欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (5): 1207-1222.doi: 10.3724/SP.J.1006.2024.33046

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

o2突变引起糯玉米籽粒淀粉积累差异研究

韩洁楠1(), 张泽1,2, 刘晓丽1, 李冉1, 上官小川1,2, 周婷芳1,2, 潘越1, 郝转芳1, 翁建峰1, 雍洪军1, 周志强1, 徐晶宇2, 李新海1,2, 李明顺1,*()   

  1. 1中国农业科学院作物科学研究所, 北京 100081
    2黑龙江八一农垦大学农学院, 黑龙江大庆 163319
  • 收稿日期:2023-08-01 接受日期:2023-10-23 出版日期:2024-05-12 网络出版日期:2023-11-13
  • 通讯作者: 李明顺, E-mail: limingshun@caas.cn
  • 作者简介:E-mail: hanjienan@caas.cn
  • 基金资助:
    国家重点研发计划项目(2021YFD1201004);财政部和农业农村部国家现代农业产业技术体系建设专项(Maize, CARS-02)

Analysis of differential accumulation of starch in waxy maize grain caused by the o2 mutation gene

HAN Jie-Nan1(), ZHANG Ze1,2, LIU Xiao-Li1, LI Ran1, SHANG-GUAN Xiao-Chuan1,2, ZHOU Ting-Fang1,2, PAN Yue1, HAO Zhuan-Fang1, WENG Jian-Feng1, YONG Hong-Jun1, ZHOU Zhi-Qiang1, XU Jing-Yu2, LI Xin-Hai1,2, LI Ming-Shun1,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
  • Received:2023-08-01 Accepted:2023-10-23 Published:2024-05-12 Published online:2023-11-13
  • Contact: E-mail: limingshun@caas.cn
  • Supported by:
    National Key Research and Development Program of China(2021YFD1201004);China Agriculture Research System of MOF and MARA(Maize, CARS-02)

摘要:

糯玉米是主要鲜食玉米类型, opaque2 (o2)基因导入可增加籽粒赖氨酸含量, 但同时引起籽粒皱缩、淀粉含量下降等, 限制了其育种应用。为发掘优良糯玉米受体, 以籽粒饱满圆型o2近等基因系(o2-NIL)糯2/wx1wx1o2o2和皱缩型黄糯2/wx1wx1o2o2为研究材料, 通过对鲜食期、成熟期的百粒重和籽粒成分测定, 发现淀粉和可溶性糖含量不同可能是导致2份糯玉米o2-NILs表型差异的主要原因。利用实时荧光定量PCR技术分析, 发现授粉后10~24 d两糯玉米o2-NILs中6个淀粉合成基因动态表达模式不同, 其中Sh1Sh2SSIIIaSBEIIb差异较大。分析胚乳转录组数据, 发现两糯玉米o2-NILs中24个海藻糖和糖基水解酶编码基因和48个o2胚乳修饰基因变化不同, 以上结果表明淀粉合成关键基因前期表达量高, 后期与对照无差异, 且糖代谢基因表达变化有利于淀粉合成可能是糯2/wx1wx1o2o2淀粉含量和百粒重不受o2突变影响, 籽粒性状明显优于黄糯2/wx1wx1o2o2的重要原因, 同时多个胚乳修饰基因的差异表达可能与该结果直接相关。本研究结果可为o2突变体在玉米育种中的应用提供重要参考。

关键词: 糯玉米, 糯2/wx1wx1o2o2, 黄糯2/wx1wx1o2o2, 籽粒饱满度, 淀粉, 糖代谢, 差异基因

Abstract:

