev, 1997,11:3194-3205.
doi: 10.1101/gad.11.23.3194 pmid: 9389651 |
[8] |
Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers S J, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas S G, Phillips A L, Hedden P . The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout theArabidopsis life cycle. Plant J, 2008,53:488-504.
doi: 10.1111/j.1365-313X.2007.03356.x pmid: 18069939 |
[9] |
Doebley J, Stec A, Hubbard L . The evolution of apical dominance in maize. Nature, 1997,386:485-488.
doi: 10.1038/386485a0 pmid: 9087405 |
[10] |
Lewis J M, Mackintosh C A, Shin S, Gilding E, Kravchenko S, Baldridge G, Zeyen R, Muehlbauer G J . Overexpression of the maizeTeosinte Branched1 gene in wheat suppresses tiller development. Plant Cell Rep, 2008,27:1217-1225.
doi: 10.1007/s00299-008-0543-8 |
[11] |
Schumacher K, Schmitt T, Rossberg M, Schmitz G, Theres K . The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proc Natl Acad Sci USA, 1999,96:290-295.
doi: 10.1073/pnas.96.1.290 pmid: 9874811 |
[12] |
Long J, Barton M K . Initiation of axillary and floral meristems in Arabidopsis. Dev Biol, 2000,218:341-353.
doi: 10.1006/dbio.1999.9572 pmid: 10656774 |
[13] |
Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J . Control of tillering in rice. Nature, 2003,422:618-621.
doi: 10.1038/nature01518 pmid: 12687001 |
[14] |
Schmitz G, Tillmann E, Carriero F, Fiore C, Cellini F, Theres K . The tomato Blind gene encodes a MYB transcription factor that controls the formation of lateral meristems. Proc Natl Acad Sci USA, 2002,99:1064-1069.
doi: 10.1073/pnas.022516199 pmid: 11805344 |
[15] | 付正莉, 刘蕊, 王宁宁, 朱克明, 陈松, 张洁夫, 谭小力 . 植物分枝发育调控的研究进展. 江苏农业科学, 2018,46(13):17-21. |
Fu Z L, Liu R, Wang N N, Zhu K M, Chen S, Zhang J F, Tan X L . Advances in research on regulation of plant branch development. Jiangsu Agric Sci, 2018,46(13):17-21 (in Chinese). | |
[16] |
Li H, Li J, Song J, Zhao B, Guo C, Wang B, Zhang Q, Wang J, King G J, Liu K . An auxin signaling gene BnaA3.IAA7 contributes to improved plant architecture and yield heterosis in rapeseed. New Phytol, 2018,222:837-851.
doi: 10.1111/nph.15632 pmid: 30536633 |
[17] |
Han K, Lee H Y, Ro N Y, Hur O S, Lee J H, Kwon J K, Kang B C . QTL mapping and GWAS reveal candidate genes controlling capsaicinoid content in Capsicum. Plant Biotechnol J, 2018,16:1546-1558.
doi: 10.1111/pbi.12894 pmid: 29406565 |
[18] | 王嘉, 荆凌云, 荐红举, 曲存民, 谌利, 李加纳, 刘列钊 . 甘蓝型油菜株高、第一分枝高和分枝数的QTL检测及候选基因筛选. 作物学报, 2018,41:1027-1038. |
Wang J, Jing L Y, Jian H J, Qu C M, Chen L, Li J N, Liu L Z . Quantitative trait loci mapping for plant height, the first branch height, and branch number and possible candidate genes screening inBrassica napus L. Acta Agron Sin, 2018,41:1027-1038 (in Chinese with English abstract). | |
[19] |
Zhao W, Wang X, Wang H, Tian J, Li B, Chen L, Chao H, Long Y, Xiang J, Gan J, Liang W, Li M . Genome-wide identification of QTL for seed yield and yield-related traits and construction of a high-density consensus map for QTL comparison in Brassica napus. Front Plant Sci, 2016,7:17.
