作物学报 ›› 2018, Vol. 44 ›› Issue (01): 144-156.doi: 10.3724/SP.J.1006.2018.00144
• 研究简报 • 上一篇
刘天鹏1,董孔军1,董喜存2,何继红1,刘敏轩3,任瑞玉1,张磊1,杨天育1,4
LIU Tian-Peng1,DONG Kong-Jun1,DONG Xi-Cun2,HE Ji-Hong1,LIU Min-Xuan3,REN Rui-Yu1,ZHANG Lei1,YANG Tian-Yu1,4,
摘要:
为构建物理诱变糜子突变体库,采用50、100、150、200和250 Gy剂量碳离子束(12C6+)辐照陇糜7号和晋黍9号种子,结合混合系谱法和系统聚类分别构建2个含52和79个株系的M5寡表型突变群体。田间试验结果显示,诱变M1出苗率随剂量增大明显降低,陇糜7号M1半致死剂量为150 Gy,晋黍9号M1半致死剂量为100 Gy,且100、150 Gy诱变下M4变异最多。不同诱变剂量下M5、M6表型稳定且株高、产量性状、成株色及粒色均表现出明显遗传差异。从2个M6群体中分别选择9和11个代表性株系,利用多态性SSR引物进行分子验证,与亲本相比,6对SSR引物在陇糜7号的9个株系中位点变异基因型数为1~2,在晋黍9号的11个株系中位点变异基因型数为1~4,突变群体存在丰富的遗传多样性。
[1] Naito K, Kusaba M, Shikazono N, Takano T, Tanaka A, Tanisaka T, Nishimura M. Transmissible and nontransmissible mutations induced by irradiating Arabidopsis thaliana pollen with γ-rays and carbon ions. Genetics, 2005, 169: 881–889 [2] Sallaud C, Gay C, Larmande P,Bès M, Piffanelli P, Piégu B, Droc G, Regad F, Bourgeois E, Meynard D, Périn C, Sabau X, Ghesquière A, Glaszmann JC, Delseny M, Guiderdoni E. High throughput T-DNA insertion mutagenesis in rice: a firststep towards in silico reverse genetics. Plant J, 2004, 39: 450–464 [3] Parry M A J, Madgwick P J, Bayon C, Tearall K, Lopez A H, Baudo M, Yassin A A, Ouabbou H, Hamada W, Labhilili M, Phillips A. Mutation discovery for crop improvement. J Exp Bot, 2009, 60: 2817–2825 [4] 杨震, 彭选明, 彭伟正. 作物诱变育种研究进展. 激光生物学报, 2016, 25: 302–307 Yang Z, Peng X M, Peng W Z. Progress of Study on Crop Mutation Breeding. Acta Laser Biol Sin, 2016, 25: 302–307 (in Chinese with English abstract) [5] 杜艳. 碳离子束辐照拟南芥突变体筛选及诱变效应研究. 中国科学院大学博士学位论文, 甘肃兰州, 2015 Du Y. Mutation Screening and Mutagenic Effects Research of Carbon-Ion Irradiation on Arabidopsis thaliana. PhD Dissertation of University of Chinese Academy of Sciences, Lanzhou, China, 2015 (in Chinese with English abstract) [6] 阎侃, 李雪虎. 碳离子辐照对菘蓝药性品质和分子水平的诱变效应. 西北植物学报, 2015, 35: 906–914 Yan K, Li X H. Impact of carbon irradiation on potency and molecular level variation of Isatis indigotica. Acta Bot Boreal-Occident Sin, 2015, 35: 906–914 (in Chinese with English abstract) [7] 林园园, 陈慧茹, 刘斌美, 叶亚峰, 刘瓒, 吴跃进. 12C6+离子束诱变水稻籽粒Cd低积累突变体的研究. 原子核物理评论, 2016, 33: 488–493 Lin Y Y, Chen H R, Liu B M, Ye Y F, Wu Y J. Study on low-cadmium rice mutants induced by 12C6+ ion beam. Nucl Phys Rev, 2016, 33: 488–493 (in Chinese with English abstract) [8] 余丽霞, 李文建, 杜艳, 刘瑞媛, 周利斌, 骆善伟, 陈刚, 刘青芳. 碳离子束辐照大豆当代诱变效应及褐皮突变体的初步研究. 辐射研究与辐射工艺学报, 2014, 32(2): 1–7 Yu L X, Li W J, Du Y, Liu R Y, Zhou L B, Luo S W, Chen G, Liu Q F. Preliminary study on current mutagenic effects and brown seed mutant of soybean induced by carbon ion irradiation. J Radiat Res Radiat Proc, 2014, 32(2): 1–7 [9] Lágler R, Gyulai G, Humphreys M, Szabó Z, Horváth L, Bittsánszky A, Kiss J, Holly L, Heszky L. Morphological and molecular analysis of common millet (P. miliaceum) cultivars compared to an aDNA sample from the 15th century (Hungary). Euphytica, 2005, 146: 77–85 [10] 董孔军, 刘天鹏, 何继红, 任瑞玉, 张磊, 杨天育. 糜子育成品种苗期抗旱性评价与鉴定指标筛选. 植物遗传资源报, 2015, 16: 968–975 Dong K J, Liu T P, He J H, Ren R Y, Zhang L, Yang T Y. Evaluation and indices selection on the drought resistance of broomcorn millet elite cultivars at seeding stage. J Plant Genet Resour, 2015, 16: 968–975 (in Chinese with English abstract) [11] 王星玉, 王纶, 崔彩霞. 