欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (02): 249-258.doi: 10.3724/SP.J.1006.2020.94078

• 耕作栽培·生理生化 • 上一篇    下一篇

增施磷肥提高弱光环境中夏大豆叶片光合能力及产量

赵伟1,甄天悦1,张子山2,徐铮1,高大鹏1,丁聪1,刘鹏1,李耕1,*(),宁堂原1,*()   

  1. 1 山东农业大学农学院 / 作物生物学国家重点实验室, 山东泰安 271018
    2 山东农业大学生命科学学院, 山东泰安 271018
  • 收稿日期:2019-05-22 接受日期:2019-08-09 出版日期:2020-02-12 网络出版日期:2019-09-11
  • 通讯作者: 李耕,宁堂原
  • 作者简介:赵伟, E-mail: 15621579298@163.com|甄天悦, E-mail: 13563691279@163.com
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0300205);国家自然科学基金项目(31401339);国家公益性行业(农业)科研专项经费项目(201503130);国家公益性行业(农业)科研专项经费项目资助(201503121)

Increasing phosphate fertilizer application to improve photosynthetic capacity and yield of summer soybean in weak light environment

ZHAO Wei1,ZHEN Tian-Yue1,ZHANG Zi-Shan2,XU Zheng1,GAO Da-Peng1,DING Cong1,LIU Peng1,LI Geng1,*(),NING Tang-Yuan1,*()   

  1. 1 Agronomy College, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China
    2 Life Science College, Shandong Agricultural University, Tai’an 271018, Shandong, China
  • Received:2019-05-22 Accepted:2019-08-09 Published:2020-02-12 Published online:2019-09-11
  • Contact: Geng LI,Tang-Yuan NING
  • Supported by:
    This study was supported by the National Key Research and Development Program of China National(2016YFD0300205);the National Natural Science Foundation of China(31401339);the China Special Fund for Agro-scientific Research in the Public Interest(201503130);the China Special Fund for Agro-scientific Research in the Public Interest(201503121)

摘要:

为研究增施磷肥对弱光环境中夏大豆光合能力的调控作用, 本研究以齐黄34为供试品种, 设置全生育期正常光照(L1)、花后弱光(L2) 2个光照处理, 不施磷肥(P0)、常规施磷(P1)、增施磷肥(P2) 3个磷肥处理, 通过测定叶片气体交换和叶绿素荧光, 系统分析了花后叶片光合能力和产量要素的变化。2年结果表明, 花后弱光处理后大豆产量显著降低, 平均产量较正常光照组降低61.4%。正常光照环境中, P2比P0和P1处理的2年平均产量分别高8.4%和3.2%, 而弱光环境中, P2较P0、P1处理分别增产21.7%与12.2%, 表明在弱光环境下增施磷肥增产效果更明显。弱光处理后大豆叶片叶面积、比叶面积和叶绿素a、叶绿素b含量显著增加, 增施磷肥进一步扩大其增幅, 同时叶片净光合速率与气孔导度明显降低, 胞间CO2浓度变化趋势与之相反, 证明弱光处理后同化能力的降低不是由于气孔限制。增施磷肥会提高光合速率和气孔导度, 在弱光条件下效果更显著。增施磷肥会显著降低叶片叶绿素荧光诱导曲线中的J点和K点相对荧光, 提高叶片光系统II电子传递性能, 在弱光环境下作用比正常照光下更明显。弱光环境下增施磷肥可提升叶片光合电子传递活性, 缓解弱光下叶片光合速率降低, 提高大豆植株干物质积累, 进而提高产量。

关键词: 大豆, 磷肥, 弱光, 光合能力, 产量

Abstract:

In order to study the effect of phosphate fertilizer application on the photosynthetic characteristics of summer soybean in weak light environment, two light treatments [normal light (L1) and weak light (L2)] with three phosphate fertilizer treatments including non-phosphate fertilizer application (P0), conventional phosphate fertilizer application (P1), and excessive-phosphate fertilizer application (P2) in each light treatment were set up to measure the gas exchange, chlorophyll a fluorescence differences of photosynthetic performance as well as the yield and its components in Qihuang 34. The yield reduced significantly in weak light treatment, with an average of 61.4% in two years lower than that under the normal light. The 2-year average yield of P2 was 8.4% and 3.2% higher than that of P0 and P1 respectively under the normal light, but 21.7% and 12.2% higher than P0 and P1 in weak light treatment respectively, indicating the effect of excessive-phosphate fertilizer on yield was more pronounced under weak light. The weak light environment significantly increased the leaf area, specific leaf area, chlorophyll a and chlorophyll b contents, which was enhanced by increasing phosphate fertilizer application. The net photosynthetic rate and stomatal conductance of the leaf decreased significantly in the weak light environment, while the intercellular CO2 concentration increased, indicating the reduction of carbon assimilation in weak light environment was not limited by stomata. Increasing the application of phosphate fertilizer increased photosynthetic rate and stomatal conductance, which was more obvious under weak light. Excessive-phosphate fertilizer application reduced the relative fluorescence at the K and J points of the OJIP curve, and improved the electron transfer performance of photosystem II, was more significant which in weak light than in normal light environment. Therefore, the increase of photosynthetic electron transport activity effectively alleviates the decrease of leaf photosynthetic rate under weak light treatment, which may be the reason for the significant increase of dry matter accumulation and yield by applying more phosphate fertilizer in weak light environment.

Key words: soybean, weak light environment, phosphate fertilizer, photosynthetic capacity, yield

表1

不同施磷量和遮光处理对夏大豆产量及产量构成因素的影响"

年份
Year
处理Treatment 百粒重
100-seed weight (g)
单株有效荚数
Effective pods per plant
单株粒数
Seeds per plant
产量
Yield (kg hm-2)
光照 Light 磷肥 Phosphorous
2017 L1 P0 28.08 c 50.00 c 116.30 b 3918.28 c
P1 28.26 c 54.70 b 120.73 a 4094.59 b
P2 28.42 bc 59.80 a 124.06 a 4231.07 a
L2 P0 29.41 ab 29.60 f 66.09 e 2332.27 f
P1 29.81 a 35.00 e 71.16 d 2545.21 e
P2 30.03 a 39.10 d 78.12 c 2815.48 d
变异来源 Source of variation 方差分析 Analysis of variance
光照 Light (L) ** ** ** **
磷肥 Phosphorous (P) NS ** ** **
光照×氮肥 (L×P) NS NS * *
2018 L1 P0 28.16 a 51.88 b 118.03 b 3988.97 c
P1 28.48 a 52.25 b 123.45 a 4218.65 b
P2 28.62 a 54.11 a 126.48 a 4344.13 a
L2 P0 29.00 a 31.75 d 66.65 e 2319.62 f
P1 29.07 a 35.64 c 71.70 d 2500.61 e
P2 29.21 a 34.48 c 81.25 c 2847.66 d
变异来源 Source of variation 方差分析 Analysis of variance
光照 Light (L) NS ** ** **
磷肥 Phosphorous (P) NS ** ** **
光照×氮肥 (L×P) NS * * *

图1

遮阴后对大豆冠层光合有效辐射量的影响 L1: 自然光强; L2: 透光率(60±5)%的弱光环境。"

图2

不同施磷量和遮光处理对花后大豆叶面积的影响 不同字母表示处理间差异在0.05水平差异显著。R1: 始花期; R3: 结荚初期; R5: 鼓粒初期; R7: 成熟初期; LA: 单株叶面积; SLA: 比叶面积。处理同表1。"

图3

不同施磷量和遮光处理对花后大豆叶片叶绿素含量的影响 不同字母表示处理间差异在0.05水平差异显著。R1: 始花期; R3: 结荚初期; R5: 鼓粒初期。处理同表1。"

图4

不同施磷量和遮光处理对花后大豆叶片气体交换参数的影响 不同字母表示处理间差异在0.05水平差异显著。R1: 始花期; R3: 结荚初期; R5: 鼓粒初期; R7: 成熟初期。处理同表1。"

