欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (02): 228-237.doi: 10.3724/SP.J.1006.2020.92032

• 耕作栽培·生理生化 • 上一篇    下一篇

磷营养对水稻籽粒锌生物有效性的影响及其与植酸等磷酸肌醇谱含量的关系

苏达1,2,吴良泉2,Søren K. Rasmussen3,周庐建4,潘刚4,程方民4,*()   

  1. 1 福建农林大学农学院 / 作物遗传育种与综合利用教育部重点实验室, 福建福州 350002
    2 福建农林大学国际镁营养研究所, 福建福州 350002
    3 哥本哈根大学植物与环境科学系, 丹麦哥本哈根
    4 浙江大学农业与生物技术学院, 浙江杭州 310058
  • 收稿日期:2019-06-03 接受日期:2019-08-09 出版日期:2020-02-12 网络出版日期:2019-09-10
  • 通讯作者: 程方民
  • 作者简介:E-mail: littlepest@126.com, Tel: 0591-83722796
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0300502);国家自然科学基金项目(31571602);福建省自然科学基金项目(2019J01374);福建省中青年教师教育科研项目(JAT170156);国家留学基金委项目资助

Influence of phosphorus on rice (Oryza sativa L.) grain zinc bioavailability and its relation to inositol phosphate profiles concentration

SU Da1,2,WU Liang-Quan2,K. Rasmussen Søren3,ZHOU Lu-Jian4,PAN Gang4,CHENG Fang-Min4,*()   

  1. 1 Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops / College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2 International Magnesium Institute, Fuzhou 350002, Fujian, China
    3 Department of Plant and Environmental Sciences, Section of Plant and Soil Science, University of Copenhagen, Copenhagen, Denmark
    4 College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
  • Received:2019-06-03 Accepted:2019-08-09 Published:2020-02-12 Published online:2019-09-10
  • Contact: Fang-Min CHENG
  • Supported by:
    This study was supported by the National Key Research and Development Project(2016YFD0300502);the National Natural Science Foundation of China(31571602);the Fujian Province Natural Science(2019J01374);the Education and Scientific Research Project for Middle-aged and the Young Teachers in Fujian Province(JAT170156);the Foundation for China Scholarship Council

摘要:

作物籽粒锌缺乏所导致的“隐性饥饿”已威胁到全世界1/3人群的健康。为明确磷对水稻籽粒锌的生物有效性的影响, 利用大田磷肥长期定位试验, 并结合稻穗离体培养技术, 探讨了不同外源磷浓度下水稻籽粒锌的生物有效性的变化及其与籽粒植酸等磷酸肌醇谱含量的关系。试验表明高磷处理显著增加水稻籽粒中植酸磷和总磷的含量, 以及不同价位磷酸肌醇(InsP1-6)含量, 其中以高价磷酸肌醇(InsP4-6)在磷供给下的增幅最为显著。与籽粒植酸的变化趋势相反, 高磷水平降低了稻米中锌的含量及其有效性。稻穗离体培养中, 高磷(P12)处理相比无磷(P0)对照, 籽粒锌的有效性降幅高达81.3%。因此, 过量磷肥投入会通过显著提高水稻籽粒中的植酸及高价磷酸肌醇含量, 在同步降低籽粒锌含量的同时, 进一步显著降低其在水稻籽粒中的生物有效性。

关键词: 磷, 植酸, 锌生物有效性, 磷酸肌醇, 稻米品质

Abstract:

The hidden hunger caused by grain zinc (Zn) deficiency in crop poses a potential threat to the health of nearly two billion people worldwide, especially in developing countries. In this study, the long-term phosphorus fertilizer experiment and in vitro detached rice panicle culture systems with varied phosphorus levels were conducted to investigate the effect of phosphorus on rice grain Zn bioavailability and its relation of grain inositol phosphates profiles (phytic acid related metabolic derivatives) concentration. In our results, compared with low phosphorus level, high phosphorus supply increased grain phytic acid phosphorus and total phosphorus concentration (mg g -1). Moreover, high phosphorus supply also increased different grain inositol phosphate profile concentrations (InsP1-6), especially for InsP4-6. On the contrary, grain Zn concentration decreased with phosphorus supply. Both the decrement of Zn and increment of phytic acid phosphorus induced by the higher phosphorus supply in rice grain led to the significant decrement of grain Zn bioavailability. In in vitro detached panicle culture system, the Zn bioavailability in P12 treatment decreased by 81.3% relative to P0 treatment. In conclusion, higher phosphorus input could significantly decrease grain Zn bioavailability through increased grain phytic acid phosphorus and inositol phosphates derivatives concentration, in addition to the decrement of grain Zn concentration.