doi: 10.3389/fpls.2016.00017 pmid: 26858737 |
[20] |
Luo Z, Wang M, Long Y, Huang Y, Shi L, Zhang C, Liu X, Fitt B D L, Xiang J, Mason A S, Snowdon R J, Liu P, Meng J, Zou J . Incorporating pleiotropic quantitative trait loci in dissection of complex traits: seed yield in rapeseed as an example. Theor Appl Genet, 2018,130:1569-1585.
doi: 10.1007/s00122-017-2911-7 pmid: 28455767 |
[21] |
贺亚军, 吴道明, 傅鹰, 钱伟 . 利用DH和IF2群体检测甘蓝型油菜株高相关性状QTL. 作物学报, 2018,44:533-541.
doi: 10.3724/SP.J.1006.2018.00533 |
He Y J, Wu D M, Fu Y, Qian W . Detection of QTLs for plant height related traits in Brassica napus L. using DH and immortalized F2 population. Acta Agron Sin, 2018,44:533-541 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00533 |
|
[22] |
Shen Y, Xiang Y, Xu E, Ge X, Li Z . Major co-localized QTL for plant height, branch initiation height, stem diameter, and flowering time in an alien introgression derivedBrassica napus DH population. Front Plant Sci, 2018,9:390.
doi: 10.3389/fpls.2018.00390 pmid: 29643859 |
[23] |
Zheng M, Peng C, Liu H, Tang M, Yang H, Li X, Liu J, Sun X, Wang X, Xu J, Hua W, Wang H . Genome-wide association study reveals candidate genes for control of plant height, branch initiation height and branch number in rapeseed (Brassica napus L.). Front Plant Sci, 2017,8:1246.
doi: 10.3389/fpls.2017.01246 pmid: 28769955 |
[24] |
Sun C, Wang B, Yan L, Hu K, Liu S, Zhou Y, Guan C, Zhang Z, Li J, Zhang J, Chen S, Wen J, Ma C, Tu J, Shen J, Fu T, Yi B . Genome-wide association study provides insight into the genetic control of plant height in rapeseed (Brassica napus L.). Front Plant Sci, 2016,7:1102.
doi: 10.3389/fpls.2016.01102 pmid: 27512396 |
[25] |
Li F, Chen B, Xu K, Gao G, Yan G, Qiao J, Li J, Li H, Li L, Xiao X, Zhang T, Nishio T, Wu X . A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). Plant Sci, 2016,242:169-177.
doi: 10.1016/j.plantsci.2015.05.012 pmid: 26566834 |
[26] |
Lu K, Wei L, Li X, Wang Y, Wu J, Liu M, Zhang C, Chen Z, Xiao Z, Jian H, Cheng F, Zhang K, Du H, Cheng X, Qu C, Qian W, Liu L, Wang R, Zou Q, Ying J, Xu X, Mei J, Liang Y, Chai Y R, Tang Z, Wan H, Ni Y, He Y, Lin N, Fan Y, Sun W, Li N N, Zhou G, Zheng H, Wang X, Paterson A H, Li J . Whole-genome resequencing revealsBrassica napus origin and genetic loci involved in its improvement. Nat Commun, 2019,10:1154.
doi: 10.1038/s41467-019-09134-9 pmid: 30858362 |
[27] | Wang S, Basten C, Zeng Z . Windows QTL Cartographer v2.5. Department of statistics, North Carolina State University, 2007, Raleigh, N C. |
[28] |
McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T . Report on QTL nomenclature. Rice Genet Newsl, 1997,14:11-13.
doi: 10.1007/s10142-013-0328-1 pmid: 23813016 |
[29] |
Yu J, Pressoir G, Briggs W H, Bi I V, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B . A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006,38:203-208.
doi: 10.1038/ng1702 pmid: 16380716 |
[30] |
Lu K, Xiao Z, Jian H, Peng L, Qu C, Fu M, He B, Tie L, Liang Y, Xu X, Li J . A combination of genome-wide association and transcriptome analysis reveals candidate genes controlling harvest index-related traits in Brassica napus. Sci Rep, 2016,6:36452.