The primary variety of fresh maize known as waxy maize undergoes a transformation with the introduction of the opaque2 (o2) mutant gene, resulting in an increased lysine content, thus improving the grain's nutritional composition. Yet, the o2 mutation brings about desirable agronomic traits such as wrinkle formation and a decrease in starch content, which restrict its use in breeding applications. To explore the high performing waxy maize o2 receptors, we capitalized on the use of o2 near-isogenic line (o2-NIL), specifically the plump and round grain type Nuo 2/wx1wx1o2o2 and its wrinkled counterpart, Huangnuo2/wx1wx1o2o2. Measurements of 100-grain weight and grain composition at the fresh ear and mature stages showed that there was difference in starch and soluble sugar content, which might be the primary cause of kernel phenotype variation between the two waxy maize o2-NILs. Genetic analysis of starch synthesis in the two o2-NILs was performed using qRT-PCR technique revealed that six gene-regulated trends fluctuated between 10 and 24 days after pollination, among which Sh1, Sh2, SSIIIa, and SBEIIb genes were significant differences. Endosperm transcriptomes indicated that 24 genes encoding trehalose and glycosyl hydrolases and 48 genes involved in endosperm modification exhibited distinct changes between the two o2-NILs. There was no detectable alteration in the 100-grain weight or the starch content of Nuo 2/wx1wx1o2o2, which may well be tied to the early high-level expression of the primary starch synthesis gene, leaving later stages unchanged compared with the control. Furthermore, the shifts in the expression of sugar metabolism genes was beneficial to starch synthesis, which may be an important reason why starch content and 100-kernel weight of Nuo 2/wx1wx1o2o2 were unaffected by the o2 mutation, and grain traits were significantly better than the superior grain traits compared with Huangnuo 2/wx1wx1o2o2. These results may be directly related to the differential expression of multiple endosperm modifying genes. The results of this study can provide important reference for the future utilization of o2 mutants in maize breeding.

Key words: waxy maize, Nuo 2/wx1wx1o2o2, Huangnuo 2/wx1wx1o2o2, kernel fullness degree, starch, sucrose metabolism, different expression genes

附表1

定量引物信息列表"

基因名称
Gene ID
引物序列
Primer sequence (5'-3')
片段长度
Production size (bp)
退火温度
Annealing temperature (℃)
Zm00001d045042
(Sh1)
TGTTTCACCGCAATTCGCA 190 60
AGACAGGTGAACGAGCAGGC
Zm00001d029091
(Sus1)
GAAGCGTTCGGTCTCACC 162 60
GAAGAAGTCGGCCATCAG
Zm00001d050032
(Bt2)
CTATGACCGTTTTGCTCCAAT 195 60
GCACCCATTAGTAAACTGTCCTC
Zm00001d044129
(Sh2)
CGTGTCAGCTCTGGATGTGAA 210 60
AGCCTCTTGGATGCCCTTA
Zm00001d045261
(SSI)
GACATTAATGATTGGAACCCTGCC 187 60
GAATGAGATCAATGCCTTTCTG
Zm00001d037234
(SSIIa)
CTGCACTCCTGCCTGTTTAT 175 60
GGATCGTACAGCTCGAAATGTT
Zm00001d000002
(SSIIIa)
CAAAAGGGGATCCACCTGATCA 208 60
CAGAGCCAGCGTATATCAGAT
Zm00001d016684
(SBEIIb)
TAGACTTATCACAATGGGTTTAGGA 227 60
GCATTGCCTGATCAAACTCTTG
Zm00001d017502 GTCGCAGGACTCGTGAAACA 206 60
TTGAAGGCGTCTTCGTCTGT
Zm00001d032311 GTATGGCACTATTTGGACGCG 186 60
GACCAGTGTGTGAATCAGCTTG
Zm00001d052060 TGAATCGTCTGTGCGAGGACC 164 60
CCACCTTGTGAAGTAACCGTGCT
Zm00001d012748 GGTTACTTCTTGAGGTGGTCT 208 60
GCATCTCCTTTGCCTGTGAG
Zm00001d029371 CCCGCCGAGGTCAAGGAGTT 160 60
TGCCGGTGCAGCAGGTAGGT
Zm00001d012173 ATCACCGCCACGAAGAAGGG 210 60
TAGGAACTAGGGCAAGCAAA
Zm00001d042536 GCCTTCCTTCAAAGTACAACA 220 60
CTCTATTAGCTGCAAGACCTCC
Zm00001d036608 ACCTCCGCTACTCCATCAACACCA 234 60
CCCTTGCGAACGGGTAGAACG
Zm00001d034017 TCTCCACCGTCATGATCTCCTA 200 60
AATGCCAGCAAGAATCGAAGCC
Zm00001d033649 GGAGAAGTATGGGAATCCAACG 213 60
TACCCTGCCAGCCACTCGAAG
Zm00001d028243 GCCTTCAACGCCTACTACCACG 144 60
GGTGCCGTTCATCAACGACGTC
Zm00001d005546 CAGCACGAGTGTTCTTGGGATC 199 60
GCGGTTGAGCGAAGCAGAGT
Zm00001d053960 GCTGGAGCTTTTGGTCAGTTTGC 190 60
GGTCGCACCAGATACTGAAATCT
Zm00001d002256 CGACAGAGCCATAACCACAT 172 60
AAACGAGCCTGATTTCCCTA
Zm00001d015327
(Ubiquitin)
TAAGCTGCCGATGTGCCTGCGTCG 206 60
CTGAAAGACAGAACATAATGAGCACAG

