欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (05): 934-941.doi: 10.3724/SP.J.1006.2014.00934

• 研究简报 • 上一篇    下一篇

花生果糖-1,6-二磷酸醛缩酶基因AhFBA1的克隆与表达

陈娜1,潘丽娟1,迟晓元1,2,陈明娜1,王通1,王冕1,杨珍1,胡冬青3,王道远4,禹山林1,*   

  1. 1 山东省花生研究所, 山东青岛 266100; 2农业部油料作物生物学与遗传育种重点实验室 中国农业科学院油料作物研究所, 湖北武汉 430062; 3 青岛市出入境检验检疫局,  山东青岛 266001; 4 章丘农业局, 山东济南 250200
  • 收稿日期:2013-11-13 修回日期:2014-03-04 出版日期:2014-05-12 网络出版日期:2014-03-25
  • 通讯作者: 禹山林, E-mail: yshanlin1956@163.com
  • 基金资助:

    本研究由国家花生产业技术体系项目(CARS-14),山东省自然基金项目(ZR2011CQ036,ZR2012CQ031),国家自然科学基金项目(31000728,31100205,31200211),国家国际科技合作专项(2011DFA30930),青岛市科技计划应用基础研究项目[11-2-4-9-(3)-jch, 11-2-3-26-nsh, 12-1-4-11-(2)-jch];农业部油料作物生物学与遗传育种重点实验室开放课题基金(2014010)资助。

Cloning and Expression Analysis of Fructose-1,6-Bisphosphate Aldolase Gene AhFBA1 in Peanut (Arachis hypogaea L.)

HEN Na1,PAN Li-Juan1,CHI Xiao-Yuan1,2,CHEN Ming-Na1,WANG Tong1,WANG Mian1,YANG Zhen1,HU Dong-Qing3,WANG Dao-Yuan4,YU Shan-Lin1,*   

  1. 1 Shandong Peanut Research Institute, Qingdao 266100, China; 2 Key Laboratory of  Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China; 3Qingdao Entry-Exit Inspection and Quarantine Bureau, Qingdao 266001, China; 4 Zhangqiu Agriculture Bureau, Jinan 250200, China?
  • Received:2013-11-13 Revised:2014-03-04 Published:2014-05-12 Published online:2014-03-25

摘要:

以花生品种花育33为试材, 根据cDNA文库中已知的果糖-1,6-二磷酸醛缩酶 (fructose-1,6-bisphosphate aldolase, FBA) 基因全长序列设计引物, 通过RT-PCR克隆到该基因, 命名为AhFBA1AhFBA1全长为1489 bp, 开放阅读框为1200 bp, 编码400个氨基酸。预测该基因编码的蛋白含有Glycolytic保守结构域, 可能定位于叶绿体中。蛋白序列比对和进化树分析表明, 花生与大豆(Glycine max)、苜蓿(Medicago truncatula)、鹰嘴豆(Cicer arietinum)和菜豆(Phaseolus vulgaris)等豆科植物中的FBA序列相似性最高, 亲缘关系最近。荧光定量PCR结果显示, 在高盐和干旱胁迫下, AhFBA1在花生叶和根中的表达均受明显诱导, 说明该基因可能参与花生对高盐和干旱胁迫的适应性调控; AhFBA1在花生根和叶中均受ABA的明显诱导, 说明该基因对花生非生物胁迫的调控可能是依赖ABA的。

关键词: 花生, 果糖-1,6-二磷酸醛缩酶, 克隆, 系统发育分析, 非生物胁迫, 荧光定量PCR

Abstract:

In this article, a fructose-1,6-bisphosphate aldolase (FBA) gene was cloned from the leaf of peanut (Arachis hypogaea L. cultivar Huayu33) using RT-PCR, and was designated as AhFBA1. The whole sequence of AhFBA1 is 1489 bp and its open reading frame is 1200 bp, encoding a polypeptide of 400 amino acids. Its protein was predicted to be located in chloroplast, containing the conserved glycolytic domain. Multiple sequence alignments and phylogenetic analysis of FBA proteins indicated AhFBA1 was most similar with FBA from Glycine max, Medicago truncatula, Cicer arietinum,and Phaseolus vulgaris. The results of Real time RT-PCR showed that the expression of AhFBA1 was induced distinctly in both peanut root and leaf under salt and drought conditions, suggesting that AhFBA1 may participate in the salt and drought stress regulation of peanut. The expression of AhFBA1 was also induced by exogenous ABA in both peanut leaf and root, which indicated that AhFBA1 may regulate peanut abiotic stresses resistance through ABA-dependent pathway.