图5

不同施磷量和遮光处理对花后大豆叶片Wk与Vj及其相关性的影响 不同字母表示处理间差异在0.05水平差异显著。R1: 始花期; R3: 结荚初期; R5: 鼓粒初期; R7: 成熟初期。处理同表1。"

图6

不同施磷量和遮光处理对大豆花后叶片光系统II (PSII)反应中心性能及其相关性的影响 不同字母表示处理间差异在0.05水平差异显著。R1: 始花期; R3: 结荚初期; R5: 鼓粒初期; R7: 成熟初期。处理同表1。"

[1] Li Y, Xin G F, Wei M, Shi Q H, Yang F J, Wang X F . Carbohydrate accumulation and sucrose metabolism responses in tomato seedling leaves when subjected to different light qualities. Sci Hortic, 2017,225:490-497.
doi: 10.1016/j.scienta.2017.07.053
[2] Kaiser E, Weerheim K, Schipper R, Dieleman J A . Partial replacement of red and blue by green light increases biomass and yield in tomato. Sci Hortic, 2019,249:271-279.
doi: 10.1016/j.scienta.2019.02.005
[3] 任国玉, 郭军, 徐铭志, 初子莹, 张莉, 邹旭恺, 李庆祥, 刘小宁 . 近50年中国地面气候变化基本特征. 气象学报, 2005,63:942-956.
doi: 10.11676/qxxb2005.090
Ren G Y, Guo J, Xu M Z, Chu Z Y, Zhang L, Zou X K, Li Q X, Liu X N . Climate changes of China’s mainland over the past half century. Acta Meteor Sin, 2005,63:942-956 (in Chinese with English abstract).
doi: 10.11676/qxxb2005.090
[4] 崔海岩, 靳立斌, 李波, 赵斌, 董树亭, 刘鹏, 张吉旺 . 大田遮阴对夏玉米光合特性和叶黄素循环的影响. 作物学报, 2013,39:478-485.
doi: 10.3724/SP.J.1006.2013.00478
Cui H Y, Jin L B, Li B, Zhao B, Dong S T, Liu P, Zhang J W . Effects of shading on photosynthetic characteristics and xanthophyll cycle of summer maize in the field. Acta Agron Sin, 2013,39:478-485 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2013.00478
[5] Valladares F, Niinemets U . Shade tolerance, a key plant feature of complex nature and consequences. Annu Rev Ecol Evol Syst, 2008,39:237-257.
doi: 10.1146/annurev.ecolsys.39.110707.173506
[6] Wu Y S, Yang F, Gong W Z, Shoaib A, Fan Y F, Wu X L, Yong T W, Liu W G, Shu K, Liu J, Du J B, Yang W Y . Shade adaptive response and yield analysis of different soybean genotypes in relay intercropping systems. J Integr Agric, 2017,16:1331-1340.
doi: 10.1016/S2095-3119(16)61525-3
[7] Yang X Q, Zhang Q S, Zhang D, Sheng Z T . Light intensity dependent photosynthetic electron transport in eelgrass (Zostera marina L.). Plant Physiol Biochem, 2017,113:168-176.
doi: 10.1016/j.plaphy.2017.02.011 pmid: 28236752
[8] Huang W, Zhang S B, Liu T . Moderate photoinhibition of photosystem II significantly affects linear electron flow in the shade-demanding plant Panax notoginseng. Front Plant Sci, 2018,9:250-256.
doi: 10.3389/fpls.2018.00250 pmid: 29599786
[9] Sun J L, Sui X L, Huang H Y, Wang S H, Wei Y X, Zhang Z X . Low light Stress down-regulated Rubisco gene expression and photosynthetic capacity during cucumber (Cucumis sativus L.) leaf development. J Integr Agric, 2014,13:997-1007.
doi: 10.1016/S2095-3119(13)60670-X
[10] Hussain S, Iqbal N, Brestic M, Raza M A, Pang T, Langham D R, Safdar M E, Ahmed S, Wen B X, Gao Y, Liu W G, Yang W Y . Changes in morphology, chlorophyll fluorescence performance and Rubisco activity of soybean in response to foliar application of ionic titanium under normal light and shade environment. Sci Total Environ, 2019,658:626-637.
