欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (05): 915-923.doi: 10.3724/SP.J.1006.2014.00915

• 耕作栽培·生理生化 • 上一篇    下一篇

陕西省不同年代玉米品种产量和氮效率性状的变化

张仁和1,杜伟莉1,郭东伟1,张爱瑛2,胡富亮1,李凤艳1,*,薛吉全1,*   

  1. 1 西北农林科技大学农学院, 陕西杨凌 712100; 2 渭南市种子管理站, 陕西渭南 714000
  • 收稿日期:2013-09-06 修回日期:2014-01-12 出版日期:2014-05-12 网络出版日期:2014-03-24
  • 通讯作者: 薛吉全, E-mail: xjq2934 @yahoo.com.cn; 李凤艳, E-mail: li-feng-yan @163.com
  • 作者简介:薛吉全, E-mail: xjq2934 @163.com; 李凤艳, E-mail: li-feng-yan @163.com
  • 基金资助:

    本研究由“十二五”国家科技计划农村领域(2013BAD01B02), 西北农林科技大学创新专项(QN2011086)和美国唐仲英基金会资助。

Changes of Grain Yield and Nitrogen Use Efficiency of Maize Hybrids Released in Different Eras in Shaanxi Province

ZHANG Ren-He1,DU Wei-Li1,GUO Dong-Wei1,ZHANG Ai-Ying2,HU Fu-Liang1,LI Feng-Yan1,*,XUE Ji-Quan1,*   

  1. 1 College of Agronomy, Northwest A&F University, Yangling 712100, China; 2 Weinan Seed Station, Weinan 714000, China?
  • Received:2013-09-06 Revised:2014-01-12 Published:2014-05-12 Published online:2014-03-24
  • About author:薛吉全, E-mail: xjq2934 @163.com; 李凤艳, E-mail: li-feng-yan @163.com

摘要:

 

明确陕西省不同年代玉米产量和氮效率性状响应氮肥的变化趋势, 对西北旱区玉米高产氮高效品种选育具有重要的实践意义。本文以1981—2010年间陕西省12个玉米主栽品种为材料, 于2011年和2012年在典型旱区陕西长武进行3个氮水平(0、120和240 kg hm-2)的田间试验, 分析了不同年代玉米品种农艺和氮效率性状变化趋势。结果显示, 不同年代玉米品种籽粒产量随氮水平增加而提高, 在施氮0、120和240 kg hm-2处理下籽粒产量增益分别为每年46、65和83 kg hm-2。所有氮水平下2000—2010年间品种产量和生物量显著高于1980—1989年间品种, 而秸秆产量变化不明显; 现代玉米品种(2000—2010年)产量的增加归因于穗粒数、千粒重和生物量的提高。不同年代玉米品种消光系数随氮水平增加而降低, 说明现代玉米品种(2000—2010年)较老品种(1980—1989年)叶片直立, 截获更多的光能, 致使产量和生物量高。随着年代的递进, 玉米品种氮肥农学利用率呈递增趋势, 在低氮水平下现代品种氮肥利用效率最高, 且显著高于老品种。氮肥农学利用率与氮吸收效率(NUpE)和花后氮素积累量呈显著相关(r = 0.75; r = 0.72), 而与氮生理效率(NUtE)和花前氮素积累量相关性不显著(r = 0.42; r = 0.39)。说明现代玉米品种氮肥农学利用率提高主要来自氮肥吸收效率和花后氮素积累量的增加。上述结果表明, 陕西玉米育种应注重穗粒数、千粒重、氮吸收效率性状和株型结构改良, 低氮环境压力选择将有助于旱区玉米高产氮高效新品种培育。

关键词: 陕西省;, 玉米品种, 籽粒产量, 农艺性状, 氮效率性状

Abstract:

