作物学报 ›› 2019, Vol. 45 ›› Issue (6): 818-828.doi: 10.3724/SP.J.1006.2019.84133
魏丽娟1,2,*,刘瑞影1,2,*,张莉1,2,陈志友1,2,杨鸿1,2,霍强1,2,李加纳1,2,*()
Li-Juan WEI1,2,*,Rui-Ying LIU1,2,*,Li ZHANG1,2,Zhi-You CHEN1,2,Hong YANG1,2,Qiang HUO1,2,Jia-Na LI1,2,*()
摘要:
甘蓝型油菜主茎高度(茎高)是株型的构成因子之一, 研究其遗传机理对油菜株型改良具有重要的理论指导意义。目前对甘蓝型油菜茎高研究的报道较少。本研究以2个油菜茎高差异较大的亲本构建的重组自交系群体为材料, 利用SNP高密度遗传图谱, 2年共检测到11个茎高QTL, 分布在A04、A06、C04、A08和C01染色体上, 位点的表型贡献率为7.25%~19.61%。同时, 以455份来源不同的甘蓝型油菜为材料, 结合重测序产生的SNP标记, 对茎高进行全基因组关联分析, 2年共检测到5个SNP与茎高性状显著关联, 分布在A08、A10、C02和C06染色体上。根据茎高定位结果, 找到一些与激素途径(生长素、赤霉素和油菜素内酯)、光形态建成及植物生长发育相关的候选基因。在此基础上, 结合国内外株高相关性状定位研究结果, 将株高相关性状位点整合到甘蓝型油菜参考基因组上, 发现4个以上群体都在A01、A03、A07、C03和C06染色体上找到株高定位的区间, 2个群体在A10染色体上找到主花序长度共同定位的区间, 在A02和C03染色体上找到一次分枝高度共同定位的区间。本研究中的茎高定位结果与整合后的株高相关性状QTL定位区间有部分重叠, 位于A04、A06、A08、C04和C06染色体上。上述结果为甘蓝型油菜理想株型育种提供了理论依据。
[1] |
Cai G, Yang Q, Chen H, Yang Q, Zhang C, Fan C, Zhou Y . Genetic dissection of plant architecture and yield-related traits in Brassica napus. Sci Rep, 2016,6, doi: 10.1038/srep21625.
doi: 10.1038/srep21625 pmid: 26880301 |
[2] | 杨光, 冷锁虎, 左青松, 李苗苗, 冯云艳, 张含笑, 刘浩, 冯倩南, 张娟, 惠飞虎 . 薹肥施用时期和施氮量对毯苗移栽油菜株高和产量的影响. 中国农学通报, 2017,33(4):30-37. |
Yang G, Leng S H, Zuo Q S, Li M M, Feng Y Y, Zhang H X, Liu H, Feng Q N, Zhang J, Hui F H . Effects of fertilizer bolting period and N fertilizer application amount on height and yield of blanket seedling transplanting rapeseed. Chin Sci Bull, 2017,33(4):30-37 (in Chinese with English abstract). | |
[3] |
Sabaghnia N, Dehghani H, Alizadeh B, Mohghaddam M . Interrelationships between seed yield and 20 related traits of 49 canola(Brassica napus L.) genotypes in non-stressed and water-stressed environments. Span J Agric Res, 2010, 8:356-370.
doi: 10.5424/sjar/2010082-1195 |
[4] |
Shen Y, Xiang Y, Xu E, Ge X, Li Z . Major co-localized QTL for plant height, branch initiation height, stem diameter, and flowering time in an alien introgression derived Brassica napus DH population. Front Plant Sci, 2018,9, doi: 10.3389/fpls.2018. 00390.
doi: 10.3389/fpls.2018.00390 |
[5] | 王嘉, 荆凌云, 荐红举, 曲存民, 谌利, 李加纳, 刘列钊 . 甘蓝型油菜株高、第一分枝高和分枝数的QTL检测及候选基因筛选. 作物学报, 2015,41:1027-1038. |
Wang J, Jing L Y, Jian H J, Qu C M, Chen L, Li J N, Liu L Z . Quantitative trait loci mapping for plant height, the first branch height, and branch number and possible candidate genes screening in Brassica napus L. Acta Agron Sin, 2015,41:1027-1038 (in Chinese with English abstract). | |
[6] |
Sun C, Wang B, Yan L, Hu K, Liu S, Zhou Y, Guan C, Zhang Z, Li J, Zhang J, Chen S, Wen J, Ma C, Tu J, Shen J, Yi B . Genome-wide association study provides insight into the genetic control of plant height in rapeseed (Brassica napus L.). Front Plant Sci, 2016,7, doi: 10.3389/fpls.2016.01102.
