欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (02): 214-227.doi: 10.3724/SP.J.1006.2020.94067

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因

霍强1,2,杨鸿1,2,陈志友1,2,荐红举1,2,曲存民1,2,卢坤1,2,李加纳1,2,*()   

  1. 1 西南大学农学与生物科技学院 / 油菜工程研究中心, 重庆400715
    2 西南大学现代农业科学研究院, 重庆400715
  • 收稿日期:2019-04-28 接受日期:2019-08-09 出版日期:2020-02-12 网络出版日期:2019-09-02
  • 通讯作者: 李加纳
  • 作者简介:霍强, E-mail: 354011524@qq.com|杨鸿, E-mail: 583791495 @qq.com
  • 基金资助:
    本研究由重庆市民生工程主题专项(cstc2016shms-ztzx80020);国家自然科学基金-云南联合基金项目(U1302266);国家重点研发计划项目资助(2018YFD0100504-05)

Candidate genes screening for plant height and the first branch height based on QTL mapping and genome-wide association study in rapessed (Brassica napus L.)

HUO Qiang1,2,YANG Hong1,2,CHEN Zhi-You1,2,JIAN Hong-Ju1,2,QU Cun-Min1,2,LU Kun1,2,LI Jia-Na1,2,*()   

  1. 1 College of Agronomy and Biotechnology, Southwest University / Chongqing Engineering Research Center for Rapeseed, Chongqing 400715, China
    2 Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
  • Received:2019-04-28 Accepted:2019-08-09 Published:2020-02-12 Published online:2019-09-02
  • Contact: Jia-Na LI
  • Supported by:
    This study was supported by the Special Project of Chongqing People’s Livelihood(cstc2016shms-ztzx80020);the National-Yunnan United Natural Science Foundation of China(U1302266);the National Key Research and Development Plan(2018YFD0100504-05)

摘要:

株高和一次有效分枝高度是与甘蓝型油菜结荚层厚度、收获指数紧密关联的重要农艺性状, 有关株高的数量性状位点(quantitative trait locus, QTL)和全基因组关联分析(genome-wide association study, GWAS)已有很多报道, 但对一次有效分枝高度的QTL和GWAS定位以及候选基因筛选的研究报道较少。本研究利用已构建的高密度遗传连锁图对2016和2017年2个环境的186个株系组成的重组自交系群体株高和一次有效分枝高度及其最佳线性无偏预测(best linear unbiased prediction, BLUP)值进行QTL定位共检测到8个株高的QTL, 分别位于A03、A04和A09染色体, 单个QTL解释4.60%~13.29%的表型变异, 其中位于A04染色体上的QTL (q-2017PH-A04-2和q-BLUP-PH-A04-2)在2017年和BLUP中均被检测到; 检测到9个一次有效分枝高度QTL, 分别位于A01、A02、A05、A09、C01和C05染色体上, 单个QTL解释5.12%~19.10%的表型变异, 其中q-2017BH-A09-1、q-BLUP-BH-A09-2和q-BLUP-BH-A09-3有重叠区段。同时, 利用课题组前期完成的588份重测序自然群体进行全基因组关联分析, 2年共检测到与株高显著关联的50个SNP位点和与一次有效分枝高度显著关联的12个SNP位点; 根据SNP的物理位置, 筛选出参与细胞增殖、细胞扩增、细胞周期和细胞壁活动的13个株高候选基因, 以及参与赤霉素、亚精胺等合成代谢途径、核糖体组成和在光合、萌发等过程中有一定作用的一次分枝高度的11个候选基因, 并利用荧光定量PCR技术验证候选基因在极端材料中的表达情况。本研究结果将为油菜株型改良及后续基因的功能研究提供理论依据。

关键词: 甘蓝型油菜, 株高, 一次有效分枝高度, 基因定位, 候选基因筛选

Abstract:

Plant height (PH) and the first branch height (BH) are important agronomic traits closely related to thickness of pod canopy and harvest index of Brassica napus. There are many reports on quantitative trait locus (QTL) and genome-wide association study (GWAS) for PH, but few reports on QTL and GWAS localization and candidate gene screening for BH. In this study, QTLs for PH and BH using the 186 recombinant inbred lines (RIL) in the two environments of 2016 and 2017 were detected based on the high-density genetic linkage map. A total of eight PH QTLs located on chromosomes A03, A04, and A09 were detected in the two environments of 2016 and 2019, with the explained phenotypic variation of individual QTL range from 4.60% to 13.29%, among which overlapped QTLs (q-2017PH-A04-2 and q-BLUP-PH-A04-2) were detected both in 2017 and based on Best Linear Unbiased Prediction (BLUP). Nine BH QTLs located on chromosomes A01, A02, A05, A09, C01, and C05 were detected, in which a single QTL explained 5.12% to 19.10% of phenotypic variation. Among them, q-2017BH-A09-1, q-BLUP-BH-A09-2, and q-BLUP-BH-A09-3 were overlapped. GWAS for PH and BH was performed using 588 resequencing natural populations established by our previous study. A total of 50 SNPs associated with PH and 12 SNPs associated with BH were detected in two years. Thirteen PH candidate genes involved in cell proliferation, cell multiplication, cell cycle and cell wall activity and eleven BH candidate genes involved in the synthesis and metabolism of gibberellin and spermidine, ribosome composition, photosynthesis and germination were screened based on the physical locations of SNPs, and their expressions in extreme phenotypes by qRT-PCR. This result will provide a theoretical basis for improving plant architecture and subsequent functional studies of genes.