Key words: phosphorus, phytic acid, zinc bioavailability, inositol phosphate, rice quality

图1

大田磷肥处理对水稻籽粒植酸磷、总磷含量以及植酸磷/总磷比值的影响 标以相同小写字母的柱值差异未达到0.05的显著水平。LP: 低磷处理; MP: 中磷处理; HP: 高磷处理; PAP: 植酸磷; Total P: 总磷; PAP/total P: 植酸磷/总磷。"

图2

大田磷肥处理对水稻籽粒锌、铁、锰、铜含量以及锌的生物有效性的影响 标以相同小写字母的柱值差异未达到0.05的显著水平。LP: 低磷处理; MP: 中磷处理; HP: 高磷处理。TAZ: 锌的生物有效性。"

图3

外源磷处理对水稻籽粒植酸磷、总磷含量以及植酸磷/总磷的比值的影响(稻穗离体培养) 标以相同小写字母的柱值差异未达到0.05的显著水平。P0、P1、P3、P6、P12分别代表0、1、3、6和12 mmol L-1的5个NaH2PO4·2H2O浓度梯度处理。PAP: 植酸磷; Total P: 总磷; PAP/total P: 植酸磷/总磷。"

图4

稻穗离体培养体系中不同磷浓度水平下水稻籽粒中的磷分布(5000倍光镜下稻米横断面扫描, 100 μm) A: P0处理; B: P3处理; C: P12处理。"

图5

外源磷处理对水稻籽粒不同价位磷酸肌醇含量的影响(稻穗离体培养) P0、P1、P3、P6、P12分别代表0、1、3、6和12 mmol L-1的5个NaH2PO4·2H2O浓度梯度处理。"

图6

外源磷处理下水稻籽粒中不同价位磷酸肌醇占总磷酸肌醇含量的比例(稻穗离体培养)"

图7

稻穗离体培养体系中不同磷浓度水平下水稻籽粒中锌的分布(5000倍光镜下稻米横断面扫描, 标尺为100 μm) A: P0处理; B: P3处理; C: P12处理。"

图8

外源磷处理水稻籽粒锌的含量及其有效性的影响(稻穗离体培养) 标以相同小写字母的柱值差异未达到0.05的显著水平。P0、P1、P3、P6、P12分别代表0、1、3、6和12 mmol L-1的5个NaH2PO4·2H2O浓度梯度处理。TAZ: 锌的生物有效性。"

图9

不同磷肥处理水平下水稻籽粒磷组分和锌的生物有效性之间的相关性分析(左: 大田试验; 右: 大田试验+稻穗离体培养试验) PAP: 植酸磷; TP: 总磷; TAF: 锌的生物有效性。"

