欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (02): 238-248.doi: 10.3724/SP.J.1006.2020.93029

• 耕作栽培·生理生化 • 上一篇    下一篇

基于磷肥施用深度的夏玉米根层调控提高土壤氮素吸收利用

陈晓影,刘鹏(),程乙,董树亭,张吉旺,赵斌,任佰朝,韩坤   

  1. 作物生物学国家重点实验室 / 山东农业大学农学院, 山东泰安271018
  • 收稿日期:2019-05-01 接受日期:2019-09-26 出版日期:2020-02-12 网络出版日期:2019-10-09
  • 通讯作者: 刘鹏
  • 作者简介:E-mail: 15621567129@163.com
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0300106);本研究由国家重点研发计划项目(2018YFD0300603);国家自然科学基金项目(31771713);国家自然科学基金项目(31371576);山东省现代农业产业技术体系项目资助(SDAIT-02-08)

The root-layer regulation based on the depth of phosphate fertilizer application of summer maize improves soil nitrogen absorption and utilization

CHEN Xiao-Ying,LIU Peng(),CHENG Yi,DONG Shu-Ting,ZHANG Ji-Wang,ZHAO Bin,REN Bai-Zhao,HAN Kun   

  1. State Key Laboratory of Crop Biology / College of Agronomy, Shandong Agricultural University, Tai’an 271018, Shandong, China
  • Received:2019-05-01 Accepted:2019-09-26 Published:2020-02-12 Published online:2019-10-09
  • Contact: Peng LIU
  • Supported by:
    This study was supported by the National Basic Research Program of China(2016YFD0300106);This study was supported by the National Basic Research Program of China(2018YFD0300603);the National Natural Science Foundation of China(31771713);the National Natural Science Foundation of China(31371576);the Shandong Province Key Agricultural Project for Application Technology Innovation(SDAIT-02-08)

摘要:

良好的根系构型能够促进作物高效获取土壤养分。基于磷肥施用深度的根层调控技术可以优化夏玉米根系的时空分布并促进其与土壤水分、养分供应的空间匹配性, 为通过玉米根系挖潜实现节肥增效提供理论与技术支撑。本试验以不施磷肥处理为对照(CK), 设置距离地表-5 cm (P5)、-10 cm (P10)、-15 cm (P15)和-20 cm (P20)深度施用磷肥处理, 分析各处理对夏玉米根系分布、植株生长及产量形成、氮素吸收、积累与转运的影响。结果表明, 磷肥适当深施显著促进夏玉米根系生长, 根干重、根长密度、根系表面积和根体积均显著增加, 整体表现为P15>P10>P20>P5>CK。随着磷肥施用深度的增加, 深层玉米根系显著增加。P15和P20处理根干重所占比重, 在20~40 cm土层分别为12.3%和12.1%; 在40~60 cm土层分别为6.7%和6.9%。根系分布深度的增加促进了对土壤氮素的吸收, 深施磷肥处理各土层中尤其是20 cm以下土层土壤氮素含量显著降低。根系分布的优化同时促进了植株氮素积累与转运, P15处理较P5处理氮素吸收效率、氮积累量、转运量及氮肥偏生产力2年平均分别提高14.5 kg kg -1、19.2%、48.9%和6.4 kg kg -1, 籽粒产量2年平均增产16.4%。在本试验条件下, 磷肥集中施用在-15 cm处理, 能显著促进夏玉米深层土壤根系的生长, 扩大根系养分利用空间, 增加根系对深层土壤氮素的吸收, 促进植株氮素积累及转运, 提高其生产力, 最终提高产量。

关键词: 夏玉米, 施磷深度, 根系, 产量, 氮素吸收利用

Abstract:

Favorable root phenotypes can promote crops to obtain soil nutrients efficiently. The root-layer regulation technology based on the depth of phosphate fertilizer application can optimize the spatial and temporal distribution of summer maize root system and promote its spatial matching with soil water and nutrients to supply, providing a theoretical and technical support for realizing fertilizer saving and efficiency improvement by tapping potential of maize root system. In the present study, there were five treatments including CK (no P applied), P5 (phosphorus placement depth of 5 cm), P10 (phosphorus placement depth of 10 cm), P15 (phosphorus placement depth of 15 cm), and P20 (phosphorus placement depth of 20 cm). The effect of phosphorus application depth on root distribution, plant growth and yield formation, as well as nitrogen uptake, accumulation and transport in summer maize was analyzed. The suitable application depths of phosphate fertilizer promoted the growth of summer maize roots and increased root dry weight, root length density, root surface area and root volume significantly totally showing a trend of P15 > P10 > P20 > P5 > CK. With the increase of phosphate fertilizer application depth, the deep corn roots increased significantly. The proportion of root dry weight in P15 and P20 treatments was 12.3% and 12.1% in the 20-40 cm soil layer, and 6.7% and 6.9% in the 40-60 cm soil layer, respectively. The increase of root distribution depth promoted the absorption of nitrogen in the soil, and the nitrogen content in each soil layer, especially below 20 cm, was reduced significantly by the deep application of phosphate fertilizer. The optimization of root distribution promoted the accumulation and transportation of nitrogen in plants. Compared with P5 treatment, the averaged nitrogen fertilizer absorption efficiency, accumulation amount, accumulation rate, partial factor productivity and the grain yield in two years of P15 treatment increased by 14.5 kg kg -1, 19.2%, 48.9%, 6.4 kg kg -1, and 16.4% respectively, showing that under the conditions of the present study, concentrated application of phosphate fertilizer in -15 cm treatment can significantly promote the growth of deep soil roots, expand the space of nutrient utilization for root system, increase the absorption of nitrogen in deep soil, promote the accumulation and transportation of plant nitrogen, improve the productivity and ultimately yield in summer maize.

Key words: summer maize, phosphorus placement depth, root, yield, nitrogen absorption and utilization

表1

试验田养分含量"

年份
Year
土层
Soil layer
(cm)
pH 有机质
Soil organic matter
(g kg-1)
全氮
Total N
(g kg-1)
速效氮
Available N
(mg kg-1)
有效磷
Olsen P
(mg kg-1)
速效钾
Available K
(mg kg-1)
2017 0-20 6.35 13.56 0.92 87.52 18.92 145.07
20-40 7.21 9.51 0.56 58.36 13.15 94.13
40-60 7.42 5.70 0.21 42.68 5.38 57.56
2018 0-20 6.24 14.17 0.96 89.02 19.38 158.86
20-40 7.04 10.37 0.61 60.67 12.21 98.24
40-60 7.34 6.03 0.25 49.31 6.42 68.60

图1

试验田夏玉米生育期平均温度与降水量"

图2

磷肥施用深度对夏玉米植株根系性状的影响 标以不同字母的柱值间差异达0.05显著水平。CK: 不施磷肥; P5: 距离地表-5 cm处施磷; P10: 距离地表-10 cm处施磷; P15: 距离地表-15 cm处施磷; P20: 距离地表-20 cm处施磷。"

图3

不同深度土层中根系干重占整体根干重的比例 P5: 距离地表-5 cm处施磷; P10: 距离地表-10 cm处施磷; P15: 距离地表-15 cm处施磷; P20: 距离地表-20 cm处施磷。"

图4

不同深度土层中的根系分布(2018) CK: 不施磷肥; P5: 距离地表-5 cm处施磷; P10: 距离地表-10 cm处施磷; P15: 距离地表-15 cm处施磷; P20: 距离地表-20 cm处施磷。"

图5

磷肥施用深度对夏玉米植株生物量与籽粒理论产量的影响 标以不同字母的柱值间差异达0.05显著水平。CK: 不施磷肥; P5: 距离地表-5 cm处施磷; P10: 距离地表-10 cm处施磷; P15: 距离地表-15 cm处施磷; P20: 距离地表-20 cm处施磷。"

图6

单株生物量、籽粒重与根干重、根长密度的关系"

图7

不同土层氮素的分布 CK: 不施磷肥; P5: 距离地表-5 cm处施磷; P10: 距离地表-10 cm处施磷; P15: 距离地表-15 cm处施磷; P20: 距离地表-20 cm处施磷。"

表2

磷肥施用深度对植株中氮积累量、转运及吸收利用的影响"

