作物学报 ›› 2024, Vol. 50 ›› Issue (4): 1030-1042.doi: 10.3724/SP.J.1006.2024.33030
邹佳琪1(), 王仲林1,2, 谭先明1, 陈燎原1, 杨文钰1, 杨峰1,*()
ZOU Jia-Qi1(), WANG Zhong-Lin1,2, TAN Xian-Ming1, CHEN Liao-Yuan1, YANG Wen-Yu1, YANG Feng1,*()
摘要:
利用高光谱遥感技术监测作物水分状况和籽粒产量, 对于调控作物生长、优化水分管理和改善产量形成具有重要意义。本研究玉米品种选用正红505, 于2018—2019年在四川雅安和仁寿的试验田设置4个水分处理(正常水分、轻度、中度和重度干旱), 分析玉米在拔节期(V6)、抽雄期(VT)和灌浆期(R2)的冠层含水量(canopy water content, CWC)与籽粒产量的定量关系, 利用植被指数和连续小波变换对光谱反射率数据进行处理, 采用线性回归方法构建CWC定量反演模型, 进一步探索以CWC为桥梁建立的玉米籽粒产量的预测模型效果。结果表明, (1) 利用小波特征构建的CWC估测模型的预测效果高于植被指数, V6、VT和R2期分别以小波特征gaus3770,64、rbio3.31635,2和rbio3.3838,2构建的线性回归模型检验精度较高, R2分别为0.770、0.291和0.233。(2) CWC与玉米籽粒产量间建立的线性回归模型均达极显著水平(P<0.01), V6、VT和R2期的R2分别为0.596、0.366和0.439。(3) 基于光谱反射率构建的产量预测模型以V6期小波特征gaus3770,64的验证效果最好(R2 = 0.577, RMSE = 1.625 t hm-2), 可作为预测玉米籽粒产量的最佳时期。因此, 本研究提出的“光谱反射率—冠层含水量—产量”建模方法能够实现对玉米籽粒产量的精确估测, 为未来大面积监测玉米生产力提供了理论依据。
[1] | 王延仓, 张萧誉, 金永涛, 顾晓鹤, 冯华, 王闯. 基于连续小波变换定量反演冬小麦叶片含水量研究. 麦类作物学报, 2020, 40: 503-509. |
Wang Y C, Zhang X Y, Jin Y T, Gu X H, Feng H, Wang C. Quantitative retrieval of water content in winter wheat leaves based on continuous wavelet transform. J Triticeae Crops, 2020, 40: 503-509. (in Chinese with English abstract) | |
[2] |
Ren B, Zhang J, Li X, Fan X, Dong S, Liu P, Zhao B. Effects of waterlogging on the yield and growth of summer maize under field conditions. Can J Plant Sci, 2014, 94: 23-31.
doi: 10.4141/cjps2013-175 |
[3] |
Zhou H, Zhou G, Song X, He Q. Dynamic characteristics of canopy and vegetation water content during an entire maize growing season in relation to spectral-based indices. Remote Sens, 2022, 14: 584.
doi: 10.3390/rs14030584 |
[4] | 任传友, 姜卓群, 苏小琁, 米前川, 王婧, 李玥, 高西宁. 水分胁迫/复水对谷子光合特性及产量影响. 应用气象学报, 2021, 32: 456-467. |
Ren C Y, Jiang Z Q, Su X X, Mi Q C, Wang J, Li Y, Gao X N. Effect of water stress/rewatering on photosynthetic characteristics and yield of cereals. J Appl Meteorol Sci, 2021, 32: 456-467. (in Chinese with English abstract) | |
[5] | 马雅丽, 郭建平, 栾青, 刘文平, 李蕊. 持续性水分胁迫对冬小麦光合特性及产量的影响. 气象, 2022, 48: 1303-1311. |
Ma Y L, Guo J P, Luan Q, Liu W P, Li R. Effects of persistent water stress on photosynthetic characteristics and yield of winter wheat. Meteorol Month, 2022, 48: 1303-1311. (in Chinese with English abstract) | |
[6] | 唐源, 王小平, 鲁聪聪, 赵传燕. 基于PROSAIL模型与光谱指数的紫花苜蓿冠层含水量估算. 兰州大学学报(自然科学版), 2023, 59: 55-62. |
Tang Y, Wang X P, Lu C C, Zhao C Y. Estimating the canopy water content of alfalfa based on the PROSAIL model and spectral index. J Lanzhou Univ (Nat Sci Edn), 2023, 59: 55-62. (in Chinese with English abstract) | |
[7] |
Zhang F, Zhou G. Estimation of vegetation water content using hyperspectral vegetation indices: a comparison of crop water indicators in response to water stress treatments for summer maize. BMC Ecol, 2019, 19: 18.