doi: 10.1016/j.scitotenv.2018.12.182 pmid: 30580217
[11] 任永福, 陈国鹏, 蒲甜, 陈诚, 曾瑾汐, 彭霄, 马艳玮, 杨文钰, 王小春 . 玉米-大豆带状种植中套作高光效玉米窄行穂位叶光合特性对弱光胁迫的响应. 作物学报, 2019,45:728-739.
doi: 10.3724/SP.J.1006.2019.83040
Ren Y F, Chen G P, Pu T, Chen C, Zeng J X, Peng X, Ma Y W, Yang W Y, Wang X C . Responses of photosynthetic characteristics to low light stress in ear leaves of high photosynthetic efficiency maize at narrow row of maize-soybean strip intercropping system. Acta Agron Sin, 2019,45:728-739 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2019.83040
[12] 孙映波, 于波, 黄丽丽, 周彤彤, 赵超艺, 张佩霞 . 不同栽培环境对耐冬山茶生长及荧光参数的影响. 热带作物学报, 2018,39:1553-1560.
Sun Y B, Yu B, Huang L L, Zhou T T, Zhao C Y, Zhang P X . Effects of different cultivation environment on the growth and fluorescence parameters of Camellia japonica L. Chin J Trop Crops, 2018,39:1553-1560 (in Chinese with English abstract).
[13] 朱文美, 费立伟, 代兴龙, 张秀, 董述鑫, 初金鹏, 钤太峰, 贺明荣 . 雨养和灌水条件下种植密度对冬小麦产量、氮素利用率和水分利用效率的影响. 山东农业科学, 2018,50(8):35-41.
Zhu W M, Fei L W, Dai X L, Zhang X, Dong S X, Chu J P, Qian T F, He M R . Effects of planting density on grain yield, nitrogen and water use efficiency of winter wheat in rainfed and irrigation regimes. Shandong Agric Sci, 2018,50(8):35-41 (in Chinese with English abstract).
[14] 张明聪, 何松榆, 金喜军, 王孟雪, 任春元, 战英策, 胡国华, 张玉先 . 氮磷调控对大豆-玉米轮作下植株光合生产能力和产量的影响. 大豆科学, 2018,37:883-890.
Zhang M C, He S Y, Jin X J, Wang M X, Ren C Y, Zhan Y C, Hu G H, Zhang Y X . Effects of nitrogen and phosphorus regulation on photosynthetic capacity and yield under soybean and maize rotation. Soybean Sci, 2018,37:883-890 (in Chinese with English abstract).
[15] Yao H S, Zhang Y L, Yi X P, Zhang X J, Zhang W F . Cotton responds to different plant population densities by adjusting specific leaf area to optimize canopy photosynthetic use efficiency of light and nitrogen. Field Crops Res, 2016,188:10-16.
doi: 10.1016/j.fcr.2016.01.012
[16] Kutamal A S, Aliyul B S, Saratu A . Influence of phosphorus fertilizer on the development of root nodules in cowpea (Vigna unguiculata L. Walp) and soybean(Glycine max L. Merrill). Int J Pure Appl Sci, 2008,2:27-31.
[17] 王菲, 曹翠玲 . 磷水平对不同磷效率小麦叶绿素荧光参数的影响. 植物营养与肥料学报, 2010,16:758-762.
doi: 10.11674/zwyf.2010.0335
Wang F, Cao C L . Effects of phosphorus levels on chlorophyll fluorescence parameters of wheat (Triticum aestivum L.) with different phosphorus efficiencies. Plant Nutr Fert Sci, 2010,16:758-762 (in Chinese with English abstract).
doi: 10.11674/zwyf.2010.0335
[18] 焦念元, 杨萌珂, 宁堂原, 尹飞, 徐国伟, 付占国, 李友军 . 玉米花生间作和磷肥对间作花生光合特性及产量的影响. 植物生态学报, 2013,37:1010-1017.
doi: 10.3724/SP.J.1258.2013.00104
Jiao N Y, Yang M K, Ning T Y, Yin F, Xu G W, Fu Z G, Li Y J . Effects of maize-peanut intercropping and phosphate fertilizer on photosynthetic characteristics and yield of intercropped peanut plants. Chin J Plant Ecol, 2013,37:1010-1017 (in Chinese with English abstract).
doi: 10.3724/SP.J.1258.2013.00104