[1] Noulas C, Tziouvalekas M, Karyotis T . Zinc in soils, water and food crops. J Trace Elem Med Biol, 2018,49:252-260.
doi: 10.1016/j.jtemb.2018.02.009 pmid: 29472130
[2] Hefferon K . Biotechnological approaches for generating zinc-enriched crops to combat malnutrition. Nutrients, 2019,11:253.
doi: 10.1186/1471-2148-11-253 pmid: 21917168
[3] Maqbool M A, Beshir A . Zinc biofortification of maize (Zea mays L.): Status and challenges. Plant Breed, 2019,138:1-28.
doi: 10.1111/pbr.2019.138.issue-1
[4] Jaksomsak P, Tuiwong P, Rerkasem B, Guild G E, Palmer L J, Stangoulis J C, Promuthai C . The impact of foliar applied zinc fertilizer on zinc and phytate accumulation in dorsal and ventral grain sections of four Thai rice varieties with different grain zinc. J Cereal Sci, 2018,79:6-12.
doi: 10.1016/j.jcs.2017.09.004
[5] Li W, Huang J, Zhao H, Tan Y, Cui H, Poirier Y, Shu Q . Production of low phytic acid rice by hairpin RNA- and artificial microRNA-mediated silencing ofOsMIK in seeds. Plant Cell Tissue Organ Cult, 2014,119:15-25.
doi: 10.1007/s11240-014-0510-8
[6] Liang J, Li Z, Tsuji K, Nakano K, Nout M J R, Hamer R J . Milling characteristics and distribution of phytic acid and zinc in long-, medium- and short-grain rice. J Cereal Sci, 2008,48:83-91.
doi: 10.1016/j.jcs.2007.08.003
[7] Perera I, Seneweera S, Hirotsu N . Manipulating the phytic acid content of rice grain toward improving micronutrient bioavailability. Rice, 2018,11:4.
doi: 10.1186/s12284-018-0200-y pmid: 29327163
[8] Julia C, Wissuwa M, Kretzschmar T, Jeong K, Rose T J . Phosphorus uptake, partitioning and redistribution during grain filling in rice. Ann Bot-london, 2016,118:1151-1162.
doi: 10.1093/aob/mcw164 pmid: 27590335
[9] Ova E A, Kutman U B, Ozturk L, Cakmak I . High phosphorus supply reduced zinc concentration of wheat in native soil but not in autoclaved soil or nutrient solution. Plant Soil, 2015,393:147-162.
doi: 10.5696/2156-9614-9.24.191212 pmid: 31893173
[10] Saneoka H, Koba T . Plant growth and phytic acid accumulation in grain as affected by phosphorus application in maize (Zea mays L.). Grassl Sci, 2003,48:485-489.
[11] Miller G A, Youngs V L . Environmental and cultivar effects on oat phytic acid concentration. Cereal Chem, 1980,57:189-191.
[12] Raboy V, Dickinson D B . Effect of phosphorus and zinc nutrition on soybean seed phytic acid and zinc. Plant Physiol, 1984,75:1094-1098.
doi: 10.1104/pp.75.4.1094 pmid: 16663741
[13] Noack S R, Mclaughlin M J, Smernik R J, Mcbeath T M, Armstrong R . Phosphorus speciation in mature wheat and canola plants as affected by phosphorus supply. Plant Soil, 2014,378:125-137.
doi: 10.1007/s11104-013-2015-3
[14] Su D, Zhou L J, Zhao Q, Pan G, Cheng F M . Different phosphorus supplies altered the accumulations and quantitative distributions of phytic acid, zinc, and iron in rice (Oryza sativa L.) grains. J Agric Food Chem, 2018,66:1601-1611.
doi: 10.1021/acs.jafc.7b04883 pmid: 29401375
[15] Raboy V . Seeds for a better future: ‘low phytate’, grains help to overcome malnutrition and reduce pollution. Trends Plant Sci, 2001,6:458-462.
doi: 10.1016/s1360-1385(01)02104-5 pmid: 11590064
[16] Zhang W, Liu D, Liu Y, Chen X, Zou C . Overuse of phosphorus fertilizer reduces the grain and flour protein contents and zinc bioavailability of winter wheat (Triticum aestivum L.). J Agric Food Chem, 2017,65:1473-1482.
doi: 10.1021/acs.jafc.6b04778 pmid: 28171726
[17] Imran M, Rehim A, Sarwar N, Hussain S . Zinc bioavailability in maize grains in response of phosphorous-zinc interaction. J Plant Nutr Soil Sc, 2016,179:60-66.