图1

黄糯2/wx1wx1o2o2和糯2/wx1wx1o2o2籽粒表型 (A): 籽粒表型比较; (B): 不同年代下籽粒淀粉含量和百粒重比较。**表示在0.01概率水平差异显著。"

表1

鲜食期和成熟期糯玉米o2-NILs籽粒成分测定结果"

时期
Stage
自交系
Inbred lines
基因型
Genotype
赖氨酸含量
Lysine content
(%)
可溶性糖含量
Soluble sugar
content (%)
总淀粉含量
Starch content
(%)
百粒重
100-kernel weight (g)
鲜食期 黄糯2 O2O2 0.35 7.70 69.60 11.98
Fresh stage Huangnuo 2 o2o2 0.54** 7.35 65.34** 10.86*
糯2 O2O2 0.42 6.76 64.11 16.06
Nuo 2 o2o2 0.58** 6.77 68.02** 15.94
成熟期 黄糯2 O2O2 0.24 4.56 68.90 15.80
Mature stage Huangnuo 2 o2o2 0.43** 5.13* 64.60** 14.41**
糯2 O2O2 0.24 4.81 69.20 26.01
Nuo 2 o2o2 0.38** 5.09 69.10 25.02

图2

糯玉米胚乳醇溶蛋白亚基分析"

图3

糯玉米o2-NILs淀粉合成路径关键基因差异表达量分析 *和**分别表示在0.05和0.01概率水平差异显著。DAP: 授粉后天数。"

图4

糯玉米o2-NILs差异表达基因KEGG富集分析 (A): 两糯玉米o2-NILs差异表达基因数目; (B): 黄糯2/wx1wx1o2o2差异表达基因KEGG富集分析; (C): 糯2/wx1wx1o2o2差异表达基因KEGG富集分析。"

图5

授粉后20 d糯玉米o2-NILs淀粉和糖代谢路径差异基因分析 (A): 糯玉米o2-NILs淀粉和糖代谢相关差异基因分析; (B): 糯玉米o2-NILs糖代谢差异基因分析。ns代表无显著性差异。"

图6

糯玉米o2-NILs糖代谢差异基因定量分析 *和**分别表示在0.05和0.01概率水平差异显著。DAP: 授粉后天数。"

附表2

糯玉米o2-NILs醇溶蛋白相关DEGs"

基因名称
Gene ID
糯2/wx1wx1o2o2
Nuo 2/wx1wx1o2o2
log2 FC
黄糯2/wx1wx1o2o2
Huangnuo 2/wx1wx1o2o2
log2 FC
注释
Annotation
Zm00001d005793 ns -1.21 Prolamin 16 kD gamma zein precursor
Zm00001d048847 -1.80 -5.05 Prolamin 19 kD alpha zein z1A1_2 precursor
Zm00001d048848 ns -3.56 Prolamin 19 kD alpha zein z1A1_3 precursor
Zm00001d048849 ns -3.63 Prolamin 19 kD alpha zein z1A1_4 precursor
Zm00001d048850 -1.34 -3.67 Prolamin 19 kD alpha zein z1A1_5 precursor
Zm00001d048851 ns -3.90 Prolamin 19 kD alpha zein z1A1_6 precursor
Zm00001d048852 ns -3.76 Prolamin 19 kD alpha zein z1A1_7 precursor
Zm00001d019155 -1.36 -3.70 Prolamin 19 kD alpha zein z1B_4 precursor
Zm00001d030855 -1.33 -2.18 Prolamin 19 kD alpha zein z1D_4 precursor
newGene_32946 -1.67 -2.30 Prolamin 19 kD alpha zein z1D_2 precursor
newGene_32956 -2.52 -2.73 Prolamin 19 kD alpha zein z1D_2 precursor
newGene_17461 ns -3.84 Prolamin 19 kD alpha zein z1A2_2 precursor
newGene_33790 -2.19 -3.66 Prolamin 19 kD alpha zein z1B_1 precursor
Zm00001d048816 -3.78 -4.24 Prolamin 22 kD alpha zein z1C1_10 precursor
Zm00001d048806 -2.78 -6.63 Prolamin 22 kD alpha zein z1C1_12 precursor
Zm00001d048817 -5.20 -5.80 Prolamin 22 kD alpha zein z1C1_19 precursor
Zm00001d048812 -5.50 -5.71 Prolamin 22 kD alpha zein z1C1_7 precursor
Zm00001d048813 -2.75 -3.58 Prolamin 22 kD alpha zein z1C1_8 precursor
Zm00001d049243 -4.90 -5.63 Prolamin 22 kD alpha zein z1C2 precursor
Zm00001d048810 -3.69 -4.77 Prolamin 22 kD alpha-zein 14
Zm00001d048809 -4.49 -4.61 Prolamin 22 kD alpha-zein 4
Zm00001d048818 -4.61 -4.30 Prolamin 22 kD alpha-zein 8
Zm00001d020591 ns -1.87 Prolamin 50 kD gamma zein
Zm00001d035760 -1.70 ns Prolamin PPROL 17 precursor
Zm00001d049476 -1.36 -2.90 Z1A alpha zein protein
Zm00001d045937 ns -3.18 Zein protein
Zm00001d048807 -4.37 -4.79 Zein seed storage protein, hypothetical protein
Zm00001d019160 -2.11 -4.64 Zein seed storage protein, hypothetical protein
Zm00001d019162 -1.49 -5.11 Zein seed storage protein, hypothetical protein
Zm00001d019156 -1.22 -3.64 Zein seed storage protein, hypothetical protein
Zm00001d013100 -1.20 ns Zein-binding
Zm00001d048808 -4.10 -4.96 Kafirin PSKR2 Precursor