年份
Year
处理
Treatment
氮素积累量
Accumulation amount
(kg hm-2)
营养器官向籽粒
的转运量
Translocation amount
(kg hm-2)
营养器官向
籽粒的转运率
Translocation rate (%)
氮素吸收效率
NAE
(kg kg-1)
氮肥偏生产力
NPFP
(kg kg-1)
R2 R6
2017 CK 144.59 e 204.62 e 34.71 d 32.03 b 64.96 e 24.32 d
P5 168.11 d 225.28 d 41.69 cd 33.81 ab 71.52 d 26.33 cd
P10 209.55 b 253.50 c 57.87 ab 37.04 ab 80.48 c 29.45 ab
P15 226.23 a 283.34 a 64.22 a 38.74 a 89.95 a 31.82 a
P20 199.50 c 264.56 b 48.99 bc 34.22 ab 83.99 b 28.34 bc
年份
Year
处理
Treatment
氮素积累量
Accumulation amount
(kg hm-2)
营养器官向籽粒
的转运量
Translocation amount
(kg hm-2)
营养器官向
籽粒的转运率
Translocation rate (%)
氮素吸收效率
NAE
(kg kg-1)
氮肥偏生产力
NPFP
(kg kg-1)
R2 R6
2018 CK 164.71 e 228.13 d 46.91 c 50.47 b 72.42 d 29.44 c
P5 205.48 d 278.45 c 55.83 b 51.76 ab 88.40 c 31.43 c
P10 209.86 c 280.63 c 56.34 b 52.14 ab 89.09 c 35.12 b
P15 245.50 a 311.45 a 67.42 a 53.49 a 98.87 a 38.66 a
P20 225.24 b 295.08 b 58.11 b 51.84 ab 93.68 b 34.99 b

图8

籽粒氮积累量(GNAA)、氮素吸收效率(NAE)、氮肥偏生产力(NPFP)与根干重(RDW)、根长密度(RLD)的关系"