Key words: Brassica napus, plant height, first branch height, gene localization, candidate gene screening

表1

候选基因引物及其扩增产物"

基因名
Gene name
引物序列
Primer sequence (5°-3°)
BnaA03g47940D F: ATGGAGGCAATGAAGATGAAAC; R: GATAGACAAAGAAGCATCAGAG
BnaA07g28720D F: CAGCTTCTTCGCTTACAAGATC; R: ATGCTCGATGGCTTATACTCAA
BnaA07g28820D F: TTTTACTCGTCGTGCTTCTCTC; R: GACCTTCGAAAAACATGATGCT
BnaC06g30400D F: ACAAGAATAATCGTTCTGCTGC; R: CCAACAGTTTCACTCTTCAAGG
BnaC06g30410D F: TGGAAGCGTTACTGATTTGATG; R: TGAATATTGAGTGCAAGTAAGC
BnaA01g29630D F: ATAAAGACTCTATCGCGATCGG; R: ATCCAAGGAGCGATATTAGTGG
BnaA01g30830D F: ACTCTTTCGGTTCTTTTGTTGG; R: GTTTTGTTACGTCCGAAGAACA
BnaA02g31980D F: GACGATGTCAAGCTTATAAGCG; R: TAACCCCTAAACAAACCTCTCC
BnaA02g37010D F: TTCTTGAATTGGCAGAACGATC; R: CTTCCGTGACAACAACCTTTAG
BnaA09g48360D F: CAGTCAAAGCCATCCATGAAAA; R: CGAAGCTAATAGTGTGTTGGTG
BnaA09g49220D F: TTGCTTCTTTTGTCAACCTAGC; R: CAGAAACAGTGCATACAGCTAC
BnaC02g14570D F: GTGTTCTCAGGGAGATATCTCG; R: CACGAGGATCTTCAAATCCAAC

表2

两群体株高和一次有效分枝高度的表型数据"

性状
Trait
群体
Population
年份
Year
均值±标准差
Mean ± SD
范围
Range
变异系数
CV (%)
广义遗传力
h2 (%)
ZY821父本株高 RIL 2016 190.80±6.85
ZY821♂ PH 2017 184.33±11.74
GH06母本株高 RIL 2016 217.40±5.61
GH06♀ PH 2017 187.33±10.8
ZY821父本一次有效分枝高度 RIL 2016 86.25±5.35
ZY821♂ BH 2017 68.63±11.54
GH06母本一次有效分枝高度 RIL 2016 83.00±6.70
GH06♀ BH 2017 95.14±15.67
株高PH RIL 2016 213.82±11.20 187.0-241.6 5.24 75.45
2017 207.26±11.91 163.0-238.4 5.75
N 2016 211.84±18.15 162.2-259.0 8.57 87.42
2017 204.39±20.76 127.4-262.4 10.16
一次有效分枝高度BH RIL 2016 85.26±15.84 49.6-118.0 18.58 68.77
2017 82.85±14.69 50.1-123.6 17.73
N 2016 84.17±22.43 19.0-142.8 26.65 82.21
2017 82.90±23.09 11.0-141.1 27.86

图1

两群体株高和一次有效分枝高度的频次分布 PH: 株高; BH: 一次有效分枝高度; RIL: 重组自交系; N: 自然群体。"

图2

株高和一次有效分枝高度QTL在SNP连锁群上分布情况"

表3

在两年中检测到的株高和一次有效分枝高度QTL"