附表3

糯玉米o2-NILs赖氨酸降解相关DEGs"

基因名称
Gene_ID
糯2/wx1wx1o2o2
Nuo 2/wx1wx1o2o2
log2 FC
黄糯2/wx1wx1o2o2
Huangnuo 2/wx1wx1o2o2
log2 FC
注释
Annotation
Zm00001d020984 -2.43 -4.10 Probable sarcosine oxidase
Zm00001d003983 -2.48 ns Aldehyde dehydrogenase family 7 member A1
Zm00001d008432 ns -1.01 Putative acetyl-CoA acetyltransferase cytosolic 2
Zm00001d052079 ns -2.65 Lysine-ketoglutarate reductase/saccharopine dehydrogenase1

附表4

糯玉米o2-NILs胚乳修饰相关DEGs"

基因名称
Gene_ID
糯2/wx1wx1o2o2
Nuo 2/wx1wx1o2o2
log2FC
黄糯2/wx1wx1o2o2
Huangnuo 2/wx1wx1o2o2
log2FC
注释
Annotation
Zm00001d015504 1.70 1.70 Protein phosphatase 2C isoform gamma
Zm00001d039942 1.12 -2.28 16.9 kD class I heat shock protein 3
Zm00001d037717 2.25 -1.70 Heat shock 70 kD protein 14
Zm00001d011241 -1.58 ns 15.7 kD heat shock protein
Zm00001d039566 1.20 ns 17.5 kD class II heat shock protein
Zm00001d008841 1.61 ns 17.8 kD class II heat shock protein
Zm00001d031329 1.14 ns Catalytic/protein phosphatase type 2C
Zm00001d039933 ns -1.02 16.9 kD class I heat shock protein 1
Zm00001d039936 ns -1.54 16.9 kD class I heat shock protein 1
Zm00001d017813 ns -2.42 17.8 kD heat shock protein isoform X4
Zm00001d028557 ns -1.47 17.9 kD class I heat shock protein
Zm00001d028561 ns -2.11 17.9 kD class I heat shock protein
Zm00001d047841 ns -2.32 17.9 kD class I heat shock protein
Zm00001d028555 ns -1.64 18.1 kD class I heat shock protein
Zm00001d003554 ns -1.24 22.0 kD class IV heat shock protein precursor
Zm00001d025508 ns -1.46 22.0 kD class IV heat shock protein precursor
Zm00001d010693 ns 1.21 22.3 kD class VI heat shock protein
Zm00001d050119 ns -1.44 Activator of 90 kDa heat shock protein ATPase
Zm00001d015227 ns -2.02 Activator of Hsp90 ATPase
Zm00001d031740 ns -1.38 Activator of Hsp90 ATPase
Zm00001d015777 ns -1.90 Chloroplast small heat shock protein
Zm00001d018298 ns -1.59 Class II heat shock protein
Zm00001d039259 ns -1.30 DNAJ heat shock family protein
Zm00001d047726 ns -1.71 DnaJ protein ERDJ3A
Zea_mays_new Gene_4468 ns -1.13 Heat shock 70 kD protein
Zm00001d048073 ns -1.88 Heat shock 70 kD protein 1
Zm00001d042922 ns -1.17 Heat shock 70 kD protein-like
Zm00001d047799 ns -1.81 Heat shock cognate 70 kD protein
Zm00001d028630 ns -1.75 Heat shock cognate 70 kD protein 2
Zm00001d012420 ns -2.06 Heat shock protein 1
Zm00001d024903 ns -1.71 Heat shock protein 82
Zm00001d020898 ns -1.33 Heat shock protein 90-2
Zm00001d031332 ns -1.32 Heat shock protein 90-2
Zm00001d039935 ns -1.34 Heat shock protein 17-2
Zm00001d028408 ns -2.16 Heat shock protein26
Zm00001d030346 ns 2.95 Hsp20/alpha crystallin family protein
Zm00001d002542 ns 1.32 Probable protein phosphatase 2C
Zea_mays_new Gene_647 1.62 ns Probable protein phosphatase 2C