doi: 10.1186/s12898-019-0233-0 pmid: 31035986 |
[8] | 江海英, 柴琳娜, 贾坤, 刘进, 杨世琪, 郑杰. 联合PROSAIL模型和植被水分指数的低矮植被含水量估算. 遥感学报, 2021, 25: 1025-1036. |
Jiang H Y, Chai L N, Jia K, Liu J, Yang S Q, Zheng J. Estimation of water content for short vegetation based on PROSAIL model and vegetation water indices. Nation Remote Sens Bull, 2021, 25: 1025-1036. (in Chinese with English abstract) | |
[9] |
Wang Z L, Chen J X, Fan Y F, Cheng Y J, Wu X L, Zhang J W, Wang B B, Wang X C, Yong T W, Liu W G, Liu J, Du J B, Yang W Y, Yang F. Evaluating photosynthetic pigment contents of maize using UVE-PLS based on continuous wavelet transform. Comput Electron Agric, 2020, 169: 105160.
doi: 10.1016/j.compag.2019.105160 |
[10] |
Cheng T, Rivard B, Sánchez-Azofeifa A G, Féret J B, Jacquemoud S, Ustin S L. Predicting leaf gravimetric water content from foliar reflectance across a range of plant species using continuous wavelet analysis. J Plant Physiol, 2012, 169: 1134-1142.
doi: 10.1016/j.jplph.2012.04.006 |
[11] |
Cheng T, Riaño D, Ustin S L. Detecting diurnal and seasonal variation in canopy water content of nut tree orchards from airborne imaging spectroscopy data using continuous wavelet analysis. Remote Sens Environ, 2014, 143: 39-53.
doi: 10.1016/j.rse.2013.11.018 |
[12] | Liu H J, Li M Z, Zhang J Y, Gao D H, Sun H, Yang L W. Estimation of chlorophyll content in maize canopy using wavelet denoising and SVR method. Int J Agric Biol Eng, 2018, 11: 132-137. |
[13] | Liu Y, Sun Q, Feng H K, Yang F Q. Estimation of above-ground biomass of potato based on wavelet analysis. Spectrosc Spectral Anal, 2021, 41: 1205-1212. |
[14] | Liu M, Liu X, Ding W, Wu L. Monitoring stress levels on rice with heavy metal pollution from hyperspectral reflectance data using wavelet-fractal analysis. Int J Appl Earth Obs Geoinf, 2010, 13: 246-255. |
[15] |
Chen J X, Li F, Wang R, Fan Y F, Ali Raza M, Liu Q L, Wang Z L, Cheng Y J, Wu X L, Yang F, Yang W Y. Estimation of nitrogen and carbon content from soybean leaf reflectance spectra using wavelet analysis under shade stress. Comput Electron Agric, 2019, 156: 482-489.
doi: 10.1016/j.compag.2018.12.003 |
[16] |
Tao H L, Feng H K, Xu L J, Miao M K, Yang G J, Yang X D, Fan L L. Estimation of the yield and plant height of winter wheat using UAV-based hyperspectral images. Sensors, 2020, 20: 1231.
doi: 10.3390/s20041231 |
[17] |
Yue J B, Feng H K, Yang G J, Li Z H. A comparison of regression techniques for estimation of above-ground winter wheat biomass using near-surface spectroscopy. Remote Sens, 2018, 10: 66.
doi: 10.3390/rs10010066 |
[18] |
Zhang F, Zhou G S. Estimation of canopy water content by means of hyperspectral indices based on drought stress gradient experiments of maize in the North Plain China. Remote Sens, 2015, 7: 15203-15223.