doi: 10.3389/fpls.2016.01102 pmid: 4961929 |
[7] | 贺亚军, 吴道明, 傅鹰, 钱伟 . 利用DH和IF2群体检测甘蓝型油菜株高相关性状QTL. 作物学报, 2018,44:533-541. |
He Y J, Wu D M, Fu Y, Qian W . Detection of QTLs for plant height related traits in Brassica napus L. using DH and immortalized F2 Population. Acta Agron Sin, 2018,44:533-541 (in Chinese with English abstract). | |
[8] |
Udall J A, Quijada P A, Lambert B, Osborn T C . Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Theor Appl Genet, 2006,113:597-609.
doi: 10.1007/s00122-006-0323-1 pmid: 16767446 |
[9] |
Basunanda P, Radoev M, Ecke W, Friedt W, Becker H C, Snowdon R J . Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theor Appl Genet, 2010,120:271-281.
doi: 10.1007/s00122-009-1133-z pmid: 19707740 |
[10] |
Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J . Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics, 2009,182:851-861.
doi: 10.1534/genetics.109.101642 pmid: 19414564 |
[11] |
Cai D, Xiao Y, Yang W, Ye W, Wang B, Younas M, Wu J, Liu K . Association mapping of six yieldrelated traits in rapeseed (Brassica napus L.). Theor Appl Genet, 2014,127:85-96.
doi: 10.1007/s00122-013-2203-9 pmid: 24121524 |
[12] |
Zheng M, Peng C, Liu H, Tang M, Yang H, Li X, Liu J, Sun X, Wang X, Xu J, Hua W, Wang H . Genome-wide association study reveals candidate genes for control of plant height, branch initiation height and branch number in rapeseed (Brassica napus L.). Front Plant Sci, 2017,8, doi: 10.3389/fpls.2017.01246.
doi: 10.3389/fpls.2017.01246 pmid: 5513965 |
[13] |
Li F, Chen B, Xu K, Gao G, Yan G, Qiao J, Li J, Li H, Li L, Xiao X, Zhang T, Nishio T, Wu X . A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). Plant Sci, 2016,242:169-177.
doi: 10.1016/j.plantsci.2015.05.012 pmid: 26566834 |
[14] |
Chen W, Zhang Y, Liu X, Chen B, Tu J, Tingdong F . Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet, 2007,115:849-858.
doi: 10.1007/s00122-007-0613-2 pmid: 17665168 |
[15] |
Zhao W, Wang X, Wang H, Tian J, Li B, Chen L, Chao H, Long Y, Xiang J, Gan J, Liang W, Li M . Genome-wide identification of QTL for seed yield and yield-related traits and construction of a high-density consensus map for QTL comparison in Brassica napus. Front Plant Sci, 2016,7, doi: 10.3389/fpls.2016.00017.
doi: 10.3389/fpls.2016.00017 pmid: 26858737 |
[16] |
Luo Z, Wang M, Long Y, Huang Y, Shi L, Zhang C, Liu X , Fitt B D L, Xiang J, Mason A S, Snowdon R J, Liu P, Meng J, Zou J. Incorporating pleiotropic quantitative trait loci in dissection of complex traits: seed yield in rapeseed as an example. Theor Appl Genet, 2017,130:1569-1585.
doi: 10.1007/s00122-017-2911-7 pmid: 5719798 |
[17] |
Raboanatahiry N, Chao H, Dalin H, Pu S, Yan W, Yu L, Wang B, Li M . QTL alignment for seed yield and yield related traits in Brassica napus. Front Plant Sci, 2018,9, doi: 10.3389/fpls.2018. 01127.
doi: 10.3389/fpls.2018.01127 |
[18] | 张江江, 詹杰鹏, 刘清云, 师家勤, 王新发, 刘贵华, 王汉中 . 油菜株高OTL定位、整合和候选基因鉴定. 中国农业科学, 2017,50:3247-3258. |
Zhang J J, Zhan J P, Liu Q Y, Shi J Q, Wang X F, Liu G H, Wang H Z . QTL mapping and integration as well as candidate genes identification for plant height in rapeseed (Brassica napus L.). Sci Agric Sin, 2017,50:3247-3258 (in Chinese with English abstract). | |
[19] |
Wu Y, Bhat P R, Close T J, Lonardi S . Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet, 2008,4:e1000212.
doi: 10.1371/journal.pgen.1000212 pmid: 2556103 |
[20] |
Silva Lda C, Wang S, Zeng Z B . Composite interval mapping and multiple interval mapping: procedures and guidelines for using Windows QTL Cartographer. Methods in Mol Biol, 2012,871:75-119.