Identifying the changes of grain yield and nitrogen use traits will facilitate the development of new maize hybrids with high yield and nitrogen use efficiency. In this study, 12 typical maize hybrids released from 1981 to 2010 in Shaanxi Province were grown in the field under three N rates (0, 120, and 240 kg hm-2 ) from 2011 to 2012 in Shaanxi, Northwest China. Nitrogen use efficiency and agronomic traits of maize were investigated. The result indicates that grain yield of maize hybrids increased with the increase of nitrogen rates, and the modern maize hybrids (2000s) showed better grain yield than the old ones (1980s) at three nitrogen levels. The yield genetic gains were 46, 65, and 83 kg ha per year at N0, N120, and N240 levels repeat. The modern hybrids showed better biomass and grain yield than the old ones, but there was no clear changing trend in stover yield between hybrids of different ears. Increments of grain yield were achieved mainly through increasing the kernel number per ear, 1000-kernel weight and biomass, and the coefficient of light extinction decreased with the time process of cultivar development from 1981 to 2010. Changes of plant structure would allow the modern maize hybrids to improve light capture resulting in better grain yield than that of the old ones. For nitrogen use point of view, irrespective of nitrogen treatments, nitrogen use efficiency (NUE) of hybrids released increased in responses of time. But nitrogen use efficiency decreased with increasing nitrogen application rates, and nitrogen use efficiency (NUE) was highly correlated with N uptake efficiency (NUpE, r = 0.75), and not with N physiological efficiency (NUtE, r = 0.42). Increased NUE positively correlated with improved N uptake efficiency (NUpE), due to the greater post-anthesis N accumulation. The results indicated that improvements of 1000-kernel weight, kernel number per ear and nitrogen uptake efficiency (NUpE) should be considered during breeding for high yield and high nitrogen use efficiency of maize under low nitrogen and water limited conditions.

Key words: Shaanxi Provinc, Maize hybrids released, Grain yield, Agricultural traits, Nitrogen use efficiency traits

[1]李少昆, 王崇桃. 玉米生产技术创新与扩散. 北京: 科学出版社, 2010. pp 1–32



Li S K, Wang C T. Innovation and Diffusion of Corn Production Technology. Beijing: Science press, 2010. pp 1–32 (in Chinese)



[2]Tollenaar M, Lee E A. Dissection of physiplogical processes underlying grain yield in maize by examining genetic improvement and heterosis. Maydica, 2006, 51: 399–408



[3]Wang T Y, Ma X L, Yu L, Bai D P, Liu C, Liu Z Z, Tan X J, Shi Y S, Song Y C, Mario C, David B, Hans B, Elizabeth J, Kevin W, Stephen S. Changes in yield and yield components of single-cross maize hybrids released in China between 1964 and 2001. Crop Sci, 2011, 51: 512–525



[4]Duvick D N. Genetic progress in yield of United States maize (Zea mays L.). Maydica, 2005, 50: 193–202



[5]谢振江, 李明顺, 徐家舜, 张世煌. 遗传改良对中国华北不同年代玉米单交种产量的贡献. 中国农业科学, 2009, 47: 781–789



Xie Z J, Li M S, Xu J S, Zhang S H. Contributions of genetic improvement to yields of maize hybrids during different eras in North China. Sci Agric Sin, 2009, 47: 781–789 (in Chinese with English abstract)



[6]Qiao C G, Wang Y J, Guo H A, ChenX J, Liu J Y, Li S Q. A review of advances in maize production in Jilin province during 1974–1993. Field Crops Res, 1996, 47: 65–75



[7]Luque S F, Cirilo A G, Otegui M E. Genetic gains in grain yield and related physiological attributes in Argentine maize hybrids. Field Crops Res, 2006, 95: 383–397



[8]Duvick D N. Genteic rates of gain in hybrid maize yields during the past 40 years. Maydica, 1977, 22: 187–196



[9]Ci X K, Li M S, Xu J S, Lu Z Y, Bai P F, Ru G L, Liang X L, Zhang D G, Li X H, Bai L, Xie C X, Hao Z F, Zhang S H, Dong S T. Trends of grain yield and plant traits in Chinese maize cultivars from the 1950s to the 2000—2010. Euphytica, 2011, 185: 395–406



[10]Ding L, Wang K J, Jiang G M, Liu M Z, Niu S L, Gao L M. Post-anthesis changes in photosynthetic traits of maize hybrids released in different years. Field Crops Res, 2005, 93: 108–115