doi: 10.3390/rs71115203 |
[19] | Atzberger C, Darvishzadeh R, Immitzer M, Martin S, Andrew S, Guerric I M. Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy. Int J Appl Earth Obs Geoinf, 2015, 43: 19-31. |
[20] | 陶惠林, 徐良骥, 冯海宽, 杨贵军, 杨小冬, 牛亚超. 基于无人机高光谱遥感数据的冬小麦产量估算. 农业机械学报, 2020, 51(7): 146-155. |
Tao H L, Xu L J, Feng H K, Yang G J, Yang X D, Niu Y C. Winter wheat yield estimation based on UAV hyperspectral remote sensing data. Trans CSAM, 2020, 51(7): 146-155. (in Chinese with English abstract) | |
[21] | 韩文霆, 彭星硕, 张立元, 牛亚晓. 基于多时相无人机遥感植被指数的夏玉米产量估算. 农业机械学报, 2020, 51(1): 148-155. |
Han W T, Peng X S, Zhang L Y, Niu Y X. Summer maize yield estimation based on vegetation index derived from multi- temporal UAV remote sensing. Trans CSAM, 2020, 51(1): 148-155. (in Chinese with English abstract) | |
[22] |
Jiang Y, Wei H, Hou S, Yin X, Wei S, Jiang D. Estimation of maize yield and protein content under different density and N rate conditions based on UAV multi-spectral images. Agronomy, 2023, 13: 421.
doi: 10.3390/agronomy13020421 |
[23] |
Li Z H, Jin X L, Zhao C J, Wang J H, Xu X G, Yang G J, Li C J, Shen J X. Estimating wheat yield and quality by coupling the DSSAT-CERES model and proximal remote sensing. Eur J Agron, 2015, 71: 53-62.
doi: 10.1016/j.eja.2015.08.006 |
[24] | Zhang C, Liu J G, Shang J L, Cai H J. Capability of crop water content for revealing variability of winter wheat grain yield and soil moisture under limited irrigation. Sci Total Environ, 2018, 631-632: 677-687. |
[25] | Clevers J G P W, Kooistra L, Schaepman M E. Estimating canopy water content using hyperspectral remote sensing data. Int J Appl Earth Obs Geoinf, 2010, 12: 119-125. |
[26] |
Blackburn G A, Ferwerda J G. Retrieval of chlorophyll concentration from leaf reflectance spectra using wavelet analysis. Remote Sens Environ, 2008, 112: 1614-1632.
doi: 10.1016/j.rse.2007.08.005 |
[27] |
Nourani V, Baghanam A H, Adamowski J, Gebremichael M. Using self-organizing maps and wavelet transforms for space-time pre-processing of satellite precipitation and runoff data in neural network based rainfall-runoff modeling. J Hydrol, 2013, 476: 228-243.
doi: 10.1016/j.jhydrol.2012.10.054 |
[28] |
Rivard B, Feng J, Gallie A, Sanchez-Azofeifa A. Continuous wavelets for the improved use of spectral libraries and hyperspectral data. Remote Sens Environ, 2008, 112: 2850-2862.
doi: 10.1016/j.rse.2008.01.016 |
[29] |
Penuelas J, Filella I, Biel C S, Serrano L, Save R. The reflectance at the 950-970 nm region as an indicator of plant water status. Int J Remote Sens, 1993, 14: 1887-1905.
doi: 10.1080/01431169308954010 |
[30] |
Ceccato P, Gobron N, Flasse S, Pinty B, Tarantola S. Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1: Theoretical approach. Remote Sens Environ, 2002, 82: 188-197.
doi: 10.1016/S0034-4257(02)00037-8 |
[31] |
Ceccato P, Flasse S, Grégoire J M. Designing a spectral index to estimate vegetation water content from remote sensing data: part 2. Validation and applications. Remote Sens Environ, 2002, 82: 198-207.
doi: 10.1016/S0034-4257(02)00036-6 |
[32] | Pearson R L, Miller L D. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie. In: Proceeding of the 8th International Symposium on Remote Sensing of the Environment, Michigan, Ann Arbor, Michigan USA, 1972. pp 1355-1397. |
[33] |
Jordan C F. Derivation of leaf-area index from quality of light on the forest floor. Ecology, 1969, 50: 663-666.
doi: 10.2307/1936256 |
[34] | Rouse J W, Haas R H, Schell J A, Deering D W. Monitoring vegetation systems in the great plains with erts. NASA Sp Publ, 1974, 351: 309-313. |
[35] |
Mutanga O, Skidmore A K. Red edge shift and biochemical content in grass canopies. ISPRS J Photogr Remote Sens, 2007, 62: 34-42.
doi: 10.1016/j.isprsjprs.2007.02.001 |
[36] | Oki K, Yasuoka Y. Estimation of chlorophyll-a concentration in rich chlorophyll water area from near-infrared and red Spectral signature. J Remote Sens Soc Jpn, 2009, 16: 315-323. |
[37] |
Cheng T, Rivard B, Sánchez-Azofeifa A. Spectroscopic determination of leaf water content using continuous wavelet analysis. Remote Sens Environ, 2010, 115: 659-670.
