作物学报 ›› 2024, Vol. 50 ›› Issue (5): 1104-1114.doi: 10.3724/SP.J.1006.2024.32043
万应春1**(), 班义结1**(), 蒋钰东2**(), 王亚欣1, 刘晶晶1, 刘晓晴1, 程育林1, 王楠1,*(), 冯萍1,*()
WAN Ying-Chun1**(), BAN Yi-Jie1**(), JIANG Yu-Dong2**(), WANG Ya-Xin1, LIU Jing-Jing1, LIU Xiao-Qing1, CHENG Yu-Lin1, WANG Nan1,*(), FENG Ping1,*()
摘要:
雄性不育材料是杂交水稻育种的关键。本研究通过甲基磺酸乙酯(ethyl methane sulfonate, EMS)诱变优良籼稻保持系西农1B, 筛选得到一个雄性不育突变体tpa1。tpa1在营养生长阶段与野生型无差异, 生殖生长阶段表现雄配子不育, 雌配子发育正常。表型观察发现, tpa1花粉完全破碎消失, 花药外壁角质层异常, 花药内壁乌式体排列异常, 胼胝质合成异常, 绒毡层凋亡异常, 且花粉外壁缺失柱状层。遗传分析表明该突变性状受1对隐性核基因控制, 利用突变体tpa1与缙恢10号构建遗传群体, 最终将TPA1基因定位于4号染色体引物标记N9和N11之间, 物理距离为74 kb, 该区间共15个预测基因, 通过重测序仅发现在LOC_Os04g53380的外显子上发生了单碱基替换, 导致了翻译的提前终止, 随后对野生型和突变体tpa1该位点进行测序证实了这一突变, 因此将该基因确定为TPA1的候选基因, TPA1是一个未被报道过的新的雄性不育基因。本研究将为TPA1基因的功能研究奠定基础。
[1] |
Hochholdinger F, Baldauf J A. Heterosis in plants. Curr Biol, 2018, 28: R1089-R1092.
doi: 10.1016/j.cub.2018.06.041 |
[2] |
Bhatt A M, Canales C, Dickinson H G. Plant meiosis: the means to 1N. Trends Plant Sci, 2001, 6(3): 114-121.
doi: 10.1016/s1360-1385(00)01861-6 pmid: 11239610 |
[3] | 胡骏, 黄文超, 朱仁山, 李绍清, 朱英国. 水稻雄性不育与杂种优势的利用. 武汉大学学报(理学版), 2013, 59(1): 1-9. |
Hu J, Huang W C, Zhu R S, Li S Q, Zhu Y G. Male sterility and utilization of heterosis in rice. J Wuhan Univ (Sci Edn), 2013, 59(1): 1-9 (in Chinese with English abstract). | |
[4] |
Abbas A, Yu P, Sun L, Yang Z, Chen D, Cheng S, Cao L. Exploiting genic male sterility in rice: from molecular dissection to breeding applications. Front Plant Sci, 2021, 12: 629314.
doi: 10.3389/fpls.2021.629314 |
[5] |
Zhu Q H, Ramm K, Shivakkumar R, Dennis E S, Upadhyaya N M. The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice. Plant Physiol, 2004, 135: 1514-1525.
doi: 10.1104/pp.104.041459 |
[6] |
Tariq N, Yaseen M, Xu D, Rehman H M, Bibi M, Uzair M. Rice anther tapetum: a vital reproductive cell layer for sporopollenin biosynthesis and pollen exine patterning. Plant Biol, 2022, 25: 233-245.
doi: 10.1111/plb.v25.2 |
[7] | 张秋云, 沈亚琦, 蒋文翔, 刘家林, 王联红, 贺浩华, 胡丽芳. 水稻绒毡层发育相关转录因子研究进展. 湖北农业科学, 2021, 60(19): 5-10. |
Zhang Q Y, Shen Y Q, Jiang W X, Liu J L, Wang L H, He H H, Hu L F. Research progress on transcription factors related to rice tapetum development. Hubei Agric Sci, 2021, 60(19): 5-10 (in Chinese with English abstract). | |
[8] |
Hu L, Liang W, Yin C, Cui X, Zong J, Wang X, Hu J, Zhang D. Rice MADS3 regulates ROS homeostasis during late anther development. Plant Cell, 2011, 23: 515-533.