[11]张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要禾谷类作物氮肥利用效率及改进途径. 土壤学报, 2008, 6: 915–924 



Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F. Nutrient use efficiencies of major ceral crops in China and measures for improvement. Acta Pedol Sin, 2008, 6: 915–924 (in Chinese with English abstract)



[12]Cunha Fernandes J S, Franzon J F. Thirty years of genetic progress in maize (Zea mays L.) in a tropical environment. Maydica, 1997, 42: 21–27



[13]Duvick D N, Cassman K G. Post-green revolution trends in yield potential of temperate maize in the North-central United States. Crop Sci, 1999, 39: 1622–1630



[14]Carlone M R, Russell W A. Response to plant densities and nitrogen levels for four maize cultivars from different eras of breeding. Crop Sci, 1987, 3: 465–470



[15]Tollenaar M. Genetic improvement in grain yield of commercial maize hybrids grown in Ontario from 1959 to 1988. Crop Sci, 1989, 29: 1365–1371



[16]Echarte L, Rotnstein S, Tollenaar M. Response of leaf photosythesis and dry matter accumulation to nitrogen supply in old and a new maize hybrids. Crop Sci, 2008, 48: 656–665



[17]Castleberry R M, Crum C W, Krull C F. Genetic yield improvement of US maize cultivars under varying fertility and climatic environments. Crop Sci, 1984, 24: 33–36



[18]Ma B L, Dwyer L M, Gregorich E G. Soil nitrogen amendment effects on nitrogen uptake and grain yield of maize. Agron J, 1999, 91: 650–656



[19]Frei O M. Changes in yield physiology of corn as a result of breeding in northern Europe. Maydica, 2000, 45: 173–183



[20]Bingham I J, Karley A J, White P J, Thomas W T B, Rusell J R. Analysis of improvements in nitrogen use efficiency associated with 75 years of spring barley breeding. Eur J Agron, 2012, 42: 49–58



[21]Worku M, Banziger M, Erley G S A, Friesen D, Diallo A O, Horst W J. Nitrogen uptake and utilization in contrasting nitrogen efficiency tropical maize hybrids. Crop Sci, 2007, 47: 519–528



[22]Sangoi L, Gracietti M A, Rampazzo C, Bianchetti P. Response of Brazilian maize hybrids from different eras to changes in plant density. Field Crops Res, 2002, 79: 39–51



[23]Eyherabide G H, Damilano A L. Comparison of genetic gain for grain yield of maize between the 1980—1989 and 1990s in Argentina. Maydica, 2001, 46: 277–281



[24]钱春荣, 于洋, 宫秀杰, 姜宇博, 赵杨, 郝玉波, 李梁, 张卫建. 黑龙江省不同年代玉米杂交种氮肥利用效率对种植密度和施氮水平的响应. 作物学报, 2012, 38: 2069–2077



Qian C R, Yu Y, Gong X J, Qian Y B, Zhao Y, Hao Y B, Li L, Zhang W J. Response of nitrogen use efficiency to plant density and nitrogen application rate for maize hybrids from different eras in Heilongjiang Province. Acta Agron Sin, 2012, 38: 2069–2077 (in Chinese with English abstract)



[25]Maddonni G A, Otegui M E, Cirilo A G. Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crops Res, 2001, 71: 183–193



[26]慈晓科, 张世煌, 谢振江, 徐家舜, 卢振宇, 茹高林, 张德贵, 李新海, 谢传晓, 白丽, 李明顺, 董树亭. 1970–2000年代玉米单交种的遗传产量增益分析方法的比较. 作物学报, 2010, 36: 2185–2190



Ci X K, Zhang S H, Xie Z J, Xu J X, Lu Z Y, Ru G L, Zhang D G, Li X H, Xie C X, Bai L, Li M S, Dong S T. Comparison of analysis method of genetic yield gain for the single-cross hybrids released during 1970s–2000s. Acta Agron Sin, 2010, 36: 2185–2190 (in Chinese with English abstract)



[27]Moll R H, Kamprath E J, Jackson W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J, 1982, 74: 562–564



