作物学报 ›› 2014, Vol. 40 ›› Issue (05): 924-933.doi: 10.3724/SP.J.1006.2014.00924
陈明丽1,王兰芬1,武晶1,张晓艳2,杨广东3,王述民1,*
CHEN Ming-Li1,WANG Lan-Fen1,WU Jing1,ZHANG Xiao-Yan2,YANG Guang-Dong3,WANG Shu-Min1,*
摘要:
[1]Schoonhoven A V, Voysest O. Common Beans: Research for Crop Improvement. Wallingford, UK: CAB. International, 1991[2]董玉琛, 郑殿升. 中国作物及其野生近缘植物. 北京: 中国农业出版社, 2006. pp 412–425Dong Y C, Zheng D S. Crops and Their Wild Relatives in China. Beijing: China Agriculture Press, 2006. pp 412–425 (in Chinese)[3]郑卓杰, 王述民, 宗绪晓. 中国食用豆类学. 北京: 中国农业出版社, 1997. pp 3–6Zheng Z J, Wang S M, Zong X X. Chinese legumes. Beijing: Chinese Agriculture Press, 1997. pp 3–6 (in Chinese)[4]郑殿升, 刘旭, 黎裕. 起源于中国的栽培植物. 植物遗传资源学报, 2012, 13: 1–10Zheng D S, Liu X, Li Y. Cultivated Plants Originated in China. J Plant Genet Res, 2012, 13: 1–10 (in Chinese with English abstract)[5]瓦维洛夫, 董玉琛. 主要栽培植物的世界起源中心. 北京: 农业出版社, 1982Vavilov N I, Dong Y C. The Center of Origin of Cultivated Plants. Beijing: Agriculture Press, 1982 (in Chinese)[6]Richard F. New opportunities in Vigna. In: Janick J, Whipkey A, eds. Trends in New Crops and New Uses. Alexandria, VA, USA: ASHA Press, 2002. pp 424–428[7]Andargie M, Pasquet R S, Gowda B S, Muluvi G M, Timko M P. Construction of a SSR-based genetic map and identification of QTL for domestication traits using recombinant inbred lines from a cross between wild and cultivated cowpea (V. unguiculata (L.) Walp.). Mol Breed, 2011, 28: 413–420[8]Han O K, Kaga A, Isemura T, Wang X W, Tomooka N, Vaughan D A. A genetic linkage map for adzuki bean [Vigna angularis (Willd.) Ohwi & Ohashi]. Theor Appl Genet, 2005, 111: 1278–1287[9]Chen M L, Wu J, Wang L F, Zhang X Y, Blair M W, Jia J Z, Wang S M. Development of mapped simple sequence repeat markers from common bean (Phaseolus vulgaris L.) based on genome sequences of a Chinese landrace and diversity evaluation. Mol Breed, 2014, 33: 489–496[10]Singha R K, Jenab S N, Khana S, Yadava S, Banarjeea N. Development, cross-species/genera transferability of novel EST-SSR markers and their utility in revealing population structure and genetic diversity in sugarcane. Gene, 2013, 524(2): 309–329[11]张扬勇, 方智远, 王庆彪, 刘玉梅, 杨丽梅, 庄木, 孙培田. 拟南芥叶绿体SSR引物在甘蓝上的应用. 园艺学报, 2011, 38: 549–555Zhang Y Y, Fang Z Y, Wang Q B, Liu Y M, Yang L M, Zhuang M, Sun P T. Utility of Arabidopsis chloroplast simple sequence repeat (cpSSR) primers in cabbage (Brassica oleracea L. var. capitata L.). Acta Hortic Sin, 2011, 38: 549–555 (in Chinese with English abstract)[12]Wang M L, Chen Z B, Bakley N A, Newman M L, Kim W, Raymer P, Pederson G A. Characterization of seashore paspalum (Paspalumm vaginatum Swartz) germplasm by transferred SSRs from wheat, maize and sorghum. Genetic Resour Crop Evol, 2006, 53: 779–791[13]Hu J B, Zhou X Y, Li J W. Development of novel EST-SSR markers for cucumber (Cucumis sativus) and their transferability to related species. Sci Hortic, 2010, 125: 534–538[14]王丽侠, 程须珍, 王素华, 刘长友, 梁辉. 小豆SSR引物在绿豆基因组中的通用性分析. 