[1] Tilman D, Cassman K G, Matson P A, Naylor R, Polasky S . Agricultural sustainability and intensive production practices. Nature(London), 2002,418:671-677.
doi: 10.1038/nature01014 pmid: 12167873
[2] Cassman K G, Dobermann A R, Walters D T, Yang H S . Meeting cereal demand while protecting natural resources and improving environmental quality. Annu Rev Environ Resour, 2003,28:315-358.
doi: 10.1146/annurev.energy.28.040202.122858
[3] 谢佳贵, 韩晓日, 王立春, 侯云鹏 . 不同施氮模式对春玉米产量、养分吸收及氮肥利用率的影响. 玉米科学, 2016,21(2):135-138.
Xie J G, Han X R, Wang L C, Hou Y P . Effect of different nitrogen application modes on maize yield, nutrition uptake and utilization efficiency. Maize Sci, 2016,21(2):135-138 (in Chinese with English abstract).
[4] 赵亚丽, 杨春收, 王群, 刘天学, 李潮海 . 磷肥施用深度对夏玉米产量和养分吸收的影响. 中国农业科学, 2010,43:4805-4813.
Zhao Y L, Yang C S, Wang Q, Liu T X, Li C H . Effects of phosphorus placement depth on yield and nutrient uptake of summer maize. Sci Agric Sin, 2010,43:4805-4813 (in Chinese with English abstract).
[5] Chen X P, Cui Z L, Vitousek P M, Cassman K G, Matson P A, Bai J S, Meng Q F, Hou P, Yue S C, Römheld V, Zhang F S . Integrated soil-crop system management for food security. Proc Natl Acad Sci USA, 2011,108:6399-6404.
doi: 10.1073/pnas.1101419108 pmid: 21444818
[6] Zhang F S, Shen J B, Jing J Y, Li L, Chen X P . Rhizosphere processes and management for improving nutrient use efficiency and crop productivity. Adv Agron, 2010,107:1-32.
doi: 10.1093/aobpla/plz033 pmid: 31285818
[7] Williamson L C . Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol, 2001,126:875-882.
doi: 10.1104/pp.126.2.875 pmid: 11402214
[8] Shen J B, Li H G, Neumann G, Zhang F S . Nutrient uptake, cluster root formation and exudation of protons and citrate inLupinus albus as affected by localized supply of phosphorus in a split-root system. Plant Sci, 2005,168:837-845.
doi: 10.1016/j.plantsci.2004.10.017
[9] Shu L Z, Shen J B, Rengel Z, Tang C X, Zhang F S . Cluster root formation byLupinus albus is modified by stratified application of phosphorus in a split-root system. J Plant Nutr, 2007,30:271-288.
doi: 10.1080/01904160601118075
[10] Schachtman D P, Reid R J, Ayling S M . Phosphorus uptake by plants: from soil to cell. Plant Physiol, 1998,116:447-453.
doi: 10.1104/pp.116.2.447 pmid: 9490752
[11] Borling K, Barberis E, Otabbong E . Impact of long-term inorganic phosphorus fertilization on accumulation, sorption and release of phosphorus in five Swedish soil profiles. Nutr Cycl Agroecosys, 2004,69:11-21.
doi: 10.1023/B:FRES.0000025286.30243.c0
[12] Lynch J P . Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol, 2011,156:1041-1049.
doi: 10.1104/pp.111.175414 pmid: 21610180
[13] Richardson A E, Lynch J P, Ryan P R, Delhaize E, Smith F A, Smith S E, Harvey P R, Ryan M G, Veneklaas E, Lambers H, Oberson A, Culvenor R A, Simpson R . Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil, 2011,349:121-156.
doi: 10.1007/s11104-011-0950-4
[14] Dunbabin V M, Diggle A J, Rengel Z . Is there an optimal root architecture for nitrate capture in leaching environments? Plant Cell Environ, 2010,26:835-844.
doi: 10.1046/j.1365-3040.2003.01015.x pmid: 12803611
[15] Lynch J P . Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot, 2013,112:347-357.
doi: 10.1093/aob/mcs293 pmid: 23328767
[16] Postma J A, Schurr U, Fiorani F . Dynamic root growth and architecture responses to limiting nutrient availability: linking physiological models and experimentation. Biotechnol Adv, 2014,32:53-65.
doi: 10.1016/j.biotechadv.2013.08.019
[17] Lynch J P, Wojciechowski T . Opportunities and challenges in the subsoil: pathways to deeper rooted crops. J Exp Bot, 2015,66:2199-2210.
doi: 10.1093/jxb/eru508 pmid: 25582451
[18] Lynch J P . Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture. New Phytol, 2019,223:548-564.
doi: 10.1111/nph.15738 pmid: 30746704
[19] 范秀艳, 杨恒山, 高聚林, 张瑞富, 王志刚, 张玉芹 . 超高产栽培下磷肥运筹对春玉米根系特性的影响. 植物营养与肥料学报, 2012,18:562-570.
doi: 10.11674/zwyf.2012.11303
Fan X Y, Yang H S, Gao J L, Zhang R F, Wang Z G, Zhang Y Q . Effects of phosphorus application on root characteristics of super-high-yield spring maize. Plant Nutr Fert Sci, 2012,18:562-570 (in Chinese with English abstract).
doi: 10.11674/zwyf.2012.11303
[20] 陈梦楠, 孙敏, 高志强, 温斐斐, 郝兴宇, 杨珍平 . 深施磷肥对旱地小麦土壤水分、根系分布及产量的影响. 灌溉排水学报, 2016,35(1):47-52.
Chen M N, Sun M, Gao Z Q, Wen F F, Hao X Y, Yang Z P . Effect of deep application of phosphate fertilizer on soil moisture, root distribution and yield of dryland wheat. J Irrig Drain, 2016,35(1):47-52 (in Chinese with English abstract).