doi: 10.1002/jpln.v179.1
[18] Liu Z H, Cheng F M, Cheng W D, Zhang G P . Positional variations in phytic acid and protein content within a panicle ofjaponica rice. J Cereal Sci, 2005,41:297-303.
doi: 10.1016/j.jcs.2004.09.010
[19] Bi J, Liu Z, Lin Z, Alim M A, Li G, Wang S H, Ding Y F . Phosphorus accumulation in grains ofjaponica rice as affected by nitrogen fertilizer. Plant Soil, 2013,369:231-240.
doi: 10.1007/s11104-012-1561-4
[20] Wilcox J R, Premachandra G S, Young K A, Raboy V . Isolation of high seed inorganic P, low-phytate soybean mutants. Crop Sci, 2000,40:1601-1605.
doi: 10.2135/cropsci2000.4061601x
[21] Zhou L, Ye Y, Zhao Q, Du X, Zakari S A, Su D, Pan G, Chen F M . Suppression of ROS generation mediated by higher InsP3 level is critical for the delay of seed germination in lpa rice. Plant Growth Regul, 2018,85:411-424.
doi: 10.1007/s10725-018-0402-8
[22] Wei Y Y, Shohag M, Wang Y Y, Lu L L, Wu C Y, Yang X . Effect of zinc sulfate fortification in germinated brown rice on seed zinc concentration, bioavailability, and seed germination. J Agric Food Chem, 2012,60:1871-1879.
doi: 10.1021/jf205025b pmid: 22273463
[23] Miller L V, Krebs N F, Hambidge K M . A mathematical model of zinc absorption in humans as a function of dietary zinc and phytate. J Nutr, 2007,137:135-141.
doi: 10.1093/jn/137.1.135 pmid: 17182814
[24] Brombach C, Manorut P, Kolambage-Dona P P P, Ezzeldin M F, Chen B, Corns W T, Feldmann J, Krupp E M . Methylmercury varies more than one order of magnitude in commercial European rice. Food Chem, 2017,214:360-365.
doi: 10.1016/j.foodchem.2016.07.064 pmid: 27507486
[25] 戴云云, 丁艳锋, 刘正辉, 王强盛, 李刚华, 王绍华 . 花后水稻穗部夜间远红外增温处理对稻米品质的影响. 中国水稻科学, 2009,23:414-420.
doi: 10.3969/j.issn.1001-7216.2009.04.12
Dai Y Y, Ding Y F, Liu Z H, Wang Q S, Li G H, Wang S H . Effects of elevated night temperature by far-infrared radiation at grain filling on grain quality of rice. Chin J Rice Sci, 2009,23:414-420 (in Chinese with English abstract).
doi: 10.3969/j.issn.1001-7216.2009.04.12
[26] Coelho C M M, Santos J C P, Tsai S M, Vitorello V A V C . Seed phytate content and phosphorus uptake and distribution in dry bean genotypes. Braz J Plant Physiol, 2002,14:51-58.
doi: 10.1590/S1677-04202002000100007
[27] Sompong U, Somta P, Raboy V, Srinives P . Mapping of quantitative trait loci for phytic acid and phosphorus contents in seed and seedling of mungbean [Vigna radiata(L.) Wilczek]. Breed Sci, 2012,62:87-92.
doi: 10.1270/jsbbs.62.87 pmid: 23136518
[28] Taliman N A, Dong Q, Echigo K, Raboy V, Saneoka H . Effect of phosphorus fertilization on the growth, photosynthesis, nitrogen fixation, mineral accumulation, seed yield, and seed quality of a soybean low-phytate line. Plants, 2019,8:119.
doi: 10.3390/plants8050119 pmid: 31071932
[29] Park M, Singvilay O, Shin W, Kim E, Chung J, Sa T . Effects of long-term compost and fertilizer application on soil phosphorus status under paddy cropping system. Commun Soil Sci Plan, 2004,35:1635-1644.
doi: 10.1081/CSS-120038559
[30] Zhang W, Liu D, Li C, Cui Z, Chen X, Russell Y, Zou C . Zinc accumulation and remobilization in winter wheat as affected by phosphorus application. Field Crops Res, 2015,184:155-161.
doi: 10.1016/j.fcr.2015.10.002
[31] Zhang J, Wu L H, Wang M Y . Iron and zinc biofortification in polished rice and accumulation in rice plant (Oryza sativa L.) as affected by nitrogen fertilization. Acta Agric Scand B-S P, 2008,58:267-272.