黍稷种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. Pp 17–18. Wang X Y, Wang L, Cui C X. Descriptors and Data Standard for Broomcorn millet (Panicum miliaceum L.). Beijing: China Agriculture Press, 2006. pp 17–18 (in Chinese) [12] Hu X Y, Wang J F, Lu P, Zhang H S. Assessment of genetic diversity in broomcorn millet (Panicum miliaceum L.) using SSR markers. J Genet Genomics, 2009, 36: 491–500 [13] 董俊丽, 王海岗, 陈凌, 王君杰, 曹晓宁, 王纶, 乔治军. 糜子骨干种质遗传多样性和遗传结构分析. 中国农业科学, 2015, 48: 3121–3131 Dong J L, Wang H G, Chen L, Wang J J, Cao X Y, Wang L, Qiao Z J. Analysis of Genetic Diversity and Structure of Proso Millet Core Germplasm. Sci Agric Sin, 2015, 48: 3121–3131 (in Chinese with English abstract) [14] 王银月, 刘敏轩, 陆平, 乔治军, 杨天育, 李海, 崔喜艳. 构建黍稷分子遗传图谱SSR引物的筛选. 作物杂志, 2014, (4): 32–38 Wang Y Y, Liu M X, Lu P, Qiao Z J, Yang T Y, Li Hai,Cui X Y. The SSR Marker Selection of Broomcorn Millet (Panicum miliaceum L.) for Construction of Genetic Linkage Map. Crops, 2014, (4): 32–38 (in Chinese with English abstract) [15] 王银月. 黍稷种质遗传资源多样性及遗传图谱构建研究. 吉林农业大学硕士学位论文, 吉林长春, 2015 Wang Y Y. Assessment of genetic diversity and construction of genetic linkage map of Broomcorn millet (Panicum miliaceum L.). MS Thesis of Jilin Agricultural University, Jilin, China, 2015 (in Chinese with English abstract) [16] Tang S Y, Teng Z H, Zhai T F, Fang X M, Liu F, Liu D J, Zhang J, Liu D X, Wang S F, Zhang K, Shao Q S, Tan Z Y, Paterson A H, Zhang Z S. Construction of genetic map and QTL analysis of fiber quality traits for upland cotton (Gossypium hirsutum L.). Euphytica, 2015, 201: 195–213 [17] Tan Z Y, Fang X M, Tang S Y, Zhang J, Liu D J, Teng Z H, Li L, Ni H J, Zheng F M, Liu D X, Zhang T F, Paterson A H, Zhang Z S. Genetic map and QTL controlling fiber quality traits in upland cotton(Gossypium hirsutum L.). Euphytica, 2015, 203: 615–628 [18] Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sata M, Nasu S, Minobe Y. Positional cloning of rice semidwarfing gene, sd-1: rice “Green Revolution Gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002, 9: 11–17 [19] Fang X M, Dong K J, Wang X Q, Liu T P, He J H, Ren R Y, Zhang L, Liu R, Liu X Y, Li M, Huang M Z, Zhang Z S, Yang T Y.A high density genetic map and QTL for agronomic and yield traits in Foxtail millet [Setaria italica (L.) P. Beauv.]. BMC Genomics, 2016, 17(336): 1–12 [20] Alonso J M, Stepanova A N, Leisse T J, Kim C J, Chen H M, Shinn P, Stevenson D K, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers C C, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Henonin L A, Schmid M, Weigel D, Carter D E, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby W L, Berry C C, Ecker J R. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 2003, 301: 653–657 [21] Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C, Clarke J D, Cotton D, Bullis D, Snell J, Miguel T, Hutchison D, Kimmerly B, Mitzel T, Katagiri F, Glazebrook J, Law M, Goff S A. A high throughput Arabidopsis reverse genetics system. Plant Cell, 2002, 14: 2985–2994 [22] Greco R, Ouwerkerk P B, Sallaud C, Kohli A, Colombo L, Puigdomenech P, Guiderdoni E, Christou P, Hoge J H C, Pereira A. Transposon insertional mutagenesis in rice. Plant Physiol, 2001, 125(3): 1175–117 [23] Yi B, Chen Y L, Lei S L, Tu J X, Fu T D. Fine mapping of the recessive genie male-sterile gene (Bnms1) in Brassica napus. Theor Appl Genet, 2006, 113(4), 643–650 [24] 朱环环, 刘艳霞, 潘倩文, 郑凯伦, 林冬枝, 董彦君. 