[19] Janik E, Bednarska J, Zubik M, Luchowski R, Mazur R, Sowinski K, Grudzinski W, Garstka M, Gruszecki W I . A chloroplast “wake up” mechanism: Illumination with weak light activates the photosynthetic antenna function in dark-adapted plants. J Plant Physiol, 2017,210:1-8.
doi: 10.1016/j.jplph.2016.12.006 pmid: 28040624
[20] Jiao Y, Ouyang H L, Jiang Y J, Kong X Z, He W, Liu W X, Yang B, Xu F L . Effects of phosphorus stress on the photosynthetic and physiological characteristics ofChlorella vulgaris based on chlorophyll fluorescence and flow cytometric analysis. Ecol Indic, 2017,78:131-141.
doi: 10.1016/j.ecolind.2017.03.010
[21] Zhang W, Chen X X, Liu Y M, Liu D Y, Du Y F, Chen X P, Zou C Q . The role of phosphorus supply in maximizing the leaf area, photosynthetic rate, coordinated to grain yield of summer maize. Field Crops Res, 2018,219:113-119.
doi: 10.1016/j.fcr.2018.01.031
[22] Lichtenthaler H K, Wellburn A R . Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Anal Peach, 1983,11:591-592.
doi: 10.1161/01.hyp.11.6.591 pmid: 2839415
[23] Yu J, Wang M J, Dong C, Xie B Z, Liu G H, Fu Y M, Liu H . Analysis and evaluation of strawberry growth, photosynthetic characteristics, biomass yield and quality in an artificial closed ecosystem. Sci Hortic, 2015,195:188-194.
doi: 10.1016/j.scienta.2015.09.009
[24] Alaka Srivastava G, Strasser R J . Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Funct Plant Biol, 2003,30:785-796.
doi: 10.1071/FP03032
[25] Strasser R J, Tsimill-Michael M, Srivastava A . Analysis of the chlorophyll a fluorescence transient. Photosynthesis, 2004,12:1-47.
doi: 10.1016/j.saa.2018.09.036 pmid: 30282060
[26] 韩霜, 陈发棣 . 植物对弱光的响应研究进展. 植物生理学报, 2013,49:309-316.
Han S, Chen F D . Research progress in plant response to weak light. Plant Physiol J, 2013,49:309-316 (in Chinese with English abstract).
[27] Plénet D, Etchebest S, Mollier A, Pellerin S . Growth analysis of maize field crops under phosphorus deficiency. Plant Soil, 2000,223:119-132.
doi: 10.1023/A:1004877111238
[28] Usuda H, Shimogawara K . Phosphate deficiency in maize: I. Leaf phosphate status, growth, photosynthesis and carbon partitioning. Plant Cell Physiol, 1991,32:497-504.
[29] Kirschbaum M U F, Tompkins D . Photosynthetic responses to phosphorus nutrition inEucalyptus grandis seedlings. Aust J Plant Physiol, 1990,17:527-535.
doi: 10.1155/2019/9058715 pmid: 31534966
[30] Sejima T, Takagi D, Fukayama H, Makino A, Miyake C . Repetitive short-pulse light mainly inactivates photosystem I in sunflower leaves. Plant Cell Physiol, 2014,55:1184-1193.
doi: 10.1093/pcp/pcu061
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[11] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[12] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[13] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[14] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[15] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!