doi: 10.1016/j.rse.2010.11.001 |
[38] | 林波, 杨玉静. 利用连续统去除方法遥感反演冠层水分含量的比较研究. 气象研究与应用, 2012, 33: 181-184. |
Lin B, Yang Y J. A comparative study of remote sensing inversion of canopy moisture content using the continuum removal method. J Meteorol Res Appl, 2012, 33: 181-184. (in Chinese with English abstract) | |
[39] |
Sims D A, Gamon J A. Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: a comparison of indices based on liquid water and chlorophyll absorption features. Remote Sens Environ, 2003, 84: 526-537.
doi: 10.1016/S0034-4257(02)00151-7 |
[40] | 苏涛, 王鹏新, 刘翔舸, 杨博. 基于熵值组合预测和多时相遥感的春玉米估产. 农业机械学报, 2011, 42(1): 186-192. |
Su T, Wang P X, Liu X G, Yang B. Spring maize yield estimation based on combination of forecasting of entropy method and multi-temporal remotely sensed data. Trans CSAM, 2011, 42(1): 186-192. (in Chinese with English abstract) | |
[41] |
任丽雯, 刘明春, 王兴涛, 丁文魁, 王润元. 拔节和抽雄期水分胁迫对春玉米生长和产量的影响. 中国农学通报, 2019, 35(1): 17-22.
doi: 10.11924/j.issn.1000-6850.casb17100010 |
Ren L W, Liu M C, Wang X T, Ding W K, Wang R Y. Water stress at jointing and tasseling stage: effect on growth and yield of spring maize. Chin Agric Sci Bull, 2019, 35(1): 17-22. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb17100010 |
|
[42] | 白向历, 孙世贤, 杨国航, 刘明, 张振平, 齐华. 不同生育时期水分胁迫对玉米产量及生长发育的影响. 玉米科学, 2009, 17(2): 60-63. |
Bai X L, Sun S X, Yang G H, Liu M, Zhang Z P, Qi H. Effect of water stress on maize yield during different growing stages. J Maize Sci, 2009, 17(2): 60-63. (in Chinese with English abstract) | |
[43] | 李叶蓓, 陶洪斌, 王若男, 张萍, 吴春江, 雷鸣, 张巽, 王璞. 干旱对玉米穗发育及产量的影响. 中国生态农业学报, 2015, 23: 383-391. |
Li Y B, Tao H B, Wang R N, Zhang P, Wu C J, Lei M, Zhang X, Wang P. Effect of drought on ear development and yield of maize. Chin J Eco-Agric, 2015, 23: 383-391. (in Chinese with English abstract) | |
[44] | 郭松, 常庆瑞, 郑智康, 蒋丹垚, 高一帆, 宋子怡, 姜时雨. 基于无人机高光谱影像的玉米叶绿素含量估测. 江苏农业学报, 2022, 38: 976-984. |
Guo S, Chang Q R, Zheng Z K, Jiang D Y, Gao Y F, Song Z Y, Jiang S Y. Estimation of maize chlorophyll content based on unmanned aerial vehicle (UAV) hyperspectral images. Jiangsu J Agric Sci, 2022, 38: 976-984. (in Chinese with English abstract) | |
[45] | Mirzaie M, Darvishzadeh R, Shakiba A, Matkan A A, Atzberger C, Skidmore A. Comparative analysis of different uni-and multi-variate methods for estimation of vegetation water content using hyper-spectral measurements. Int J Appl Earth Obs Geoinf, 2014, 26: 1-11. |
[46] |
Jiang Y, Wei H J, Hou S X, Yin X B, Wei S S, Jiang D. Estimation of maize yield and protein content under different density and N rate conditions based on UAV multi-spectral images. Agronomy, 2023, 13: 421.
doi: 10.3390/agronomy13020421 |
[47] |
祝榛, 李天胜, 崔静, 陈建华, 史晓艳, 姜孟豪, 王海江. 基于高光谱成像估测冬小麦不同生育时期水分状况. 新疆农业科学, 2022, 59: 521-532.