[28]董树亭. 玉米生态生理与产量品质形成. 北京: 高等教育出版社, 2006. pp 168–222



Dong S T. Eco-physiology and Formation of Yield and Quality in Maize. Beijing: Higher Education Press, 2006. pp 168–222 (in Chinese)



[29]李从峰, 赵明, 刘鹏, 张吉旺, 杨今胜, 刘京国, 王空军, 董树亭. 中国不同年代玉米单交种及其亲本主要性状演变对密度的响应玉米.中国农业科学, 2013, 46: 2421–2429



Li C F, Zhao M, Liu P, Zhang J W, Yang J S, Liu J G, Wang K J, Dong S T. Responses of main traits of maize hybrids and their parents to density in different eras of China. Sci Agric Sin, 2013, 46: 2421–2429 (in Chinese with English abstract)

[1] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[2] 赵婧, 孟凡钢, 于德彬, 邱强, 张鸣浩, 饶德民, 丛博韬, 张伟, 闫晓艳. 不同磷效率大豆农艺性状与磷/铁利用率对磷素的响应[J]. 作物学报, 2021, 47(9): 1824-1833.
[3] 邓妍, 王娟玲, 王创云, 赵丽, 张丽光, 郭虹霞, 郭红霞, 秦丽霞, 王美霞. 生物菌肥与无机肥配施对藜麦农艺性状、产量性状及品质的影响[J]. 作物学报, 2021, 47(7): 1383-1390.
[4] 郑迎霞, 陈杜, 魏鹏程, 卢平, 杨锦越, 罗上轲, 叶开梅, 宋碧. 种植密度对贵州春玉米茎秆抗倒伏性能及籽粒产量的影响[J]. 作物学报, 2021, 47(4): 738-751.
[5] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267.
[6] 张力岚, 张列梅, 牛焕颖, 徐益, 李玉, 祁建民, 陶爱芬, 方平平, 张立武. 黄麻SSR标记与纤维产量性状的相关性[J]. 作物学报, 2020, 46(12): 1905-1913.
[7] 贾小平,全建章,王永芳,董志平,袁玺垒,张博,李剑峰. 不同光周期环境对谷子农艺性状的影响[J]. 作物学报, 2019, 45(7): 1119-1127.
[8] 何昕楠,林祥,谷淑波,王东. 微喷补灌对麦田土壤物理性状及冬小麦耗水和产量的影响[J]. 作物学报, 2019, 45(6): 879-892.
[9] 陈玉章,柴守玺,程宏波,柴雨葳,杨长刚,谭凯敏,常磊. 秸秆还田结合秋覆膜对旱地冬小麦耗水特性和产量的影响[J]. 作物学报, 2019, 45(2): 256-266.
[10] 徐益,张列梅,郭艳春,祁建民,张力岚,方平平,张立武. 黄麻核心种质的遴选[J]. 作物学报, 2019, 45(11): 1672-1681.
[11] 程乙,刘鹏,刘玉文,庞尚水,董树亭,张吉旺,赵斌,任佰朝. 黄淮海区域现代夏玉米品种产量与养分吸收规律[J]. 作物学报, 2019, 45(11): 1699-1714.
[12] 孙现军,姜奇彦,胡正,张惠媛,徐长兵,邸一桓,韩龙植,张辉. 水稻资源全生育期耐盐性鉴定筛选[J]. 作物学报, 2019, 45(11): 1656-1663.
[13] 翟俊鹏,李海霞,毕惠惠,周思远,罗肖艳,陈树林,程西永,许海霞. 普通小麦主要农艺性状的全基因组关联分析[J]. 作物学报, 2019, 45(10): 1488-1502.
[14] 徐益,张列梅,祁建民,苏梅,方书生,张力岚,方平平,张立武. 黄麻纤维产量与主要农艺性状的相关分析[J]. 作物学报, 2018, 44(6): 859-866.
[15] 江红,孙石,宋雯雯,吴存祥,武婷婷,胡水秀,韩天富. 不同地理来源MGIII组大豆品种生育期结构分析及E基因型鉴定[J]. 作物学报, 2018, 44(10): 1448-1458.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!