欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (6): 807-817.doi: 10.3724/SP.J.1006.2019.81090

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

小麦芒长抑制基因B2的精细定位与候选基因分析

金迪1,*,王冬至2,*,王焕雪3,李润枝3,陈树林1,阳文龙2,张爱民2,刘冬成2,4,*(),詹克慧1,*()   

  1. 1 河南农业大学农学院, 河南郑州 450002
    2 中国科学院遗传与发育生物学研究所 / 植物细胞与染色体工程国家重点实验室, 北京 100101
    3 北京农学院植物科学技术学院, 北京 102206
    4 北京科技大学生物与农业研究中心, 北京 100024
  • 收稿日期:2018-12-19 接受日期:2019-01-19 出版日期:2019-06-12 网络出版日期:2019-06-12
  • 通讯作者: 金迪,王冬至,刘冬成,詹克慧
  • 作者简介:金迪, E-mail: jindizheng@qq.com|王冬至, E-mail: wangdongzhi1990@163.com
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0101800);国家自然科学基金项目(31571643)

Fine mapping and candidate gene analysis of awn inhibiting gene B2 in common wheat

Di JIN1,*,Dong-Zhi WANG2,*,Huan-Xue WANG3,Run-Zhi LI3,Shu-Lin CHEN1,Wen-Long YANG2,Ai-Min ZHANG2,Dong-Cheng LIU2,4,*(),Ke-Hui ZHAN1,*()   

  1. 1 Agronomy College of Henan Agricultural University, Zhengzhou 450002, Henan, China
    2 State Key Laboratory of Plant Cell and Chromosome Engineering / Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
    3 College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
    4 Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
  • Received:2018-12-19 Accepted:2019-01-19 Published:2019-06-12 Published online:2019-06-12
  • Contact: Di JIN,Dong-Zhi WANG,Dong-Cheng LIU,Ke-Hui ZHAN
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0101800);the National Natural Science Foundation of China(31571643)

摘要:

芒是小麦重要的穗部器官和形态特征, 是小麦长期进化和适应环境的结果, 对产量和抗旱性等具有重要影响。目前, 对麦芒的遗传与发育还缺乏系统的研究, 相关基因克隆或精细定位的研究尚未见报道。本试验利用短芒材料‘六柱头’与长芒材料‘石矮1号’构建的F2群体(SL-F2)对芒的遗传与发育进行了研究。细胞学观察表明, 短芒主要是由细胞长度变短引起; 遗传分析表明, ‘六柱头’的短芒由显性单基因控制; 借助Wheat660K SNP芯片的BSA分析和SL-F2群体的精细定位, 确定‘六柱头’的芒长抑制基因是前人报道的B2位点, 并将其定位到6B染色体4.84 Mb的物理区间(471.28~476.12 Mb)内, 该区段在中国春与矮抗58间具有良好的共线性。在B2定位区间共有61个基因, 其中5个在中国春穗部特异表达, TraesCS6B02G264400在中国春和Azhurnaya幼穗表达差异显著。这些研究结果为B2基因的克隆、小麦芒形成机理的解析及育种中的应用奠定了基础。

关键词: 小麦, 芒, B2, 精细定位, BSA, Wheat660K

Abstract:

Awn is one of the important photosynthetic organs in common wheat and plays a vital role in yield potential and environmental adaptation. At present, the inheritance and development of wheat awn have been not systematically studied, and cloning or fine mapping of related genes are seldom reported. In this study, the genetics and candidate genes conferring the short awn of a Chinese wheat landrace ‘Liuzhutou’ were investigated. Longitudinal section of awn showed cell size of short awn was much shorter than that of long awn. Using Wheat660K SNP chip based bulked segregant analysis (BSA) and SL-F2 population derived from ‘Liuzhutou’ (short awn) and modern cultivar ‘Shiai 1’ (long awn), the awn inhibiting gene in ‘Liuzhutou’ was mapped in a 4.84 Mb interval on chromosome 6BL and predicted as previously characterized B2. A good micro-collinearity of B2 region was observed among chromosomes 6B, 6A, 6D of Chinese Spring and chromosome 6B of AK58, there were 61 genes annotated in the 4.84 Mb B2 region, five of which were specifically expressed in the developing spike of Chinese Spring, and TraesCS6B02G264400 was differentially expressed between Chinese Spring and Azhurnaya. These data provide important clues for cloning the B2 gene, dissecting the developing mechanism of wheat awn and its application in molecular breeding.