[21] 杨云马, 孙彦铭, 贾良良, 贾树龙, 孟春香 . 磷肥施用深度对夏玉米产量及根系分布的影响. 中国农业科学, 2018,51:1518-1526.
doi: 10.3864/j.issn.0578-1752.2018.08.009
Yang Y M, Sun Y M, Jia L L, Jia S L, Meng C X . Effects of phosphorus fertilization depth on yield and root distribution of summer maize. Sci Agric Sin, 2018,51:1518-1526 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.08.009
[22] Hodge A . The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol, 2004,162:9-24.
doi: 10.1111/nph.2004.162.issue-1
[23] 张德闪, 李洪波, 申建波 . 集约化互作体系植物根系高效获取土壤养分的策略与机制. 植物营养与肥料学报, 2017,23:1547-1555.
Zhang D S, Li H B, Shen J B . Strategies for root′s foraging and acquiring soil nutrient in high efficiency under intensive cropping systems. J Plant Nutr Fert, 2017,23:1547-1555 (in Chinese with English abstract).
[24] Rogerio B, Mallarino A P . Deep banding phosphorus and potassium fertilizers for corn managed with ridge tillage. Soil Sci Soc Am J, 2001,65:376-384.
doi: 10.2136/sssaj2001.652376x
[25] Ma Q H, Zhang F S, Rengel Z, Shen J B . Localized application of NH4 +-N plus P at the seedling and later growth stages enhances nutrient uptake and maize yield by inducing lateral root proliferation . Plant Soil, 2013,372:65-80.
doi: 10.1007/s11104-013-1735-8
[26] Nash P R, Nelson K A, Motavalli P P . Corn yield response to timing of strip-tillage and nitrogen source applications. Agron J, 2013,105:623-630.
doi: 10.2134/agronj2012.0338
[27] 王鹏, 牟溥, 李云斌 . 植物根系养分捕获塑性与根竞争. 植物生态学报, 2012,36:1184-1196.
doi: 10.3724/SP.J.1258.2012.01184
Wang P, Mou P, Li Y B . Review of root nutrient foraging plasticity and root competition of plants. Chin J Plant Ecol, 2012,36:1184-1196 (in Chinese with English abstract).
doi: 10.3724/SP.J.1258.2012.01184
[28] Li H B, Ma Q H, Li H G, Zhang F S . Root morphological responses to localized nutrient supply differ among crop species with contrasting root traits. Plant Soil, 2014,376:151-163.
doi: 10.1007/s11104-013-1965-9
[29] 于晓芳, 高聚林, 叶君, 王志刚, 孙继颖, 胡树平, 苏治军 . 深松及氮肥深施对超高产春玉米根系生长、产量及氮肥利用效率的影响. 玉米科学, 2013,21(1):114-119.
Yu X F, Gao J L, Ye J, Wang Z J, Sun J Y, Hu S P, Su Z J . Effects of deep loosening with nitrogen deep placement on root growth, grain yield and nitrogen use efficiency of super high-yield spring maize. Maize Sci, 2013,21(1):114-119 (in Chinese with English abstract).
[30] Schwab G J, Whitney D A, Kilgore G L, Sweeney D W . Tillage and phosphorus management effects on crop production in soils with phosphorus stratification. Agron J, 2006,98:430-435.
doi: 10.2134/agronj2005.0050
[31] 马存金, 刘鹏, 赵秉强, 张善平, 冯海娟, 赵杰, 杨今胜, 董树亭, 张吉旺, 赵斌 . 施氮量对不同氮效率玉米品种根系时空分布及氮素吸收的调控. 植物营养与肥料学报, 2014,20:845-859.
doi: 10.11674/zwyf.2014.0406
Ma C J, Liu P, Zhao B Q, Zhang S P, Feng H J, Zhao J, Yang J S, Dong S T, Zhang J W, Zhao B . Regulation of nitrogen application rate on temporal and spatial distribution of roots and nitrogen uptake in different N use efficiency maize cultivars. J Plant Nutr Fert, 2014,20:845-859 (in Chinese with English abstract).
doi: 10.11674/zwyf.2014.0406
[32] Liu X J, Mosier A R, Halvorson A D, Zhang F S . The Impact of nitrogen placement and tillage on NO, N2O, CH4 and CO2 fluxes from a clay loam soil. Plant Soil, 2006,280:177-188.
doi: 10.1007/s11104-005-2950-8
[33] 苏志峰, 杨文平, 杜天庆, 郝教敏, 孙敏, 高志强, 杨珍平 . 施肥深度对生土地玉米根系及根际土壤肥力垂直分布的影响. 中国生态农业学报, 2016,24(2):142-153.
Su Z F, Yang W P, Du T Q, Hao J M, Sum M, Gao Z Q, Yang Z P . Effect of fertilization depth on maize root and rhizosphere soil fertility vertical distribution in immature loess subsoil. Chin J Eco-Agric, 2016,24(2):142-153 (in Chinese with English abstract).
[34] 张瑞富, 杨恒山, 范秀艳, 张宏宇, 柳宝林, 刘晶 . 施磷深度和深松对春玉米磷素吸收与利用的影响. 植物营养与肥料学报, 2018,24:880-887.
Zhang R F, Yang H S, Fan X Y, Zhang H Y, Liu B L, Liu J . Effects of phosphorus application depths on its uptake and utilization in spring maize under subsoiling tillage. J Plant Nutr Fert, 2018,24:880-887 (in Chinese with English abstract).
[35] Jing J Y, Rui Y K, Zhang F S, Rengel Z . Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification. Field Crops Res, 2010,119:355-364.
doi: 10.1016/j.fcr.2010.08.005
[36] Jing J Y, Zhang F S, Rengel Z, Shen J Y . Localized fertilization with P plus N elicits an ammonium-dependent enhancement of maize root growth and nutrient uptake. Field Crops Res, 2012,133:176-185.
doi: 10.1016/j.fcr.2012.04.009
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[11] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!