位点
QTL
染色体
Chr.
阈值
LOD score
加性效应
Additive effect
贡献率
R2 (%)
标记区间
SNP interval
物理区间
Physical position (bp)
环境
Environment
株高 PH
q-2016PH-A03-1 A03 2.87 4.27 13.29 SNP6093-SNP6075 18421721-18543828 2016
q-2016PH-A09-1 A09 3.51 -3.81 11.28 KS30880-H112B21-1 2016
q-2017PH-A04-1 A04 2.79 2.71 4.92 SNP8751-SNP8781 14085289-14244618 2017
q-2017PH-A04-2 A04 3.26 2.93 5.75 SNP8596-SNP8650 13373664-13531885 2017
q-2017PH-A09-1 A09 5.20 -5.58 9.63 SNP46371-SNP20466 22590345-23259990 2017
q-2017PH-A09-2 A09 4.16 -5.81 7.55 SNP20486-SNP20487 23517031-23521212 2017
q-2017PH-A09-3 A09 4.72 -5.40 8.51 SNP20492-SNP20496 23603951-23642701 2017
q-2017PH-A09-4 A09 4.31 -4.55 7.86 KS10551-KS10551 2017
q-BLUP-PH-A04-1 A04 4.25 1.43 7.60 SNP8701-SNP8801 13798050-14401987 BLUP
q-BLUP-PH-A04-2 A04 3.45 1.31 6.27 SNP8596-SNP8650 13373664-13531885 BLUP
q-BLUP-PH-A09-1 A09 2.60 -1.36 4.60 ENA22-niab_ssr003 BLUP
一次有效分枝高度 BH
q-2016BH-A02-1 A02 4.14 6.24 13.56 SNP3957-SNP3759 22556597-23778808 2016
q-2016BH-C05-1 C05 5.26 7.49 19.10 SNP26887-SNP26897 4224409-4258940 2016
q-2017BH-A01-1 A01 4.78 -5.53 9.15 SNP1148-SNP1370 17881769-19687948 2017
q-2017BH-A01-2 A01 3.08 -4.64 6.03 SNP47359-SNP1693 20189127-21190484 2017
q-2017BH-A09-1 A09 2.69 -3.46 5.36 SNP21394-SNP46209 32375997-32618214 2017
q-2017BH-C01-1 C01 6.16 6.22 12.17 SNP38247-SNP38236 11120369-11162114 2017
q-BLUP-BH-A05-1 A05 2.76 1.25 5.12 SNP11708-SNP11713 20293807-20374178 BLUP
q-BLUP-BH-A09-1 A09 4.60 -1.66 9.32 SNP21425-SNP21477 32728408-33029776 BLUP
q-BLUP-BH-A09-2 A09 6.52 -1.95 13.09 SNP21413-SNP21402 32435925-32608817 BLUP
q-BLUP-BH-A09-3 A09 4.62 -1.64 9.48 SNP21405-SNP21415 32514368-32619386 BLUP
q-BLUP-BH-C05-1 C05 2.77 1.23 5.51 SNP44674-SNP47114 11206177-11417643 BLUP

图3

2年株高和一次有效分枝高度在各模型下的QQ图及最佳模型下的Manhattan图 PH:株高; BH: - -次有效分枝高度; BLUP:最佳线性无偏预测。"

附表1

最佳模型下株高和一次有效分枝高度显著位点表"