Key words: common wheat, awn, B2, fine mapping, BSA, Wheat660K

表1

本研究所用到的引物"

引物名称
Primer ID
正向引物序列
Forward sequence (5'-3')
反向引物序列
Reverse sequence (5'-3')
内切酶
Restriction enzyme
片段大小
Size (bp)
B2精细定位 Markers for mapping B2
Xgwm88 * CACTACAACTATGCGCTCGC TCCATTGGCTTCTCTCTCAA 120
SSR43 ACTATCACAAGCCGGAGTAA AGTGGTTAAATCGCCACTAA 172
SSR122 CATGTTACCACCAAAGGATT CTATGTGGCTGACCGTTACT 205
EST-499300LC TCCAAAGAATCCTGGAGGTG TGTTCTGACCATCCCACGTA Pvu II 393/270
dCAPS-18 GACCACCCGACACCGCCGCTGCA GCTCATCTCCAATAGCTCGC Pst I 204/184
dCAPS-19 CAAAACTTCTTGGGAGAATATAC CCCTGACATCGTCTCGAACT Mlu I 192/172
dCAPS-4 GTAAGCAGCGAGGTTAGCACTGC CTGGTGCTCATGAGTTGTGG Pst I 296/276
EST-263300 CGTGTGCTTAAATGCTCCATGG GCTGACTTATGCTGCTTTACTTTCTAA Taq I 521/472
CAPS-12 ATTGATGCAAAGGAACCAGG GAGTTCCATGGCCTCATTGT Eco RI 308/236
CAPS-14 GGAAGGTCCACTTTGCATGT CACCACAGGGACGAAATTCT Bam HI 281/265
dCAPS-39 GTTTTCTTTGTAGAAGTCCCATA AAACACCTGAAAATCGTGGC Nde I 185/165
EST-265400 CCATCAGTCCAACCATGACTTGT TAACATAAGCGTCGCTGTGGC Pst I 246/(111+135)
CAPS-19 TGTCCTTGAAGGGGGTAGTG TCCTGCATTATGCCACAAAA Nde I 483/(217+266)
WABM232658 * AAGTTCGCCTCTTCACCAGT TCTGCCCCTACATCTGTTGC 130
SSR74 CATAATCACAATTCATCGGA TTCATACCTGACCCATCTTC 214
SSR116 AGAATCAGTTTTCAGCCAGA AACTATCCCGTATACTTGCG 168
WABM214868 * GGGTGCCTGAACATTGATGC CCCCAAGTGCTGTCGTGTAT 126
候选基因克隆 Gene cloning primers
6B01G262600 AGCGAAGCAGTCAGTACTCAGT CTTGCATGGATAATCGAAACATAGGA 1041
6B01G263300 CGTGTGCTTAAATGCTCCATGG GCTGACTTATGCTGCTTTACTTTCTAA 1110
6B01G264600 GCCCATTTTTGCAGTCATGACATCA CGGGATGAAAACCTGCTCTTC 1760
6B01G265400 CCATCAGTCCAACCATGACTTGT TAACATAAGCGTCGCTGTGGC 1071
6B01G504500LC CACACACACACACACCAAAACTC GGCATACTGCGAACAACCCA 985
6B01G505500LC AGCAGCTGGGTGAAGTTAACTA TTCCAGCCCCCTTTTACAAGAT 1437

图1

长芒材料(A)和短芒材料(B)芒的石蜡切片"