doi: 10.1007/978-1-61779-785-9_6 pmid: 22565834 |
[21] |
Bolger A M, Lohse M, Usadel B . Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014,30:2114-2120.
doi: 10.1093/bioinformatics/btu170 pmid: 24695404 |
[22] |
Li H, Durbin R . Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009,25:1754-1760.
pmid: 2705234 |
[23] |
Li H . A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics, 2011,27:2987-2993.
doi: 10.1093/bioinformatics/btr509 pmid: 21903627 |
[24] | Pritchard J K, Stephens M, Donnelly P . Inference of population structure using multilocus genotype data. Genetics, 2000,155:945-959. |
[25] |
Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S . TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007,23:2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 20320202020202020202020 |
[26] | Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C ,Samans B Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P.Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014,345:950-953. |
[27] |
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones S J, Marra M A . Circos: an information aesthetic for comparative genomics. Genome Res, 2009,19:1639-1645.
doi: 10.1101/gr.092759.109 pmid: 19541911 |
[28] |
Khan S, Anwar S, Kuai J, Noman A, Shahid M, Din M, Ali A, Zhou G . Alteration in yield and oil quality traits of winter rapeseed by lodging at different planting density and nitrogen rates. Sci Rep, 2018,8:634.
doi: 10.1038/s41598-017-18734-8 pmid: 29330468 |
[29] |
Kuai J, Sun Y, Zuo Q, Huang H, Liao Q, Wu C, Lu J, Wu J, Zhou G . The yield of mechanically harvested rapeseed (Brassica napus L.) can be increased by optimum plant density and row spacing. Sci Rep, 2015,5 doi: 10.1038/srep18835.
doi: 10.1038/srep18835 pmid: 26686007 |
[30] |
Wang Y, Li J . Molecular basis of plant architecture. Annu Rev Plant Biol, 2008,59:253-279.
doi: 10.1109/83.760334 pmid: 18444901 |
[31] | 魏大勇, 崔艺馨, 梅家琴, 汤青林, 李加纳, 钱伟 . 油菜种子含油量GWAS分析及位点整合系统构建. 作物学报, 2018,44:1311-1319. |
Wei D Y, Cui Y X, Mei J Q, Tang Q L, Li J N, Qian W . Genome-wide association study on seed oil content in rapeseed and construction of integration system for oil content loci. Acta Agron Sin, 2018, 44:1311-1319 (in Chinese with English abstract). | |
[32] |
N’Diaye A, Haile J K, Fowler D B, Ammar K, Pozniak C J . Effect of co-segregating markers on high-density genetic maps and prediction of map expansion using machine learning algorithms. Front Plant Sci, 2017,8, doi: 10.3389/fpls.2017.01434.
doi: 10.3389/fpls.2017.01434 pmid: 5572363 |
[33] |
Bai Z Y, Han X K, Liu X J, Li Q Q, Li J L . Construction of a high-density genetic map and QTL mapping for pearl quality- related traits in Hyriopsis cumingii. Sci Rep, 2016,6, doi: 10.1038/srep32608.
doi: 10.1038/srep32608 pmid: 5009340 |
[34] |
Lee M, Xia J H, Zou Z, Ye J, Rahmadsyah, Alfiko Y , Jin J, Lieando J V, Purnamasari M I, Lim C H, Suwanto A, Wong L, Chua N, Yue G H. A consensus linkage map of oil palm and a major QTL for stem height. Sci Rep, 2015,5, doi: 10.1038/srep08232.
doi: 10.1038/srep08232 pmid: 4316154 |
[35] |
Rastas P, Calboli F C, Guo B, Shikano T, Merila J . Construction of ultradense linkage maps with Lep-MAP2: stickleback F2 recombinant crosses as an example. Genome Biol Evol, 2015,8:78-93.
doi: 10.1093/gbe/evv250 pmid: 4758246 |
[36] | Maroso F, Hermida M, Millan A, Blanco A, Saura M, Fernandez A, Dalla Rovere G, Bargelloni L, Cabaleiro S, Villanueva B, Bouza C, Martínez P . Highly dense linkage maps from 31 full-sibling families of turbot (Scophthalmus maximus) provide insights into recombination patterns and chromosome rearrangements throughout a newly refined genome assembly. DNA Res, 2018,25:439-450. |
[37] | 李慧慧, 张鲁燕, 王建康 . QTL作图研究中若干常见问题的分析与解答. 作物学报, 2010,36:918-931. |
Li H H, Zhang L Y, Wang J K . Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agron Sin, 2010, 36:918-931 (in Chinese with English abstract). |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[4] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[5] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[6] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[7] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[8] | 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653. |
[9] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[10] | 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480. |
[11] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[12] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[13] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[14] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[15] | 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659. |
|