性状
Trait
环境
Env.
模型
Model
位点
SNP
染色体
Chr.
位置
Position
域值
-lg (P)
贡献率
R2 (%)
PH 2016 K+PCA S3_24415510 A03 24415510 5.69 20.05
2017 K+PCA S2_4664084 A02 4664084 5.84 6.72
S7_19604035 A07 19604035 6.24 7.41
S7_19609237 A07 19609237 6.01 6.81
S7_19665408 A07 19665408 5.85 7.06
S7_19781536 A07 19781536 5.87 7.36
S7_19889261 A07 19889261 5.64 7.20
S7_19890772 A07 19890772 5.66 6.94
S7_19902486 A07 19902486 5.77 7.52
S7_19993228 A07 19993228 5.63 6.59
S7_19993448 A07 19993448 6.07 6.88
S7_19993458 A07 19993458 5.69 6.42
S7_19994131 A07 19994131 6.45 7.69
S7_19997901 A07 19997901 5.71 6.67
S7_19998470 A07 19998470 6.37 7.52
S7_19999615 A07 19999615 6.07 7.05
S7_19999649 A07 19999649 5.63 7.52
S7_20000927 A07 20000927 6.31 7.47
S7_20003694 A07 20003694 5.79 6.83
S7_20005472 A07 20005472 6.67 7.80
S7_20006012 A07 20006012 6.50 7.73
S7_20006528 A07 20006528 5.87 7.09
S7_20009397 A07 20009397 5.86 6.67
S7_20009417 A07 20009417 6.19 7.04
S7_20033861 A07 20033861 6.11 6.88
S7_20050137 A07 20050137 5.96 8.10
S7_20050232 A07 20050232 6.22 7.74
S7_20053742 A07 20053742 6.72 7.72
S7_20056543 A07 20056543 5.65 6.53
S7_20079034 A07 20079034 5.76 7.36
S7_20107214 A07 20107214 7.69 9.22
S7_20107455 A07 20107455 6.40 7.44
S7_20107531 A07 20107531 6.31 8.24
S7_20108117 A07 20108117 5.75 6.74
S7_20125834 A07 20125834 6.37 7.28
S7_20144336 A07 20144336 6.16 7.20
S7_20154451 A07 20154451 6.42 8.22
S7_20160199 A07 20160199 5.84 7.20
S7_20171415 A07 20171415 5.87 6.65
S7_20171839 A07 20171839 6.46 7.34
S7_20178594 A07 20178594 6.55 7.85
S7_20178844 A07 20178844 6.23 7.54
S7_20178851 A07 20178851 5.93 7.18
S7_20186093 A07 20186093 5.79 6.56
S7_20188262 A07 20188262 5.83 6.87
S7_20207662 A07 20207662 5.72 6.70
S7_20547520 A07 20547520 5.71 6.83
S16_30960716 C06 30960716 6.60 7.81
S16_30960741 C06 30960741 7.02 8.31
S16_31108747 C06 31108747 5.89 6.78
BLUP K+PCA S2_4664084 A02 4664084 6.36 7.07
S2_5390778 A02 5390778 5.90 7.03
S7_19604035 A07 19604035 6.64 7.71
S7_19607230 A07 19607230 6.02 6.75
S7_19609237 A07 19609237 5.96 6.47
S7_19665408 A07 19665408 6.05 6.92
S7_19749218 A07 19749218 6.29 7.29
S7_19781536 A07 19781536 6.10 7.37
S7_19856864 A07 19856864 5.73 6.34
S7_19889261 A07 19889261 5.75 7.08
S7_19902486 A07 19902486 5.92 7.19
S7_19902495 A07 19902495 5.69 7.19
S7_19902618 A07 19902618 5.59 6.50
S7_19911177 A07 19911177 5.83 6.72
S7_19923829 A07 19923829 5.68 6.33
S7_19923850 A07 19923850 5.84 6.42
S7_19989673 A07 19989673 5.61 6.35
S7_19993448 A07 19993448 6.07 6.54
S7_19993458 A07 19993458 5.61 6.01
S7_19994131 A07 19994131 6.02 6.74
S7_19997901 A07 19997901 6.04 6.71
S7_19998042 A07 19998042 5.80 6.38
S7_19998470 A07 19998470 5.88 6.50
S7_19999615 A07 19999615 6.09 6.66
S7_20000927 A07 20000927 6.31 7.10
S7_20003694 A07 20003694 6.14 6.84
S7_20005472 A07 20005472 6.76 7.50
S7_20006012 A07 20006012 6.97 7.94
S7_20006186 A07 20006186 5.73 6.36
S7_20006210 A07 20006210 5.77 6.38
S7_20006234 A07 20006234 5.81 6.73
S7_20006528 A07 20006528 6.10 7.05
S7_20008610 A07 20008610 5.71 6.89
S7_20009397 A07 20009397 6.23 6.79
S7_20009417 A07 20009417 6.59 7.15
S7_20030774 A07 20030774 5.75 6.16
S7_20050137 A07 20050137 6.12 7.78
S7_20050232 A07 20050232 6.84 8.25
S7_20050979 A07 20050979 5.61 6.24
S7_20053742 A07 20053742 6.52 7.07
S7_20057981 A07 20057981 5.77 7.00
S7_20082865 A07 20082865 5.76 7.54
S7_20107214 A07 20107214 7.94 8.87
S7_20107455 A07 20107455 6.83 7.64
S7_20107531 A07 20107531 7.26 9.02
S7_20108117 A07 20108117 5.95 6.64
S7_20125834 A07 20125834 6.23 6.77
S7_20144336 A07 20144336 6.62 7.31
S7_20154451 A07 20154451 6.55 7.99
S7_20160199 A07 20160199 6.36 7.53
S7_20171415 A07 20171415 6.24 6.68
S7_20171839 A07 20171839 6.30 6.80
S7_20178594 A07 20178594 6.59 7.55
S7_20178844 A07 20178844 5.93 6.86
S7_20186093 A07 20186093 6.22 6.69
S7_20188262 A07 20188262 6.11 6.84
S7_20198799 A07 20198799 5.65 6.49
S7_20207662 A07 20207662 5.79 6.43
S7_20429083 A07 20429083 5.63 6.38
S7_20547520 A07 20547520 6.69 7.75
S7_20567053 A07 20567053 5.67 6.06
S12_38247607 C02 38247607 5.70 6.43
S16_30166343 C06 30166343 5.96 6.92
S16_30650628 C06 30650628 5.62 6.27
S16_30960716 C06 30960716 6.66 7.47
S16_30960741 C06 30960741 7.24 8.08
S16_31108747 C06 31108747 6.36 6.99
BH 2016 K S13_3400444 C03 3400444 5.67 16.87
S13_12620221 C03 12620221 5.70 16.89
S14_36535069 C04 36535069 5.76 18.36
S19_41983822 C09 41983822 5.75 17.28
2017 K+PCA S2_1549097 A02 1549097 5.80 7.63
S2_1553600 A02 1553600 6.39 7.73
S2_5424292 A02 5424292 6.14 7.01
S2_5503092 A02 5503092 6.19 7.32
S2_5827516 A02 5827516 6.66 7.95
S2_6130942 A02 6130942 5.76 7.02
S12_10249838 C02 10249838 6.06 6.23
S15_7059739 C05 7059739 5.92 6.80
BLUP K+PCA S2_1553600 A02 1553600 5.81 6.55
S2_5503092 A02 5503092 6.09 6.83
S2_5827516 A02 5827516 6.81 7.69
S2_9351215 A02 9351215 5.98 6.95
S2_9351221 A02 9351221 5.89 6.82
S12_10249838 C02 10249838 5.62 6.32
S15_7059739 C05 7059739 6.00 6.49

表4

株高和一次有效分枝高度候选基因"