图2

SL-F2群体的构建及Wheat660K芯片分型结果分析 (A) 群体构建和芒长表现; (B) SL-F2群体混池间差异SNP标记的染色体分布; (C) SL-F2群体混池6B染色体差异SNP标记的分布。"

表2

SL-F2群体的遗传分析及卡方检验结果"

单株数
No. of F2 plants
观察值 Observed value 理论值 Expected value 理论比值
Expected ratio
χ2
χ2-value
P
P-value
长芒
Long awn
短芒
Short awn
长芒
Long awn
短芒
Short awn
1413 350 1063 353 1060 3:1 0.04 0.84

图3

B2基因的精细定位 (A) SL-F2群体B2位点的遗传图谱; (B) SL-F2群体B2位点的物理图谱; (C) SL-F2群体关键重组体的标记基因型及子代验证表型。"

图4

B2区段的基因微共线性分析 自左向右依次为矮抗58的6B染色体及中国春6B、6A和6D染色体; 图中标为红色和青色的基因分别表示在中国春6B和矮抗58的6B染色体中没有同源基因。"

图5

中国春B2区间基因注释与表达谱分析 热图中蓝色越深代表其表达量(TPM)越低, 红色越深则表达量越高, 标红色的基因代表在中国春中Fold-Change (TPMSpike/TPMMean(Leaf, Root, Grain)) ≥ 2, 基因名称后面为其基因注释信息。"