Key words: Peanut, Fructose-1,6-bisphosphate aldolase, Clone, Phylogenetic analysis, Abiotic stresses, Real-time PCR

[1] Jang J C, Leon P, Zhou L, Sheen J. Hexokinase as a sugar sensor in higher plants. Plant Cell, 1997, 9: 5–19



[2] Loreti E, Bellis L, Alpi A, Perata P. Why and how do plant cells sense sugars? Ann Bot, 2001, 88: 803–812



[3] Folgado R, Sergeant K, Renaut J, Swennen R, Hausman J F, Panis B. Changes in sugar content and proteome of potato in response to cold and dehydration stress and their implications for cryopreservation. J Proteomics, 2014, 98:99–111



[4] Ramon M, Rolland F, Sheen J. Sugar sensing and signaling. Arabidopsis Book, 2008, 6: e0117



[5] Cho Y H, Yoo S D. Signaling role of fructose mediated by FINS1/FBP in Arabidopsis thaliana. PLoS Genet, 2011, 7: e1001263



[6] Yamada S, Komori T, Hashimoto A, Kuwata S, Imaseki H, Kubo T. Differential expression of plastidic aldolase genes in Nicotiana plants under salt stress. Plant Sci, 2000, 154: 61–69



[7] Jiang Y, Yang B, Harris N S, Deyholos M K. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot, 2007, 58: 3591–3607



[8] Ndimba B K, Chivasa S, Simon W J, Slabas A R. Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics, 2005, 5: 4185–4196



[9] Provart N J, Gil P, Chen W, Han B, Chang H S, Wang X, Zhu T. Gene expressionphenotypes of Arabidopsis associated with sensitivity to low temperatures. Plant Physiol, 2003, 132: 893–906



[10] Lu W, Tang X, Huo Y, Xu R, Qi S, Huang J, Zheng C, Wu CA. Identification and characterization of fructose 1,6-bisphosphate aldolase genes in Arabidopsis reveal a gene family with diverse responses to abiotic stresses. Gene, 2012, 503: 65–74



[11]Fan W, Zhang Z L, Zhang Y L. Cloning and molecular characterization of fructose-1,6 -bisphosphate aldolase gene regulated by high-salinity and drought in Sesuvium portulacastrum. Plant Cell Rep, 2009, 28: 975–984



[12] Chen M, Mishra S, Heckathorn S A, Frantz J M, Krause C. Proteomic analysis of Arabidopsis thaliana leaves in response to acute boron deficiency and toxicity reveals effects on photosynthesis, carbohydrate metabolism, and protein synthesis. J Plant Physiol, 2014, 171:235–242



[13] Koch K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol, 2004, 7: 235–246



[14] Hoekstra F A, Crowe L M, Crowe J H. Differential desiccation sensitivity of corn and pennisetum pollen linked to their sucrose contents. Plant Cell Environ, 1989, 12: 83–91



[15] Smeekens S, Rook F. Sugar sensing and sugar-mediated signal transduction in plants. Plant Physiol, 1997, 115: 7–13



[16] Rolland F, Baena-Gonzalez E, Sheen J. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol, 2006, 57: 675–709



[17] Hanson H D, Hitz W D. Metabolic responses of mesophytes to plant water deficits. Annu Rev Plant Physiol, 1982, 33: 163–203



[18] Wan X, Mo A, Liu S,Yang L, Li L. Constitutive expression of a peanut ubiquitin-conjugating enzyme gene in Arabidopsis confers improved water-stress tolerance through regulation of stress- responsive gene expression. J Biosci Bioeng, 2011, 111: 478–484



[19] Wang T, Chen X, Zhu F, Li H, Li L, Yang Q, Chi X, Yu S, Liang X. Characterization of peanut germin-like proteins, AhGLPs in plant development and defense. PLoS One, 2013, 8: e61722



[20] 万书波. 中国花生栽培学. 上海: 上海科学技术出版社, 2003. pp 16–20



Wan S B. Peanut Cultivation in China. Shanghai: Shanghai Scientific and Technical Publishers, 2003. pp 16–20 (in Chinese)



[21] 胡晓辉, 孙令强, 苗华荣, 石运庆, 陈静. 不同盐浓度对花生品种耐盐性鉴定指标的影响. 山东农业科学, 2011, 11: 35–37



Hu X H, Sun L Q, Miao H R, Shi Y Q, Chen J. Effects of different NaCl concentrations on indicators for evaluating salt tolerance of peanut varieties. Shandong Agric Sci, 2011, 11: 35–37 (in Chinese with English abstract)