[32] Xue Y F, Yue S C, Zhang Y Q, Cui Z, Chen X, Yang F, Cakmak I, McGrath S P, Zhang F S, Zou C Q, . Grain and shoot zinc accumulation in winter wheat affected by nitrogen management. Plant Soil, 2012,361:153-163.
doi: 10.1007/s11104-012-1510-2
[33] Kutman U B, Yildiz B, Cakmak I . Effect of nitrogen on uptake, remobilization and partitioning of zinc and iron throughout the development of durum wheat. Plant Soil, 2011,342:149-164.
doi: 10.1007/s11104-010-0679-5
[34] Bolland M D A . Residual value of superphosphate and Queensland rock phosphate measured using yields of serradella, burr medic and subterranean clover grown in rotation with wheat and bicarbonate-extractable soil phosphorus. Commun Soil Sci Plan, 1993,24:1243-1269.
doi: 10.1080/00103629309368874
[35] Orabi A A, Mashadi H, Abdallah A, Morsy M F . Effect of zinc and phosphorus on the grain yield of corn (Zea mays L.) grown on a calcareous soil. Plant Soil, 1981,63:291-294.
doi: 10.1007/BF02374607
[36] Zhang Y, Deng Y, Chen R, Cui Z L, Chen X P, Yost R, Zhang F S, Zou C Q . The reduction in zinc concentration of wheat grain upon increased phosphorus-fertilization and its mitigation by foliar zinc application. Plant Soil, 2012,361:143-152.
doi: 10.1007/s11104-012-1238-z
[37] Liang J, Han B, Nout M J, Hamer R J . Effects of soaking, germination and fermentation on phytic acid, total and in vitro soluble zinc in brown rice. Food Chem, 2008,110:821-828.
doi: 10.1016/j.foodchem.2008.02.064 pmid: 26047266
[38] Bohn L, Josefsen L, Meyer A A, Rasmussen S K . Quantitative analysis of phytate globoids isolated from wheat bran and characterization of their sequential dephosphorylation by wheat phytase. J Agr Food Chem, 2007,55:7547-7552.
doi: 10.1021/jf071191t pmid: 17696444
[39] 苏达, 吴良泉, Søren K R, 周庐建, 程方民 . 低植酸水稻种质资源筛选、遗传生理调控与环境生态适应性研究进展. 中国水稻科学, 2019,33:95-107.
Su D, Wu L Q, Søren K R, Zhou L J, Cheng F M . Research advances on the low phytic acid rice breeding and their genetic physiological regulation and environmental adaptability. Chin J Rice Sci, 2019,33:95-107 (in Chinese with English abstract).
[1] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[2] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
[3] 赵婧, 孟凡钢, 于德彬, 邱强, 张鸣浩, 饶德民, 丛博韬, 张伟, 闫晓艳. 不同磷效率大豆农艺性状与磷/铁利用率对磷素的响应[J]. 作物学报, 2021, 47(9): 1824-1833.
[4] 刘秋员, 周磊, 田晋钰, 程爽, 陶钰, 邢志鹏, 刘国栋, 魏海燕, 张洪程. 长江中下游地区常规中熟粳稻产量、品质及氮素吸收性状的相互关系分析[J]. 作物学报, 2021, 47(5): 904-914.
[5] 覃潇敏, 潘浩男, 肖靖秀, 汤利, 郑毅. 低磷条件下玉米大豆间作对大豆根瘤生长、固氮功能的影响[J]. 作物学报, 2021, 47(11): 2268-2277.
[6] 宋凝曦, 李霞, 王净, 吴博晗, 曹悦, 杨杰, 谢寅峰. 大环内酯类和高表达玉米C4-PEPC基因对水稻耐旱性的影响[J]. 作物学报, 2021, 47(10): 1927-1940.
[7] 颜晓军, 叶德练, 苏达, 李芳, 郑朝元, 吴良泉. 磷肥用量对甜玉米磷素吸收利用的影响[J]. 作物学报, 2021, 47(1): 169-176.
[8] 韩展誉,管弦悦,赵倩,吴春艳,黄福灯,潘刚,程方民. 灌浆温度和氮肥及其互作效应对稻米贮藏蛋白组分的影响[J]. 作物学报, 2020, 46(7): 1087-1098.
[9] 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711.
[10] 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻海藻糖生物合成关键酶基因HcTPPJ的克隆及响应逆境的表达分析[J]. 作物学报, 2020, 46(12): 1914-1922.
[11] 陈晓影,刘鹏,程乙,董树亭,张吉旺,赵斌,任佰朝,韩坤. 基于磷肥施用深度的夏玉米根层调控提高土壤氮素吸收利用[J]. 作物学报, 2020, 46(02): 238-248.
[12] 赵伟,甄天悦,张子山,徐铮,高大鹏,丁聪,刘鹏,李耕,宁堂原. 增施磷肥提高弱光环境中夏大豆叶片光合能力及产量[J]. 作物学报, 2020, 46(02): 249-258.
[13] 唐健,唐闯,郭保卫,张诚信,张振振,王科,张洪程,陈恒,孙明珠. 氮肥施用量对机插优质晚稻产量和稻米品质的影响[J]. 作物学报, 2020, 46(01): 117-130.
[14] 于天一,李晓亮,路亚,孙学武,郑永美,吴正锋,沈浦,王才斌. 磷对花生氮素吸收和利用的影响[J]. 作物学报, 2019, 45(6): 912-921.
[15] 苑乂川, 陈小雨, 李明明, 李萍, 贾亚涛, 韩渊怀, 邢国芳. 谷子苗期耐低磷种质筛选及其根系保护酶系统对低磷胁迫的响应[J]. 作物学报, 2019, 45(4): 601-612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!