[1] Watkins A E, Ellerton S . Variation and genetics of the awn in Triticum. J Genet, 1940,40:243-270.
doi: 10.1007/BF02982493
[2] 毕昆, 姜盼, 唐崇伟, 黄菲菲, 王成 . 基于麦穗特征的小麦品种BP分类器设计. 中国农学通报, 2011,27:464-468.
Bi K, Jiang P, Tang C W, Huang F F, Wang C . The design of wheat variety BP classifier based on wheat ear feature. Chin Agric Sci Bull, 2011,27:464-468 (in Chinese with English abstract).
[3] Bariana H S, Parry N, Barclay I R, Loughman R ,McLean R J, Shankar M, Wilson R E, Willey N J, Francki M .Identification and characterization of stripe rust resistance gene Yr34 in common wheat.Theor Appl Genet, 2006,112:1143-1148.
doi: 10.1007/s00122-006-0216-3 pmid: 16435125
[4] Cuthbert J L, Somers D J , Brûlé-Babel A L,Brown P D,Crow G H. Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theor Appl Genet, 2008,117:595-608.
doi: 10.1007/s00122-008-0804-5 pmid: 18516583
[5] Qureshi N, Bariana H S, Zhang P , McIntosh R, Bansal U K, Wong D, Hayden M J, Dubcovsky J, Shankar M .Genetic relationship of stripe rust resistance genes Yr34 and Yr48 in wheat and identification of linked KASP markers. Plant Dis, 2018,102:413-420.
[6] 王忠, 顾蕴洁, 高煜珠 . 麦芒的结构及其光合特性, 植物学报, 1993,35:921-928.
Wang Z, Gu Y J, Gao Y Z . Structure and photosynthetic characteristics of awns of wheat and barley. Acta Bot Sin, 1993,35:921-928 (in Chinese with English abstract).
[7] Li X, Wang H, Li H, Zhang L, Teng N, Lin Q, Wang J, Kuang T, Li Z, Li B, Zhang A, Lin J . Awns play a dominant role in carbohydrate production during the grain-filling stages in wheat ( Triticum aestivum). Physiol Plant, 2006,127:701-709.
doi: 10.1111/j.1399-3054.2006.00679.x
[8] Olugbemi L B . Distribution of carbon-14 assimilated by wheat awns. Ann Appl Biol, 1978,90:111-114.
doi: 10.1111/j.1744-7348.1978.tb02616.x
[9] Kriedemann P . The photosynthetic activity of the wheat ear. Ann Bot, 1966,30:349-363.
doi: 10.1093/oxfordjournals.aob.a084081
[10] Araus J L, Brown H R, Febrero A, Bort J, Serret M D . Ear photosynthesis, carbon isotope discrimination and the contribution of respiratory CO2 to differences in grain mass in durum wheat. Plant Cell Environ, 1993,16:383-392.
doi: 10.1111/j.1365-3040.1993.tb00884.x
[11] Blum A . Photosynthesis and transpiration in leaves and ears of wheat and barley varieties. J Exp Bot, 1985,36:432-440.
doi: 10.1093/jxb/36.3.432
[12] Grundbacher F J . The physiological function of the cereal awn. Bot Rev, 1963,29:366-381.
[13] Evans L T, Bingham J, Jackson P, SUTHERLAND J . Effect of awns and drought on the supply of photosynthate and its distribution within wheat ears. Ann Appl Biol, 1972,70:67-76.
[14] Elbaum R, Zaltzman L, Burgert I, Fratzl P . The role of wheat awns in the seed dispersal unit. Science, 2007,316:884-886.
doi: 10.1126/science.1140097 pmid: 17495170
[15] Sourdille P, Cadalen T, Gay G, Gill B, Bernard M . Molecular and physical mapping of genes affecting awning in wheat. Plant Breed, 2002,121:320-324.
doi: 10.1046/j.1439-0523.2002.728336.x
[16] Kato K, Miura H, Akiyama M, Kuroshima M, Sawada S . RFLP mapping of the three major genes, Vrn1, Q and B1, on the long arm of chromosome 5A of wheat. Euphytica, 1998,101:91-95.
[17] Sourdille P, Cadalen T, Guyomarc’h H, Snape J, Perretant M, Charmet G, Boeuf C, Bernard S, Bernard M . An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet, 2003,106:530-538.
doi: 10.1258/ijsa.2009.008443 pmid: 12589554
[18] Yoshioka M ,Iehisa J C M, Ohno R, Kimura T, Enoki H, Nishimura S, Nasuda S, Takumi S. Three dominant awnless genes in common wheat: fine mapping, interaction and contribution to diversity in awn shape and length. PLoS One, 2017,12:e0176148.
doi: 10.1371/journal.pone.0176148 pmid: 5402986