基因
Gene
物理位置
Physical position
拟南芥同源基因
Homologs
in A. thaliana
功能注释
Functional annotation
株高PH
BnaA02g09200D A02:4555438-4557323 AT5G55180 O-Glycosyl hydrolases family 17 protein (MCO15.13)
BnaA02g09270D A02:4576434-4582446 AT5G55120 GDP-L-galactose phosphorylase VITAMIN C DEFECTIVE 5 (VTC5)
BnaA03g47940D A03:24664280-24664459 AT4G26320 Arabinogalactan protein 13 (AGP13)
BnaA04g17050D A04:13894646-13897338 AT5G65940 Beta-hydroxyisobutyryl-CoA hydrolase 1 (CHY1)
BnaA04g17120D A04:13961721-13963012 AT2G29350 Senescence-associated gene 13 (SAG13)
BnaA04g17490D A04:14227152-14227949 AT2G30370 Allergen-like protein (CHAL)
BnaA07g27280D A07:19859720-19860312 AT1G68590 Ribosomal protein PSRP-3/Ycf65
BnaA07g28720D A07:20705370-20707220 AT1G70210 CYCD1;1/CYCLIN D1;1
BnaA07g28820D A07:20767232-20773649 AT1G70710 Glycosyl hydrolase 9B1 (GH9B1)
BnaC02g35320D C02:38070292-38074778 AT2G04030 Chaperone protein htpG family protein (CR88)
BnaC06g30260D C06:31058017-31061313 AT1G68580 Agenet domain-containing protein / bromo-adjacent homology (BAH) domain-containing protein (F24J5.18)
BnaC06g30400D C06:31172511-31173663 AT1G69220 Protein kinase superfamily protein (SIK1)
BnaC06g30410D C06:31173893-31177895 AT1G69220 Protein kinase superfamily protein (SIK1)
一次有效分枝高度BH
BnaA01g25960D A01:18111689-18112090 AT3G47370 Ribosomal protein S10p/S20e family protein (RPS20B)
BnaA01g27550D A01:19232447-19236961 AT3G16840 P-loop containing nucleoside triphosphate hydrolases superfamily protein (RH13)
BnaA01g28120D A01:19629034-19630394 AT3G16240 Delta tonoplast integral protein (DELTA-TIP)
BnaA01g29630D A01:20485424-20487751 AT3G14067 Subtilase family protein (SASP)
BnaA01g30830D A01:21042542-21043677 AT3G12145 Leucine-rich repeat (LRR) family protein (FLOR1)
BnaA02g37010D A02:1536206-1537938 AT5G61780 TUDOR-SN protein 2 (Tudor2)
BnaA02g31980D A02:23032463-23034656 AT5G25460 Transmembrane protein, putative (Protein of unknown function, DUF642) (DGR2)
BnaA09g48360D A09:32409788-32410789 AT1G09580 Emp24/gp25L/p24 family/GOLD family protein (F14J9.28)
BnaA09g49220D A09:32795595-32796344 AT1G07830 Ribosomal protein L29 family protein (F24B9.7)
BnaC02g14570D C02:10095432-10098417 AT5G53120 Spermidine synthase 3 (SPDS3)
BnaC02g14600D C02:10119161-10122317 AT5G53090 NAD(P)-binding Rossmann-fold superfamily protein (MFH8.1)

图4

株高候选基因在茎尖中的相对表达量 误差线表示3次生物学重复的标准差。*和**分别表示基因在不同材料茎尖中的表达水平有显著(P < 0.05)和极显著(P < 0.01)差异。"

图5

一次有效分枝高度候选基因在茎尖中的相对表达量 误差线表示3次生物学重复的标准差。*和**分别表示基因在不同材料茎尖中的表达水平有显著(P < 0.05)和极显著(P < 0.01)差异。"