doi: 10.6048/j.issn.1001-4330.2022.03.001 |
Zhu Z, Li T S, Cui J, Chen J H, Shi X Y, Jiang M H, Wang H J. Study on estimation of water status of winter wheat in different growth stages based on hyperspectral imaging. Xinjiang Agric Sci, 2022, 59: 521-532. (in Chinese with English abstract)
doi: 10.6048/j.issn.1001-4330.2022.03.001 |
|
[48] |
Zhang Y, Yang Y Z, Zhang Q W, Duan R Q, Liu J Q, Qin Y C, Wang X Z. Toward multi-stage phenotyping of soybean with multimodal UAV sensor data: a comparison of machine learning approaches for leaf area index estimation. Remote Sens, 2022, 15: 7.
doi: 10.3390/rs15010007 |
[1] | 韩洁楠, 张泽, 刘晓丽, 李冉, 上官小川, 周婷芳, 潘越, 郝转芳, 翁建峰, 雍洪军, 周志强, 徐晶宇, 李新海, 李明顺. o2突变引起糯玉米籽粒淀粉积累差异研究[J]. 作物学报, 2024, 50(5): 1207-1222. |
[2] | 王永亮, 胥子航, 李申, 梁哲铭, 白炬, 杨治平. 不同覆盖措施对土壤水热状况及春玉米产量和水分利用效率的影响[J]. 作物学报, 2024, 50(5): 1312-1324. |
[3] | 田红丽, 杨扬, 范亚明, 易红梅, 王蕊, 金石桥, 晋芳, 张云龙, 刘亚维, 王凤格, 赵久然. 用于玉米品种真实性鉴定的最优核心SNP位点集的研发[J]. 作物学报, 2024, 50(5): 1115-1123. |
[4] | 苏帅, 刘孝伟, 牛群凯, 时子文, 侯雨微, 冯开洁, 荣廷昭, 曹墨菊. 玉米多叶矮化突变体lyd1的鉴定与基因克隆[J]. 作物学报, 2024, 50(5): 1124-1135. |
[5] | 吴霞玉, 李盼, 韦金贵, 范虹, 何蔚, 樊志龙, 胡发龙, 柴强, 殷文. 减量灌水及有机无机肥配施对西北灌区玉米光合生理、籽粒产量及品质的影响[J]. 作物学报, 2024, 50(4): 1065-1079. |
[6] | 张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响[J]. 作物学报, 2024, 50(4): 981-990. |
[7] | 岳海旺, 魏建伟, 刘朋程, 陈淑萍, 卜俊周. 基于GYT双标图分析对黄淮海生态区玉米品种综合评价[J]. 作物学报, 2024, 50(4): 836-856. |
[8] | 娄菲, 左怿平, 李萌, 代鑫萌, 王健, 韩金玲, 吴舒, 李向岭, 段会军. 有机肥替代部分化肥氮对糯玉米产量、品质及氮素利用的影响[J]. 作物学报, 2024, 50(4): 1053-1064. |
[9] | 薛明, 汪晨晨, 姜露光, 刘浩, 张路遥, 陈赛华. 玉米花序发育基因AFP1的定位及功能研究[J]. 作物学报, 2024, 50(3): 603-612. |
[10] | 赵荣荣, 丛楠, 赵闯. 基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择[J]. 作物学报, 2024, 50(3): 721-733. |
[11] | 梁星伟, 杨文亭, 金雨, 胡莉, 傅小香, 陈先敏, 周顺利, 申思, 梁效贵. 玉米穗轴的颜色变化, 是偶然还是与农艺性状存在关联?——以历年国审普通品种为例[J]. 作物学报, 2024, 50(3): 771-778. |
[12] | 毛燕, 郑名敏, 牟成香, 谢吴兵, 唐琦. 渗透胁迫下玉米自然反义转录本cis-NATZmNAC48启动子的功能分析[J]. 作物学报, 2024, 50(2): 354-362. |
[13] | 马娟, 曹言勇. 玉米杂交群体产量性状及其特殊配合力全基因组关联分析[J]. 作物学报, 2024, 50(2): 363-372. |
[14] | 杨静蕾, 吴冰杰, 王安洲, 肖英杰. 基于多维组学数据的玉米农艺和品质性状预测研究[J]. 作物学报, 2024, 50(2): 373-382. |
[15] | 谢炜, 贺鹏, 马宏亮, 雷芳, 黄秀兰, 樊高琼, 杨洪坤. 秋闲期秸秆覆盖与施磷对冬小麦氮素吸收利用的影响[J]. 作物学报, 2024, 50(2): 440-450. |
|