doi: 10.1105/tpc.110.074369 |
[9] |
Cui R, Han J, Zhao S, Su K, Wu F, Du X, Xu Q, Chong K, Theissen G, Meng Z. Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Plant J, 2010, 61: 767-781.
doi: 10.1111/tpj.2010.61.issue-5 |
[10] |
Jiang D, Li J, Wu, P, Liu Z L, Zhuang C X. Isolation and characterization of a microsporocyte-specific gene, OsMSP, in rice. Plant Mol Biol Rep, 2009, 27: 469-475.
doi: 10.1007/s11105-009-0109-0 |
[11] |
Jung K H, Han M J, Lee Y S, Kim Y W, Hwang I, Kim M J, Kim Y K, Nahm B H, An G. Rice undeveloped tapetum1 is a major regulator of early tapetum development. Plant Cell, 2005, 17: 2705-2722.
doi: 10.1105/tpc.105.034090 pmid: 16141453 |
[12] |
Li N, Zhang D S, Liu H S, Yin C S, Li X X, Liang W Q, Yuan Z, Xu B, Chu H W, Wang J, Wen T Q, Huang H, Luo D, Ma H, Zhang D B. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell, 2006, 18: 2999-3014.
doi: 10.1105/tpc.106.044107 pmid: 17138695 |
[13] |
Li H, Yuan Z, Vizcay-Barrena G, Yang C, Liang W, Zong J, Wilson Z A, Zhang D. PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiol, 2011, 156: 615-630.
doi: 10.1104/pp.111.175760 pmid: 21515697 |
[14] |
Niu N, Liang W, Yang X, Jin W, Wilson Z A, Hu J, Zhang D. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Commun, 2013, 4: 1445.
doi: 10.1038/ncomms2396 pmid: 23385589 |
[15] |
Liu Z, Bao W, Liang W, Yin J, Zhang D. Identification of gamyb-4 and analysis of the regulatory role of GAMYB in rice anther development. J Integr Plant Biol, 2010, 52: 670-678.
doi: 10.1111/jipb.2010.52.issue-7 |
[16] |
Wang N, Deng Y, Zhang L S, Wan Y C, Lei T, Yang Y M, Wu C, Du H, Feng P, Yin W Z, He G H. UDP-glucose epimerase 1, moonlighting as a transcriptional activator, is essential for tapetum degradation and male fertility in rice. Mol Plant, 2023, 16: 829-848.
doi: 10.1016/j.molp.2023.03.008 |
[17] |
Marchant D B, Walbot V. Anther development: the long road to making pollen. Plant Cell, 2022, 34: 4677-4695.
doi: 10.1093/plcell/koac287 |
[18] |
Ma X, Wu Y, Zhang G. Formation pattern and regulatory mechanisms of pollen wall in Arabidopsis. J Plant Physiol, 2021, 260: 153388.
doi: 10.1016/j.jplph.2021.153388 |
[19] |
Li N, Zhang D S, Liu H S, Yin C S, Li X X, Liang W Q, Yuan Z, Xu B, Chu H W, Wang J, Wen T Q, Huang H, Luo D, Ma H, Zhang D B. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell, 2006, 18: 2999-3014.
doi: 10.1105/tpc.106.044107 pmid: 17138695 |
[20] |
Shi J, Tan H, Yu X H, Liu Y, Liang W, Ranathunge K, Franke R B, Schreiber L, Wang Y, Kai G, Shanklin J, Ma H, Zhang D. Defective pollen wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. Plant Cell, 2011, 23: 2225-2246.
doi: 10.1105/tpc.111.087528 |
[21] |
Xu D, Shi J, Rautengarten C, Yang L, Qian X, Uzair M, Zhu L, Luo Q, An G, Waßmann F, Schreiber L, Heazlewood J L, Scheller H V, Hu J, Zhang D, Liang W. Defective pollen wall 2 (DPW2) encodes an acyl transferase required for rice pollen development. Plant Physiol, 2017, 173: 240-255.