作物学报, 2009, 35: 816–820Wang L X, Cheng X Z, Wang S H, Liu C Y, Liang H. Transferability of SSR from adzuki bean to mungbean. Acta Agron Sin, 2009, 35: 816–820 (in Chinese with English abstract)[15]钟敏, 程须珍, 王丽侠, 王素华, 王小宝. 绿豆基因组SSR 引物在豇豆属作物中的通用性. 作物学报, 2012, 38: 223–230Zhong M, Cheng X Z, Wang L X, Wang S H, Wang X B. Transferability of mungbean genomic-SSR markers in other Vigna species. Acta Agron Sin, 2012, 38: 223–230 (in Chinese with English abstract)[16]da Maia L C, Palmieri D A, de Souza V Q, Kopp M M, de Carvalho F I, Costa de Oliveira A. SSR locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. Int J Plant Genomics, 2008, DOI: 10.1155/2008/412696 [17]高东, 杜飞, 朱有勇. 低背景、高分辨率PAGE简易银染法. 遗传, 2009, 31: 668–672Gao D, Du F, Zhu Y Y. Low-background and high-resolution contracted silver-stained method in polyacrylamide gels electrophoresis. Hereditas (Beijing), 2009, 31: 668–673 (in Chinese with English abstract)[18]Yeh F C, Yang R C, Boyle B J T, Ye Z H, Mao X J. POPGENE 32 version 1.32, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Canada, 1999 Available at http://www.ualberta.ca/~fyeh/popgene_download.html [Verified December 2000] [Visited time 2013-10-15][19]Davey J W, Hohenlohe P A, Etter P D, Boone J Q, Catchen J M, Blaxter M L. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet, 2011, 12: 499–510[20]Trebbi D, Maccaferri M, De Heer P, Sørensen A, Giuliani S, Salvi S, Sanguineti M, Massi A, Van der-Vossen E, Tuberosa R. High-throughput SNP discovery and genotyping in durum wheat (Triticum durum Desf.). Theor Appl Genet, 2011, 123: 555–569[21]McCouch S R, Teytelman L, Xu Y, Lobos K B, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res, 2002, 9: 199–207[22]Wang Z Y, Fang B P, Chen J Y, Zhang X J, Luo Z X, Huang L F, Chen X L, Li Y C. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas). BMC Genom, 2010, 11: 726–739[23]Cavagnaro P F, Senalik D A, Yang L M, Simon P W, Harkin T T, Kodira C D, Huang S W, Weng Y Q. Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics, 2010, 11: 569–586[24]Blanca J, Cañizares J, Roig C, Ziarsolo P, Nuez F, Picó B. Transcriptome characterization and high throughput SSRs and SNPs discovery in cucurbita pepo (Cucurbitaceae). BMC Genom, 2011, 12: 104–118[25]Tangphatsornruang S, Somta P, Uthaipaisanwong P, Chanprasert J, Sangsrakru D, Seehalak W, Sommanas W, Tragoonrung S, Srinives P. Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean (Vigna radiata (L.) Wilczek). BMC Plant Biol, 2009, 9: 137[26]Kaur S, Cogan N O, Pembleton L W, Shinozuka M, Savin K W, Materne M, Forster J W. Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery. BMC Genomics, 2011, 12: 265[27]Garg R, Patel R K, Tyagi A K, Jain M. De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res, 2011, 18: 53–63[28]Dutta S, Kumawat G, Singh B P, Gupta D K, Singh S, Dogra V, Gaikwad K, Sharma T R, Raje R S, Bandhopadhya T K, Datta S, Singh M N, Bashasab F, Kulwal P, Wanjari K B, Varshney R K, Cook D R, Singh N K. Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh]. BMC Plant Biol, 2011, 11: 17[29]Kalia R K, Rai M K, Kalia S, Singh R, Dhawan A K. Microsatellite markers: an overview of the recent progress in plants. Euphytica, 2011, 177: 309–334[30]Gupta S, Prasad M. Development and characterization of genic SSR markers in Medicago truncatula and their transferability in leguminous and non-leguminous species. Genome, 2009, 52: 761–771[31]文明富, 陈新, 王海燕, 卢诚, 王文泉. 木薯基因组SSR和EST-SSR在麻疯树和橡胶树中的通用性分析. 作物学报, 2011, 37: 74–78Wen M F, Chen X, Wang H Y, Lu C, Wang W Q. Transferability analysis of cassava EST-SSR and genomic-SSR markers in jatropha and rubber tree. Acta Agron Sin, 2011, 37: 74–78 (in Chinese with English abstract)[32]Varshney R K, Sigmund R, Borner A, Korzun V, Stein N, Sorrells M E, Langridge P, Graner A. Interspeci?c transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci, 2005, 168: 195–202[33]Pejic I, Ajmone-Marsan P, Morgante M, Vozumplick K, Castiglioni P, Taramino G, Motto M. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theor Appl Genet, 1998, 97: 1248–1255[34]Frankham R, Ballou J D, Briscoe D A. Introduction to Conservation Genetics. New York: Cambridge University Press, 2002. pp 29–62[35]王丽, 赵桂仿. 植物不同种属间共用微卫星引物的研究. 西北植物学报, 2005, 25: 1540–1546Wang L, Zhao G F. Mico-satellite primers shared by different plant species and genera. Acta Bot Boreal-Occid Sin, 2005, 25: 1540–1546 (in Chinese with English abstract)[36]Sumanasinghe V A, Tomooka N, Fukuoka S. Phylogenetic relationships of the subgenus Ceratotropis based on random ampli?ed polymorphic DNA. J Natn Sci Coun Sri Lanka, 1997, 25: 73–82 |
[1] | 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274. |
[2] | 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450. |
[3] | 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370. |
[4] | 陈芳,乔麟轶,李锐,刘成,李欣,郭慧娟,张树伟,常利芳,李东方,阎晓涛,任永康,张晓军,畅志坚. 小麦新种质CH1357抗白粉病遗传分析及染色体定位[J]. 作物学报, 2019, 45(10): 1503-1510. |
[5] | 薛延桃,陆平,史梦莎,孙昊月,刘敏轩,王瑞云. 新疆、甘肃黍稷资源的遗传多样性与群体遗传结构研究[J]. 作物学报, 2019, 45(10): 1511-1521. |
[6] | 黄聪,李晓方,李定国,林忠旭. 利用陆地棉MAGIC群体定位产量、生育期和株高性状的QTL[J]. 作物学报, 2018, 44(9): 1320-1333. |
[7] | 薛仁风, 王利, 丰明, 葛维德. 普通菜豆中烟草水杨酸结合蛋白2同源基因的鉴定及表达特征分析[J]. 作物学报, 2018, 44(05): 642-649. |
[8] | 王兰芬, 武晶, 王昭礼, 陈吉宝, 余莉, 王强, 王述民. 普通菜豆种质资源不同环境下表型差异及生态适应性评价[J]. 作物学报, 2018, 44(03): 357-368. |
[9] | 刘天鹏,董孔军,董喜存,何继红,刘敏轩,任瑞玉,张磊,杨天育. 12C6+离子束辐照糜子诱变突变群体的构建与SSR分析[J]. 作物学报, 2018, 44(01): 144-156. |
[10] | 耿庆河,王兰芬,武晶,王述民. 普通菜豆籽粒大小与形状的QTL定位[J]. 作物学报, 2017, 43(08): 1149-1160. |
[11] | 王建花,张耀文,程须珍,王丽侠. 绿豆分子遗传图谱构建及若干农艺性状的QTL定位分析[J]. 作物学报, 2017, 43(07): 1096-1102. |
[12] | 宫希,蒋云峰,徐彬杰,乔媛媛,华诗雨,吴旺,马建,周小鸿,祁鹏飞,兰秀锦. 利用普通六倍体小麦和西藏半野生小麦杂交衍生的重组自交系定位小麦芒长QTL[J]. 作物学报, 2017, 43(04): 496-500. |
[13] | 朱吉风,武晶,王兰芬,朱振东,王述民*. 菜豆普通细菌性疫病抗性基因定位[J]. 作物学报, 2017, 43(01): 1-8. |
[14] | 孙子淇,张新友,徐静,张忠信,刘华,严玫,董文召,黄冰艳,韩锁义,汤丰收,刘志勇. 河南省审定花生品种的指纹图谱构建[J]. 作物学报, 2016, 42(10): 1448-1461. |
[15] | 乔麟轶,常建忠,郭慧娟,高建刚,郑军,畅志坚. 小麦全基因组NBS类R基因分析及2AL染色体NBS-SSR特异标记开发[J]. 作物学报, 2016, 42(06): 795-802. |
|