[19] Luo J, Liu H, Zhou T, Gu B, Huang X, Shangguan Y, Zhu J, Li Y, Zhao Y, Wang Y, Zhao Q, Wang A, Wang Z, Sang T, Wang Z, Han B . An-1 encodes a basic Helix-Loop-Helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell, 2013,25:3360-3376.
[20] Gu B, Zhou T, Luo J, Liu H, Wang Y, Shangguan Y, Zhu J, Li Y, Sang T, Wang Z, Han B . An-2 encodes a cytokinin synthesis enzyme that regulates awn length and grain production in rice. Mol Plant, 2015,8:1635-1650.
doi: 10.1016/j.molp.2015.08.001 pmid: 26283047
[21] Hua L, Wang D R, Tan L, Fu Y, Liu F, Xiao L, Zhu Z, Fu Q, Sun X, Gu P, Cai H , McCouch S R,Sun C. LABA1, a domestication gene associated with long, barbed awns in wild rice. Plant Cell, 2015,27:1875-1888.
doi: 10.1105/tpc.15.00260 pmid: 26082172
[22] Toriba T, Hirano H Y . The DROOPING LEAF and OsETTIN2 genes promote awn development in rice. Plant J, 2014,77:616-626.
[23] Bessho-Uehara K, Wang D R, Furuta T, Minami A, Nagai K, Gamuyao R, Asano K ngeles-Shim R B, Shimizu Y, Ayano M, Komeda N, Doi K, Miura K, Toda Y, Kinoshita T, Okuda S, Higashiyama T, Nomoto M, Tada Y, Shinohara H, Matsubayashi Y, Greenberg A, Wu J, Yasui H, Yoshimura A, Mori H, McCouch S R, Ashikari M , Loss of function at RAE2, a previously unidentified EPFL, is required for awnlessness in cultivated Asian rice,Proc Natl Acad Sci USA , 2016, 113: 8969-8974.
[24] Jin J, Hua L, Zhu Z, Tan L, Zhao X, Zhang W, Liu F, Fu Y, Cai H, Sun X, Gu P, Xie D, Sun C . GAD1 encodes a secreted peptide that regulates grain number, grain length and awn development in rice domestication Plant Cell, 2016: 28:2453-2463.
doi: 10.1105/tpc.16.00379 pmid: 27634315
[25] Yuo T, Yamashita Y, Kanamori H, Matsumoto T, Lundqvist U, Sato K, Ichii M, Jobling S A, Taketa S . A SHORT INTERNODES (SHI) family transcription factor gene regulates awn elongation and pistil morphology in barley. J Exp Bot, 2012,63:5223-5232.
[26] Müller K J, Romano N, Gerstner O, Garcia-Marotot F, Pozzi C, Salamini F, Rohde W . The barley Hooded mutation caused by a duplication in a homeobox gene intron. Nature, 1995,374:727-730.
doi: 10.1038/374727a0 pmid: 7715728
[27] Milner S G, Jost M, Taketa S, Mazón E R, Himmelbach A, Oppermann M, Weise S, Knüpffer H, Basterrechea M, König P, Schüler D, Sharma R, Pasam R K, Rutten T, Guo G, Xu D, Zhang J, Herren G, Müller T, Krattinger S G, Keller B, Jiang Y, González M Y, Zhao Y, Habekuß A, Färber S, Ordon F, Lange M, Börner A, Graner A, Reif J C, Scholz U, Mascher M, Stein N . Genebank genomics highlights the diversity of a global barley collection. Nat Genet, 2018.
doi: 10.1038/s41588-018-0266-x
[28] Mackay I J, Bansept-Basler P, Barber T, Bentley A R, Cockram J, Gosman N, Greenland A J, Horsnell R, Howells R , O’Sullivan D M,Rose G A,Howell P J. An eight-parent multiparent advanced generation inter-cross population for winter-sown wheat: creation, properties, and validation. G3: Genes Genom Genet, 2014,4:1603-1610.
[29] Li H, Han Y, Guo X, Xue F, Wang C, Ji W . Genetic effect of locus B2 inhibiting awning in double-ditelosomic 6B of Triticum durum DR147. Genet Resour Crop Evol, 2015,62:407-418.
doi: 10.1007/s10722-014-0167-5
[30] Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, Pozniak C J, Stein N, Choulet F, Distelfeld A , other 374 authors. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361: eaar7191.
[31] Stein N, Herren G, Keller B . A new DNA extraction method for high-throughput marker analysis in a large-genome species such as Triticum aestivum.Plant Breed, 2001,120:354-356.
doi: 10.1046/j.1439-0523.2001.00615.x
[32] da Maia L C, Palmieri D A, de Souza V Q, Kopp M M, de Carvalho F I F, de Oliveira A C . SSR locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. Int J Plant Genom, 2008,2008:1-9.
doi: 10.1155/2008/412696 pmid: 18670612
[33] Lei L, Jiajun L, Xiang X, Changcheng L, Zefeng Y, Tao L . CAPS/dCAPS Designer: a web-based high-throughput dCAPS marker design tool. Sci China: Life Sci, 2018,61:992-995.