doi: 10.1104/pp.16.00095 pmid: 27246096 |
[22] |
Mondol P C, Xu D, Duan L, Shi J, Wang C, Chen X, Chen M, Hu J, Liang W, Zhang D. Defective Pollen Wall 3 (DPW3), a novel alpha integrin-like protein, is required for pollen wall formation in rice. New Phytol, 2020, 225: 807-822.
doi: 10.1111/nph.16161 pmid: 31486533 |
[23] |
Zhang D, Luo X, Zhu L. Cytological analysis and genetic control of rice anther development. J Genet Genomics, 2011, 38: 379-390.
doi: 10.1016/j.jgg.2011.08.001 pmid: 21930097 |
[24] |
Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8: 4321-4325.
doi: 10.1093/nar/8.19.4321 pmid: 7433111 |
[25] | Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Genet Genomics, 1996, 252: 597-607. |
[26] |
Shi X, Sun X, Zhang Z, Feng D, Zhang Q, Han L, Wu J, Lu T. GLUCAN SYNTHASE-LIKE 5 (GSL5) plays an essential role in male fertility by regulating callose metabolism during microsporogenesis in rice. Plant Cell Physiol, 2015, 56: 497-509.
doi: 10.1093/pcp/pcu193 pmid: 25520407 |
[27] |
Wei S, Ma L. Comprehensive insight into tapetum-mediated pollen development in Arabidopsis thaliana. Cells, 2023, 12: 247.
doi: 10.3390/cells12020247 |
[28] |
Li H, Zhang D. Biosynthesis of anther cuticle and pollen exine in rice. Plant Signal Behav, 2010, 5: 1121-1123.
doi: 10.4161/psb.5.9.12562 pmid: 20930527 |
[29] |
Marchant D B, Walbot V. Anther development: the long road to making pollen. Plant Cell, 2022, 34: 4677-4695.
doi: 10.1093/plcell/koac287 |
[30] |
Rosado I V, de la Cruz J. Npa1p is an essential trans-acting factor required for an early step in the assembly of 60S ribosomal subunits in Saccharomyces cerevisiae. RNA, 2004, 10: 1073-1083.
pmid: 15208443 |
[31] |
He J, Yang Y, Zhang J, Chen J, Wei X, He J, Luo L. Ribosome biogenesis protein Urb1 acts downstream of mTOR complex 1 to modulate digestive organ development in zebrafish. J Genet Genomics, 2017, 44: 567-576.
doi: S1673-8527(17)30198-4 pmid: 29246861 |
[32] |
Wang H, Wang K, Du Q, Wang Y, Fu Z, Guo Z, Kang D, Li W X, Tang J. Maize Urb2 protein is required for kernel development and vegetative growth by affecting pre-ribosomal RNA processing. New Phytol, 2018, 218: 1233-1246.
doi: 10.1111/nph.15057 pmid: 29479724 |
[33] |
Shan L, Xu G, Yao R W, Luan P F, Huang Y, Zhang P H, Pan Y H, Zhang L, Gao X, Li Y, Cao S M, Gao S X, Yang Z H, Li S, Yang LZ, Wang Y, Wong C C L, Yu L, Li J, Yang L, Chen L L. Nucleolar URB1 ensures 3' ETS rRNA removal to prevent exosome surveillance. Nature, 2023, 615: 526-534.
doi: 10.1038/s41586-023-05767-5 |
[34] |
Zhou K, Zhang C, Xia J, Yun P, Wang Y, Ma T, Li Z. Albino seedling lethality 4; chloroplast 30S ribosomal protein S1 is required for chloroplast ribosome biogenesis and early chloroplast development in rice. Rice, 2021, 14: 47.
doi: 10.1186/s12284-021-00491-y pmid: 34046768 |
[35] |
Yan H, Chen D, Wang Y, Sun Y, Zhao J, Sun M, Peng X. Ribosomal protein L18aB is required for both male gametophyte function and embryo development in Arabidopsis. Sci Rep, 2016, 6: 31195.
doi: 10.1038/srep31195 |
[36] |
Uzair M, Long H, Zafar S A, Patil S B, Chun Y, Li L, Fang J, Zhao J, Peng L, Yuan S, Li X. Narrow Leaf21, encoding ribosomal protein RPS3A, controls leaf development in rice. Plant Physiol, 2021, 186: 497-518.