[22] Tabei Y, Okada K, Horii E, Mitsui M, Nagashima Y, Sakai T, Yoshida T, Kamiya A, Fujiwara S, Tsuzuki M. Two regulatory networks mediated by light and glucose involved in glycolytic gene expression in cyanobacteria. Plant Cell Physiol, 2012, 53: 1720–1727



[23] Rutter W J. Evolution of Aldolase. Fed Proc, 1964, 23: 1248–1257



[24] Lebherz H G, Leadbetter M M, Bradshaw R A. Isolation and characterization of the cytosolic and chloroplast forms of spinach leaf fructose diphosphate aldolase. J Biol Chem, 1984, 259: 1011–1017



[25] Pelzer-Reith B, Penger A, Schnarrenberger C. Plant aldolase: cDNA and deduced amino-acid sequences of the chloroplast and cytosol enzyme from spinach. Plant Mol Biol, 1993, 21: 331–340



[26] Tsutsumi K, Kagaya Y, Hidaka S, Suzuki J, Tokairin Y, Hirai T, Hu D L, Ishikawa K, Ejiri S. Structural analysis of the chloroplastic and cytoplasmic aldolase-encoding genes implicated the occurrence of multiple loci in rice. Gene, 1994, 141: 215–220



[27] Kelley P M, Freeling M. Anaerobic expression of maize fructose-1,6-diphosphate aldolase. J Biol Chem, 1984, 259: 14180–14183



[28] Russell D A, Wong D M, Sachs M M. The anaerobic response of soybean. Plant Physiol, 1990, 92: 401–407



[29] Mujer C V, Rumpho M E, Lin J J, Kennedy R A. Constitutive and inducible aerobic and anaerobic stress proteins in the echinochloa complex and rice. Plant Physiol, 1993, 101: 217–226



[30] Andrews D L, MacAlpine D M, Johnson J R, Kelley P M, Cobb B G, Drew M C. Differential induction of mRNAs for the glycolytic and ethanolic fermentative pathways by hypoxia and anoxia in maize seedlings. Plant Physiol, 1994, 106: 1575–1582



[31] Umeda M, Uchimiya H. Differential transcript levels of genes associated with glycolysis and alcohol fermentation in rice plants (Oryza sativa L.) under submergence stress. Plant Physiol, 1994, 106: 1015–1022



[32] Kagaya Y, Nakamura H, Hidaka S, Ejiri S, Tsutsumi K. The promoter from the rice nuclear gene encoding chloroplast aldolase confers mesophyll-specific and light-regulated expression in transgenic tobacco. Mol Gen Genet, 1995, 248: 668–674



[33] Kamal A H, Cho K, Kim D E, Uozumi N, Chung K Y, Lee S Y, Choi J S, Cho S W, Shin C S, Woo S H. Changes in physiology and protein abundance in salt-stressed wheat chloroplasts. Mol Biol Rep, 2012, 39: 9059–9074



[34] Sarry J E, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet J B, Vailhen D, Amekraz B, Moulin C, Ezan E, Garin J, Bourguignon J. The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics, 2006, 6: 2180–2198



[35] 张晓宁, 王昊, 曲志才, 陈火英, 叶鸣明, 沈大棱. NaCl诱导表达的盐藻果糖-1,6-二磷酸醛缩酶基因克隆及原核表达. 复旦学报, 2002, 41: 593–595



Zhang X N, Wang H, Qu Z C, Chen H Y, Ye M M, Shen D L. Cloning and prokaryotic expression of the fructose-1,6-diphosphate aldolase full-length cDNA of Dunaliella salina induced by NaCl. J Fudan Univ, 2002, 41: 593–595 (in Chinese with English abstract)



[36] Purev M, Kim M K, Samdan N, Yang D C. Isolation of an novel fructose-1,6-bisphosphat aldolase gene from Codonopsis lanceolata and analysis of the response. Mol Biol, 2008, 42: 206–213



[37] Zhang X N, Qu Z C, Wan Y Z, Zhang H W, Shen D L. Application of suppression subtractive hyhridization (SSH) to cloning differentially expressed cDNA in Dunaliella salina (Chlorophyta) under hyperosmotic shock. Plant Mol Biol Rep, 2002, 20: 49–57



[38] Xu Z Y, Kim D H, Hwang I. ABA homeostasis and signaling involving multiple subcellular compartments and multiple receptors. Plant Cell Rep, 2013, 32: 807–813



[39] Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C, Job D. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol, 2006, 141: 910–923



[40] Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15: 63–78

[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[4] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[5] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[6] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[7] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[8] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[9] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[10] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[11] 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264.
[12] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[13] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[14] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[15] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!