一个水稻白化致死突变体abl25鉴定及其基因定位. 上海师范大学学报(自然科学版), 2014, 43(3): 238–244 Zhu H H, Liu Y X, Pan Q W, Zheng K L, Lin D Z, Dong Y J. Identification and gene mapping of novel rice albino lethal abl25 mutant. J Shanghai Norm Univ (Natl Sci Edn), 2014, 43(3): 238–244 (in Chinese with English abstract) [25] 叶俊, 吴建国, 杜婧, 郑希, 张志, 石春海. 水稻 “9311” 突变体筛选和突变体库构建. 作物学报, 2006, 32: 1525–1529 Ye J, Wu J G, Du J, Zheng X, Zhang Z, Shi C H. The screening of mutants and construction of mutant population for cultivar “9311” in rice (Oryza sativa L.). Acta Agron Sin, 2006, 32: 1525–1529 (in Chinese with English abstract) [26] 夏群芳, 周树敏, 王伟倩, 李瑞沙, 张红莉, 张卫. 拟南芥bso-1突变体的基因定位及表型分析. 西北植物学报, 2016, 36: 641–647 Xia Q F, Zhou S M, Wang W Q, Li R S, Zhang H L, Zhang W. Gene mapping and phenotype analyses of an Arabidopsis mutant big size organ 1. Acta Bot. Boreal-Occident Sin, 2016, 36: 641–647 (in Chinese with English abstract) [27] 朱小燕, 徐芳芳, 桑贤春, 蒋钰东, 代高猛, 王楠, 张长伟, 何光华. 水稻叶脉白化突变体wpsm的遗传分析与基因定位. 作物学报, 2013, 39: 1409–1415 Zhu X Y, Xu F F, Sang X C, Jiang Y D, Dai G M, Wang N, Zhang C W, He G L. Genetic analysis and gene mapping of a rice white midrib mutant wpsm. Acta Agron Sin, 2013, 39: 1409?1415 (in Chinese with English abstract) [28] 陈洋, 高兰英, 邵艳军, 张增艳. EMS诱导小麦易位系YW642突变体的鉴定与分子标记分析. 核农学报, 2011, 25: 617–621 Chen Y, Gao L Y, Shao Y J, Zhang Z Y. Phenotypic identification and molecular analysis of a heat line mutant YW642 induced by EMS. J Nucl Agric Sci, 2011, 25: 617–621 (in Chinese with English abstract) [29] 余丽霞, 李文建, 董喜存, 周利斌, 马爽. 碳离子辐射大丽花矮化突变体的RAPD分析. 核技术, 2008, 31: 830–833 Yu L X, Li W J, Dong X C, Zhou L B, Ma S. RAPD analysis on dwarf mutant of Dahlia pinnata Cav. induced by 80 MeV/u 12C6+ ions. Nuclear Techniques, 2008, 31: 830–833 (in Chinese with English abstract) |
[1] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[2] | 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885. |
[3] | 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39. |
[4] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[5] | 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274. |
[6] | 文钦, 贾思思, 王加峰, 黄翠红, 王慧, 陈志强, 郭涛. 水稻单倍体诱导基因OsMATL突变体的创制与分析[J]. 作物学报, 2021, 47(5): 827-836. |
[7] | 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982. |
[8] | 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450. |
[9] | 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293. |
[10] | 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370. |
[11] | 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862. |
[12] | 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79. |
[13] | 王南,祁显涛,刘昌林,谢传晓,朱金洁. 基于CRISPR/Cas9核糖核蛋白体DNA定点内切酶体外活性建立高效基因型分析技术[J]. 作物学报, 2020, 46(7): 978-986. |
[14] | 王晓阳,王丽媛,潘兆娥,何守朴,王骁,龚文芳,杜雄明. 亚洲棉短绒突变体纤维发育及其差异基因表达分析[J]. 作物学报, 2020, 46(5): 645-660. |
[15] | 宋欣冉, 胡书婷, 张凯, 崔则瑾, 李建生, 杨小红, 白光红. 玉米籽粒突变体dek101的表型分析和精细定位[J]. 作物学报, 2020, 46(12): 1831-1838. |
|