doi: 10.1093/plphys/kiab075 pmid: 33591317 |
[37] |
Li K, Wang P, Ding T, Hou L, Li G, Zhao C, Zhao S, Wang X, Li P. Mutation of an essential 60S ribosome assembly factor MIDASIN 1 induces early flowering in Arabidopsis. Int J Mol Sci, 2022, 23: 6509.
doi: 10.3390/ijms23126509 |
[38] |
Uzair M, Xu D, Schreiber L, Shi J, Liang W, Jung K H, Chen M, Luo Z, Zhang Y, Yu J, Zhang D. PERSISTENT TAPETAL CELL2 is required for normal tapetal programmed cell death and pollen wall patterning. Plant Physiol, 2020, 182: 962-976.
doi: 10.1104/pp.19.00688 pmid: 31772077 |
[1] | 丁杰荣, 马雅美, 潘发枝, 江立群, 黄文洁, 孙炳蕊, 张静, 吕树伟, 毛兴学, 于航, 李晨, 刘清. 泛素受体蛋白OsDSK2b负向调控水稻叶瘟和渗透胁迫抗性[J]. 作物学报, 2023, 49(6): 1466-1479. |
[2] | 杨晔, 孙琦, 邢欣欣, 张海涛, 赵志超, 程治军. 包穗突变体sui1-5鉴定及OsPSS1互作蛋白筛选[J]. 作物学报, 2023, 49(3): 597-607. |
[3] | 周文期, 强晓霞, 李思雨, 王森, 卫万荣. 水稻卷叶等位突变体e202的鉴定和基因精细定位[J]. 作物学报, 2023, 49(11): 3029-3041. |
[4] | 委刚, 陈单阳, 任德勇, 杨宏霞, 伍靖雯, 冯萍, 王楠. 水稻细长秆突变体sr10的鉴定与基因定位[J]. 作物学报, 2022, 48(8): 2125-2133. |
[5] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[6] | 田彪, 丁仕林, 刘朝雷, 阮班普, 姜洪真, 郭锐, 董国军, 胡光莲, 郭龙彪, 钱前, 高振宇. 水稻苗期根部性状的遗传分析和最长根长QTL qLRL4的精细定位[J]. 作物学报, 2021, 47(10): 1863-1873. |
[7] | 周练, 刘朝显, 陈秋栏, 王文琴, 姚顺, 赵子堃, 朱思颖, 洪祥德, 熊雨涵, 蔡一林. 玉米籽粒缺陷突变基因dek54的精细定位及候选基因分析[J]. 作物学报, 2021, 47(10): 1903-1912. |
[8] | 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005. |
[9] | 任蒙蒙, 张红伟, 王建华, 王国英, 郑军. 玉米耐深播主效QTL qMES20-10的精细定位及差异表达基因分析[J]. 作物学报, 2020, 46(7): 1016-1024. |
[10] | 秦利萍,董二飞,白洋,周练,任岚扬,张任凤,刘朝显,蔡一林. 玉米tasselseed突变体ts12的遗传分析与分子鉴定[J]. 作物学报, 2020, 46(5): 690-699. |
[11] | 宋欣冉, 胡书婷, 张凯, 崔则瑾, 李建生, 杨小红, 白光红. 玉米籽粒突变体dek101的表型分析和精细定位[J]. 作物学报, 2020, 46(12): 1831-1838. |
[12] | 孙琦, 赵志超, 张瑾晖, 张锋, 程治军, 邹德堂. 水稻包穗突变体sui2的遗传分析和基因精细定位[J]. 作物学报, 2020, 46(11): 1734-1742. |
[13] | 谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报, 2020, 46(02): 204-213. |
[14] | 金迪,王冬至,王焕雪,李润枝,陈树林,阳文龙,张爱民,刘冬成,詹克慧. 小麦芒长抑制基因B2的精细定位与候选基因分析[J]. 作物学报, 2019, 45(6): 807-817. |
[15] | 尚丽娜,陈新龙,米胜南,委刚,王玲,张雅怡,雷霆,林永鑫,黄兰杰,朱美丹,王楠. 水稻温敏型叶片白化转绿突变体tsa2的表型鉴定与基因定位[J]. 作物学报, 2019, 45(5): 662-675. |
|