[1] Wang B, Smith S M, Li J . Genetic regulation of shoot architecture. Annu Rev Plant Biol, 2018,69:437-468.
doi: 10.1146/annurev-arplant-042817-040422 pmid: 29553800
[2] Cai G, Yang Q, Chen H, Yang Q, Zhang C, Fan C, Zhou Y . Genetic dissection of plant architecture and yield-related traits in Brassica napus. Sci Rep, 2016,6:21625.
doi: 10.1038/srep21625 pmid: 26880301
[3] Wang Y, Li J . Genes controlling plant architecture. Curr Opin Biotechnol, 2006,17:123-129.
doi: 10.1016/j.copbio.2006.02.004 pmid: 16504498
[4] Liu C, Wang J, Huang T, Wang F, Yuan F, Cheng X, Zhang Y, Shi S, Wu J, Liu K . A missense mutation in the VHYNP motif of a DELLA protein causes a semi-dwarf mutant phenotype in Brassica napus. Theor Appl Genet, 2010,121:249-258.
doi: 10.1007/s00122-010-1306-9
[5] Khush G S . Green revolution: the way forward. Nat Rev Genet, 2001,2:815.
doi: 10.1038/35093585 pmid: 11584298
[6] Dill A, Jung H S, Sun T P . The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc Natl Acad Sci USA, 2001,98:14162-14167.
doi: 10.1073/pnas.251534098 pmid: 11717468
[7] Peng J, Carol P, Richards D E, King K E, Cowling R J, Murphy G P, Harberd N P . TheArabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev, 1997,11:3194-3205.
doi: 10.1101/gad.11.23.3194 pmid: 9389651
[8] Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers S J, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas S G, Phillips A L, Hedden P . The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout theArabidopsis life cycle. Plant J, 2008,53:488-504.
doi: 10.1111/j.1365-313X.2007.03356.x pmid: 18069939
[9] Doebley J, Stec A, Hubbard L . The evolution of apical dominance in maize. Nature, 1997,386:485-488.
doi: 10.1038/386485a0 pmid: 9087405
[10] Lewis J M, Mackintosh C A, Shin S, Gilding E, Kravchenko S, Baldridge G, Zeyen R, Muehlbauer G J . Overexpression of the maizeTeosinte Branched1 gene in wheat suppresses tiller development. Plant Cell Rep, 2008,27:1217-1225.
doi: 10.1007/s00299-008-0543-8
[11] Schumacher K, Schmitt T, Rossberg M, Schmitz G, Theres K . The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proc Natl Acad Sci USA, 1999,96:290-295.
doi: 10.1073/pnas.96.1.290 pmid: 9874811
[12] Long J, Barton M K . Initiation of axillary and floral meristems in Arabidopsis. Dev Biol, 2000,218:341-353.
doi: 10.1006/dbio.1999.9572 pmid: 10656774
[13] Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J . Control of tillering in rice. Nature, 2003,422:618-621.
doi: 10.1038/nature01518 pmid: 12687001
[14] Schmitz G, Tillmann E, Carriero F, Fiore C, Cellini F, Theres K . The tomato Blind gene encodes a MYB transcription factor that controls the formation of lateral meristems. Proc Natl Acad Sci USA, 2002,99:1064-1069.
doi: 10.1073/pnas.022516199 pmid: 11805344
[15] 付正莉, 刘蕊, 王宁宁, 朱克明, 陈松, 张洁夫, 谭小力 . 植物分枝发育调控的研究进展. 江苏农业科学, 2018,46(13):17-21.
Fu Z L, Liu R, Wang N N, Zhu K M, Chen S, Zhang J F, Tan X L . Advances in research on regulation of plant branch development. Jiangsu Agric Sci, 2018,46(13):17-21 (in Chinese).
[16] Li H, Li J, Song J, Zhao B, Guo C, Wang B, Zhang Q, Wang J, King G J, Liu K . An auxin signaling gene BnaA3.IAA7 contributes to improved plant architecture and yield heterosis in rapeseed. New Phytol, 2018,222:837-851.
doi: 10.1111/nph.15632 pmid: 30536633
[17] Han K, Lee H Y, Ro N Y, Hur O S, Lee J H, Kwon J K, Kang B C . QTL mapping and GWAS reveal candidate genes controlling capsaicinoid content in Capsicum. Plant Biotechnol J, 2018,16:1546-1558.
doi: 10.1111/pbi.12894 pmid: 29406565
[18] 王嘉, 荆凌云, 荐红举, 曲存民, 谌利, 李加纳, 刘列钊 . 甘蓝型油菜株高、第一分枝高和分枝数的QTL检测及候选基因筛选. 作物学报, 2018,41:1027-1038.
Wang J, Jing L Y, Jian H J, Qu C M, Chen L, Li J N, Liu L Z . Quantitative trait loci mapping for plant height, the first branch height, and branch number and possible candidate genes screening inBrassica napus L. Acta Agron Sin, 2018,41:1027-1038 (in Chinese with English abstract).
[19] Zhao W, Wang X, Wang H, Tian J, Li B, Chen L, Chao H, Long Y, Xiang J, Gan J, Liang W, Li M . Genome-wide identification of QTL for seed yield and yield-related traits and construction of a high-density consensus map for QTL comparison in Brassica napus. Front Plant Sci, 2016,7:17.
doi: 10.3389/fpls.2016.00017 pmid: 26858737
[20] Luo Z, Wang M, Long Y, Huang Y, Shi L, Zhang C, Liu X, Fitt B D L, Xiang J, Mason A S, Snowdon R J, Liu P, Meng J, Zou J . Incorporating pleiotropic quantitative trait loci in dissection of complex traits: seed yield in rapeseed as an example. Theor Appl Genet, 2018,130:1569-1585.
doi: 10.1007/s00122-017-2911-7 pmid: 28455767
[21] 贺亚军, 吴道明, 傅鹰, 钱伟 . 利用DH和IF2群体检测甘蓝型油菜株高相关性状QTL. 作物学报, 2018,44:533-541.