doi: 10.1038/srep36452 pmid: 27811979 |
[31] |
Chalhoub B, Denoeud F, Liu S, Parkin I A P, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H D, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H D, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P . Early allopolyploid evolution in the post-NeolithicBrassica napus oilseed genome. Science, 2014,345:950-953.
doi: 10.1126/science.1253435 pmid: 25146293 |
[32] |
Raboanatahiry N, Chao H, Dalin H, Pu S, Yan W, Yu L, Wang B, Li M . QTL alignment for seed yield and yield related traits in Brassica napus. Front Plant Sci, 1997,9:1127.
doi: 10.3389/fpls.2018.01127 pmid: 30116254 |
[33] |
Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J . Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics, 2009,182:851-861.
doi: 10.1534/genetics.109.101642 pmid: 19414564 |
[34] |
Schultz C J, Johnson K L, Currie G, Bacic A . The classical arabinogalactan protein gene family of Arabidopsis. Plant Cell, 2000,12:1751-1768.
doi: 10.1105/tpc.12.9.1751 pmid: 11006345 |
[35] |
谢田田, 陈玉波, 黄吉祥, 张尧锋, 徐爱遐, 陈飞, 倪西源, 赵坚义 . 甘蓝型油菜不同发育时期株高QTL的动态分析. 作物学报, 2012,38:1802-1809.
doi: 10.3724/SP.J.1006.2012.01802 |
Xie T T, Chen Y B, Huang J X, Zhang Y F, Xu A X, Chen F, Ni X Y, Zhao J Y . Dynamic analysis of QTL for plant height of rapeseed at different developmental stages. Acta Agron Sin, 2012,38:1802-1809 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.01802 |
|
[36] |
Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S . Comprehensive comparison of Auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol, 1997,134:1555-1573.
doi: 10.1104/pp.103.034736 pmid: 15047898 |
[37] |
Lee D J, Park J W, Lee H W, Kim J . Genome-wide analysis of the auxin-responsive transcriptome downstream of iaa1 and its expression analysis reveal the diversity and complexity of auxin-regulated gene expression. J Exp Bot, 2009,60:3935-3957.
doi: 10.1093/jxb/erp230 pmid: 19654206 |
[38] |
Redman J C, Haas B J, Tanimoto G, Town C D . Development and evaluation of anArabidopsis whole genome Affymetrix probe array. Plant J, 2004,38:545-561.
doi: 10.1111/j.1365-313X.2004.02061.x pmid: 15086809 |
[39] |
Kim D W, Jeon S J, Hwang S M, Hong J C, Bahk J D . The C3H-type zinc finger protein GDS1/C3H42 is a nuclear-speckle-localized protein that is essential for normal growth and development in Arabidopsis. Plant Sci, 2016,250:141-153.
doi: 10.1016/j.plantsci.2016.06.010 pmid: 27457991 |
[40] |
Deeken R, Engelmann J C, Efetova M, Czirjak T, Muller T, Kaiser W M, Tietz O, Krischke M, Mueller M J, Palme K, Dandekar T, Hedrich R . An integrated view of gene expression and solute profiles ofArabidopsis tumors: a genome-wide approach. Plant Cell, 2006,18:3617-3634.
doi: 10.1105/tpc.106.044743 pmid: 17172353 |
[41] |
Shani Z, Dekel M, Roiz L, Horowitz M, Kolosovski N, Lapidot S, Alkan S, Koltai H, Tsabary G, Goren R, Shoseyov O . Expression of endo-1,4-beta-glucanase (cel1) inArabidopsis thaliana is associated with plant growth, xylem development and cell wall thickening. Plant Cell Rep, 2006,25:1067-1074.