doi: 10.1007/s11427-017-9286-y pmid: 29656340
[34] Van Ooijen J W. JoinMap 4,Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV,>Wageningen, 2006, 33. 10. 1371.
[35] Voorrips R E . MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered, 2002,93:77-78.
doi: 10.1093/jhered/93.1.77 pmid: 12011185
[36] Chen C, Xia R, Chen H, He Y . TBtools, a Toolkit for Biologists integrating various HTS-data handling tools with a user-friendly interface. BioRxiv, 2018. doi: https://doi.org/10.1101/289660.
[37] Ishii T, Ishikawa R. Domestication loci controlling panicle shape, seed shattering, and seed awning. In: Sasaki T, Ashikari M eds. Rice Genomics, Genetics and Breeding. Singapore: Springer Singapore, 2018. pp 207-221.
[38] Sang T, Ge S . The puzzle of rice domestication. J Integr Plant Biol, 2007,49:760-768.
doi: 10.1111/j.1744-7909.2007.00510.x
[39] 华磊 . 野生稻长、刺芒基因的克隆及其分子演化. 中国农业大学博士学位论文, 北京, 2015. pp 27-29.
Hua L . Cloning and Molecular Evolution of LABA1 Controlling Long Barbed Awns in Common Wild Rice (Oryza rufipogon Griff). PhD Dissertation of China Agricultural University, . Beijing China, 2015. pp 27-29 (in Chinese with English abstract).
[40] Michelmore R W, Paran I, Kesseli R V . Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991,88:9828-9832.
doi: 10.1073/pnas.88.21.9828 pmid: 1682921
[41] Bettgenhaeuser J, Krattinger S G . Rapid gene cloning in cereals. Theor Appl Genet, 2018, DOI 10.1007/s00122-018-3210-7.
doi: 10.1007/s00122-018-3210-7
[42] 刘志勇, 王道文, 张爱民, 梁翰文, 吕慧颖, 邓向东, 葛毅强, 魏珣, 杨维才 . 小麦育种行业创新现状与发展趋势. 植物遗传资源学报, 2018,19:430-434.
Liu Z Y, Wang D W, Zhang A M, Liang H W, Lyu H Y, Deng X D, Ge Y Q, Wei X, Yang W C . Current status and perspective of wheat genomics, genetics and breeding. J. Plant Gene Res, 2018,19:430-434 (in Chinese with English abstract).
[43] 吴建辉 . 基于BSR-Seq 和芯片技术的抗条锈基因Yr26候选基因分析及普通小麦成株期抗条锈QTL定位. 西北农林科技大学博士学位论文, 陕西杨凌, 2017. pp 47-51.
Wu J H . QTL Mapping for Adult-plant Resistance to Stripe Rush in Common Wheat and Candidate Gene Analysis of Yr26 Based on BSR-Seq and SNP Array. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2017. pp 47-51 (in Chinese with English abstract).
[44] 张传量, 简俊涛, 冯洁, 崔紫霞, 许小宛, 孙道杰 . 基于90K芯片标记的小麦芒长QTL定位. 中国农业科学, 2018,51:17-25.
Zhang C L, Jian J T, Feng J, Cui Z X, Xu X W, Sun D J . QTL Identification for awn length based on 90K array mapping in wheat. Sci Agric Sin, 2018,51:17-25 (in Chinese with English abstract).
[45] Josse E-M, Gan Y, Bou-Torrent J, Stewart K L, Gilday A D, Jeffree C E, Vaistij F E , Martínez-García J F,Nagy F, Graham I A, Halliday K J. A DELLA in disguise: SPATULA restrains the growth of the developing Arabidopsis seedling. Plant Cell, 2011,23:1337-1351.
[46] Cubas P, Lauter N, Doebley J, Coen E . The TCP domain: a motif found in proteins regulating plant growth and development. Plant J, 1999,18:215-222.
doi: 10.1046/j.1365-313X.1999.00444.x pmid: 10363373
[47] Martín-Trillo M, Cubas P . TCP genes: a family snapshot ten years later. Trends Plant Sci, 2010,15:31-39.
doi: 10.1016/j.tplants.2009.11.003 pmid: 19963426
[48] Huang T, Irish V F . Temporal control of plant organ growth by TCP transcription factors. Curr Biol, 2015,25:1765-1770.
doi: 10.1016/j.cub.2015.05.024 pmid: 26073137
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[6] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[7] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[8] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[11] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[12] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[13] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[14] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[15] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!