doi: 10.3724/SP.J.1006.2018.00533
He Y J, Wu D M, Fu Y, Qian W . Detection of QTLs for plant height related traits in Brassica napus L. using DH and immortalized F2 population. Acta Agron Sin, 2018,44:533-541 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00533
[22] Shen Y, Xiang Y, Xu E, Ge X, Li Z . Major co-localized QTL for plant height, branch initiation height, stem diameter, and flowering time in an alien introgression derivedBrassica napus DH population. Front Plant Sci, 2018,9:390.
doi: 10.3389/fpls.2018.00390 pmid: 29643859
[23] Zheng M, Peng C, Liu H, Tang M, Yang H, Li X, Liu J, Sun X, Wang X, Xu J, Hua W, Wang H . Genome-wide association study reveals candidate genes for control of plant height, branch initiation height and branch number in rapeseed (Brassica napus L.). Front Plant Sci, 2017,8:1246.
doi: 10.3389/fpls.2017.01246 pmid: 28769955
[24] Sun C, Wang B, Yan L, Hu K, Liu S, Zhou Y, Guan C, Zhang Z, Li J, Zhang J, Chen S, Wen J, Ma C, Tu J, Shen J, Fu T, Yi B . Genome-wide association study provides insight into the genetic control of plant height in rapeseed (Brassica napus L.). Front Plant Sci, 2016,7:1102.
doi: 10.3389/fpls.2016.01102 pmid: 27512396
[25] Li F, Chen B, Xu K, Gao G, Yan G, Qiao J, Li J, Li H, Li L, Xiao X, Zhang T, Nishio T, Wu X . A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). Plant Sci, 2016,242:169-177.
doi: 10.1016/j.plantsci.2015.05.012 pmid: 26566834
[26] Lu K, Wei L, Li X, Wang Y, Wu J, Liu M, Zhang C, Chen Z, Xiao Z, Jian H, Cheng F, Zhang K, Du H, Cheng X, Qu C, Qian W, Liu L, Wang R, Zou Q, Ying J, Xu X, Mei J, Liang Y, Chai Y R, Tang Z, Wan H, Ni Y, He Y, Lin N, Fan Y, Sun W, Li N N, Zhou G, Zheng H, Wang X, Paterson A H, Li J . Whole-genome resequencing revealsBrassica napus origin and genetic loci involved in its improvement. Nat Commun, 2019,10:1154.
doi: 10.1038/s41467-019-09134-9 pmid: 30858362
[27] Wang S, Basten C, Zeng Z . Windows QTL Cartographer v2.5. Department of statistics, North Carolina State University, 2007, Raleigh, N C.
[28] McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T . Report on QTL nomenclature. Rice Genet Newsl, 1997,14:11-13.
doi: 10.1007/s10142-013-0328-1 pmid: 23813016
[29] Yu J, Pressoir G, Briggs W H, Bi I V, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B . A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006,38:203-208.
doi: 10.1038/ng1702 pmid: 16380716
[30] Lu K, Xiao Z, Jian H, Peng L, Qu C, Fu M, He B, Tie L, Liang Y, Xu X, Li J . A combination of genome-wide association and transcriptome analysis reveals candidate genes controlling harvest index-related traits in Brassica napus. Sci Rep, 2016,6:36452.
doi: 10.1038/srep36452 pmid: 27811979
[31] Chalhoub B, Denoeud F, Liu S, Parkin I A P, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H D, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H D, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P . Early allopolyploid evolution in the post-NeolithicBrassica napus oilseed genome. Science, 2014,345:950-953.
doi: 10.1126/science.1253435 pmid: 25146293
[32] Raboanatahiry N, Chao H, Dalin H, Pu S, Yan W, Yu L, Wang B, Li M . QTL alignment for seed yield and yield related traits in Brassica napus. Front Plant Sci, 1997,9:1127.
doi: 10.3389/fpls.2018.01127 pmid: 30116254
[33] Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J . Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics, 2009,182:851-861.
doi: 10.1534/genetics.109.101642 pmid: 19414564
[34] Schultz C J, Johnson K L, Currie G, Bacic A . The classical arabinogalactan protein gene family of Arabidopsis. Plant Cell, 2000,12:1751-1768.
doi: 10.1105/tpc.12.9.1751 pmid: 11006345
[35] 谢田田, 陈玉波, 黄吉祥, 张尧锋, 徐爱遐, 陈飞, 倪西源, 赵坚义 . 甘蓝型油菜不同发育时期株高QTL的动态分析. 作物学报, 2012,38:1802-1809.
doi: 10.3724/SP.J.1006.2012.01802
Xie T T, Chen Y B, Huang J X, Zhang Y F, Xu A X, Chen F, Ni X Y, Zhao J Y . Dynamic analysis of QTL for plant height of rapeseed at different developmental stages. Acta Agron Sin, 2012,38:1802-1809 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.01802
[36] Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S . Comprehensive comparison of Auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol, 1997,134:1555-1573.
doi: 10.1104/pp.103.034736 pmid: 15047898
[37] Lee D J, Park J W, Lee H W, Kim J . Genome-wide analysis of the auxin-responsive transcriptome downstream of iaa1 and its expression analysis reveal the diversity and complexity of auxin-regulated gene expression. J Exp Bot, 2009,60:3935-3957.
doi: 10.1093/jxb/erp230 pmid: 19654206
[38] Redman J C, Haas B J, Tanimoto G, Town C D . Development and evaluation of anArabidopsis whole genome Affymetrix probe array. Plant J, 2004,38:545-561.