doi: 10.1007/s00299-006-0167-9 |
[42] |
Xiong J, Cui X, Yuan X, Yu X, Sun J, Gong Q . The Hippo/STE20 homolog SIK1 interacts with MOB1 to regulate cell proliferation and cell expansion in Arabidopsis. J Exp Bot, 2016,67:1461-1475.
doi: 10.1093/jxb/erv538 pmid: 26685188 |
[43] |
Wang Z, Chen F, Li X, Cao H, Ding M, Zhang C, Zuo J, Xu C, Xu J, Deng X, Xiang Y, Soppe W J J, Liu Y . Arabidopsis seed germination speed is controlled by SNL histone deacetylase-binding factor-mediated regulation of AUX1. Nat Commun, 2016,7:13412.
doi: 10.1038/ncomms13412 pmid: 27834370 |
[44] |
Rashotte A M, Carson S D, To J P, Kieber J J . Expression profiling of cytokinin action in Arabidopsis. Plant Physiol, 2003,132:1998-2011.
doi: 10.1104/pp.103.021436 pmid: 12913156 |
[45] |
Hanzawa Y, Imai A, Michael A J, Komeda Y, Takahashi T . Characterization of the spermidine synthase-related gene family in Arabidopsis thaliana. FEBS Lett, 2002,527:176-180.
doi: 10.1016/s0014-5793(02)03217-9 pmid: 12220656 |
[46] |
Liu S, Jia J, Gao Y, Zhang B, Han Y . The AtTudor2, a protein with SN-Tudor domains, is involved in control of seed germination in Arabidopsis. Planta, 2010,232:197-207.
doi: 10.1007/s00425-010-1167-0 |
[47] |
Gao Y, Badejo A A, Sawa Y, Ishikawa T . Analysis of two L-galactono-1,4-lactone-responsive genes with complementary expression during the development of Arabidopsis thaliana. Plant Cell Physiol, 2012,53:592-601.
doi: 10.1093/pcp/pcs014 |
[48] |
Martinez D E, Borniego M L, Battchikova N, Aro E M, Tyystjarvi E, Guiamet J J . SASP, a Senescence-Associated Subtilisin Protease, is involved in reproductive development and determination of silique number in Arabidopsis. J Exp Bot, 2015,66:161-174.
doi: 10.1093/jxb/eru409 pmid: 25371504 |
[49] |
Wei H, Brunecky R, Donohoe B S, Ding S Y, Ciesielski P N, Yang S, Tucker M P, Himmel M E . Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: implications for the genetic engineering of bioenergy crops. Front Plant Sci, 2015,6:315.
doi: 10.3389/fpls.2015.00315 pmid: 26029221 |
[50] |
Gamboa A, Paez-Valencia J, Acevedo G F, Vazquez-Moreno L, Alvarez-Buylla R E . Floral transcription factor AGAMOUS interacts in vitro with a leucine-rich repeat and an acid phosphatase protein complex. Biochem Biophys Res Commun, 2001,288:1018-1026.
doi: 10.1006/bbrc.2001.5875 pmid: 11689012 |
[51] |
Torti S, Fornara F, Vincent C, Andres F, Nordstrom K, Gobel U, Knoll D, Schoof H, Coupland G . Analysis of the Arabidopsis shoot meristem transcriptome during floral transition identifies distinct regulatory patterns and a leucine-rich repeat protein that promotes flowering. Plant Cell, 2012,24:444-462.
doi: 10.1105/tpc.111.092791 |
[52] |
Acevedo F G, Gamboa A, Paéz-Valencia J, Jiménez-Garcı́a L F, Izaguirre-Sierra M, Alvarez-Buylla E R . FLOR1, a putative interaction partner of the floral homeotic protein AGAMOUS is a plant-specific intracellular LRR. Plant Sci, 2004,167:225-231.
doi: 10.1016/j.plantsci.2004.03.009 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[3] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[4] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[5] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[6] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[7] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[8] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[9] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[10] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[11] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[12] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[13] | 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196. |
[14] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[15] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
|