doi: 10.1111/j.1365-313X.2004.02061.x pmid: 15086809
[39] Kim D W, Jeon S J, Hwang S M, Hong J C, Bahk J D . The C3H-type zinc finger protein GDS1/C3H42 is a nuclear-speckle-localized protein that is essential for normal growth and development in Arabidopsis. Plant Sci, 2016,250:141-153.
doi: 10.1016/j.plantsci.2016.06.010 pmid: 27457991
[40] Deeken R, Engelmann J C, Efetova M, Czirjak T, Muller T, Kaiser W M, Tietz O, Krischke M, Mueller M J, Palme K, Dandekar T, Hedrich R . An integrated view of gene expression and solute profiles ofArabidopsis tumors: a genome-wide approach. Plant Cell, 2006,18:3617-3634.
doi: 10.1105/tpc.106.044743 pmid: 17172353
[41] Shani Z, Dekel M, Roiz L, Horowitz M, Kolosovski N, Lapidot S, Alkan S, Koltai H, Tsabary G, Goren R, Shoseyov O . Expression of endo-1,4-beta-glucanase (cel1) inArabidopsis thaliana is associated with plant growth, xylem development and cell wall thickening. Plant Cell Rep, 2006,25:1067-1074.
doi: 10.1007/s00299-006-0167-9
[42] Xiong J, Cui X, Yuan X, Yu X, Sun J, Gong Q . The Hippo/STE20 homolog SIK1 interacts with MOB1 to regulate cell proliferation and cell expansion in Arabidopsis. J Exp Bot, 2016,67:1461-1475.
doi: 10.1093/jxb/erv538 pmid: 26685188
[43] Wang Z, Chen F, Li X, Cao H, Ding M, Zhang C, Zuo J, Xu C, Xu J, Deng X, Xiang Y, Soppe W J J, Liu Y . Arabidopsis seed germination speed is controlled by SNL histone deacetylase-binding factor-mediated regulation of AUX1. Nat Commun, 2016,7:13412.
doi: 10.1038/ncomms13412 pmid: 27834370
[44] Rashotte A M, Carson S D, To J P, Kieber J J . Expression profiling of cytokinin action in Arabidopsis. Plant Physiol, 2003,132:1998-2011.
doi: 10.1104/pp.103.021436 pmid: 12913156
[45] Hanzawa Y, Imai A, Michael A J, Komeda Y, Takahashi T . Characterization of the spermidine synthase-related gene family in Arabidopsis thaliana. FEBS Lett, 2002,527:176-180.
doi: 10.1016/s0014-5793(02)03217-9 pmid: 12220656
[46] Liu S, Jia J, Gao Y, Zhang B, Han Y . The AtTudor2, a protein with SN-Tudor domains, is involved in control of seed germination in Arabidopsis. Planta, 2010,232:197-207.
doi: 10.1007/s00425-010-1167-0
[47] Gao Y, Badejo A A, Sawa Y, Ishikawa T . Analysis of two L-galactono-1,4-lactone-responsive genes with complementary expression during the development of Arabidopsis thaliana. Plant Cell Physiol, 2012,53:592-601.
doi: 10.1093/pcp/pcs014
[48] Martinez D E, Borniego M L, Battchikova N, Aro E M, Tyystjarvi E, Guiamet J J . SASP, a Senescence-Associated Subtilisin Protease, is involved in reproductive development and determination of silique number in Arabidopsis. J Exp Bot, 2015,66:161-174.
doi: 10.1093/jxb/eru409 pmid: 25371504
[49] Wei H, Brunecky R, Donohoe B S, Ding S Y, Ciesielski P N, Yang S, Tucker M P, Himmel M E . Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: implications for the genetic engineering of bioenergy crops. Front Plant Sci, 2015,6:315.
doi: 10.3389/fpls.2015.00315 pmid: 26029221
[50] Gamboa A, Paez-Valencia J, Acevedo G F, Vazquez-Moreno L, Alvarez-Buylla R E . Floral transcription factor AGAMOUS interacts in vitro with a leucine-rich repeat and an acid phosphatase protein complex. Biochem Biophys Res Commun, 2001,288:1018-1026.
doi: 10.1006/bbrc.2001.5875 pmid: 11689012
[51] Torti S, Fornara F, Vincent C, Andres F, Nordstrom K, Gobel U, Knoll D, Schoof H, Coupland G . Analysis of the Arabidopsis shoot meristem transcriptome during floral transition identifies distinct regulatory patterns and a leucine-rich repeat protein that promotes flowering. Plant Cell, 2012,24:444-462.
doi: 10.1105/tpc.111.092791
[52] Acevedo F G, Gamboa A, Paéz-Valencia J, Jiménez-Garcı́a L F, Izaguirre-Sierra M, Alvarez-Buylla E R . FLOR1, a putative interaction partner of the floral homeotic protein AGAMOUS is a plant-specific intracellular LRR. Plant Sci, 2004,167:225-231.
doi: 10.1016/j.plantsci.2004.03.009
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[4] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[5] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[6] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[7] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[8] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[9] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[10] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[11] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[12] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[13] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[14] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[15] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!