Zm00001d021817 -1.01 ns Probable protein phosphatase 2C
Zm00001d017643 -1.48 ns Probable protein phosphatase 2C 25
Zm00001d047807 -2.29 ns probable protein phosphatase 2C 31
Zm00001d020100 1.23 ns Probable protein phosphatase 2C 68
Zm00001d045919
-1.88
ns
Pyrophosphate-fructose 6-phosphate-Phosphotransferase subunit alpha 2
Zm00001d028615 ns -1.39 Probable protein phosphatase 2C 31
Zm00001d025055 ns -1.88 Probable protein phosphatase 2C 37
Zm00001d011195 ns -1.35 Probable protein phosphatase 2C 38
Zm00001d047847 ns -1.19 Serine/arginine-rich splicing factor SR45a
Zm00001d031325 ns -2.33 Small heat shock protein
Zm00001d032893 ns -1.78 Small heat shock-like protein
[1] Ellis R P, Cochrane M P, Dale M F B, Duffus C M, Lynn A, Morrison I M, Prentice R D M, Swanston J S, Tiller S A. Starch production and industrial use. J Sci Food Agric, 1998, 77: 289-311.
doi: 10.1002/(ISSN)1097-0010
[2] Mertz E T, Bates L S, Nelson O E. Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science, 1964, 145: 279-280.
doi: 10.1126/science.145.3629.279 pmid: 14171571
[3] Paez A V, Helm J L, Zuber M S. Lysine content of opaque2 maize kernels having different phenotypes. Crop Sci, 1969, 9: 251-253.
doi: 10.2135/cropsci1969.0011183X000900020045x
[4] Gibbon B C, Larkins B A. Molecular genetic approaches to developing quality protein maize. Trends Genet, 2005, 21: 227-233.
pmid: 15797618
[5] 石德权. 优质蛋白玉米. 北京: 中国农业出版社, 1995.
Shi D Q. High Quality Protein Maize. Beijing: China Agriculture Press, 1995 (in Chinese).
[6] 曾孟潜. 我国糯质玉米的亲缘关系. 作物品种资源, 1987, (3): 4.
Zeng M Q. The affinities of glutinous maize in China. Chin Seed Industry, 1987, (3): 4 (in Chinese).
[7] Zheng H J, Wang H, Yang H, Wu J H, Shi B, Cai R, Xu Y B, Wu A Z, Luo L J. Genetic diversity and molecular evolution of Chinese waxy maize germplasm. PLoS One, 2013, 8: e66606.
doi: 10.1371/journal.pone.0066606
[8] 赵久然, 卢柏山, 史亚兴, 徐丽. 我国糯玉米育种及产业发展动态. 玉米科学, 2016, 24(4): 67-71.
Zhao J R, Lu B S, Shi Y X, Xu L. Dynamics of breeding and industrial development of glutinous maize in China. J Maize Sci, 2016, 24(4): 67-71 (in Chinese with English abstract).
[9] Azanza F, Klein B P, Juvik J A. Sensory characterization of sweet maize lines differing in physical and chemical composition. J Food Sci, 1996, 61: 253-257.
[10] Simla S, Lertrat K, Suriharn B. Carbohydrate characters of six vegetable waxy maize varieties as affected by harvest time and storage duration. Asian J Plant Sci, 2010, 9: 463-470.
doi: 10.3923/ajps.2010.463.470
[11] 杨引福, 郭强, 陈婧, 郑小亚, 蔺崇明. 中国温带糯玉米自交系遗传及品质性状分析. 西北农业学报, 2009, 29: 2213-2220.
Yang Y F, Guo Q, Chen J, Zheng X Y, Lin C M. Analysis of genetic quality traits in temperate glutinous maize inbred lines in China. Acta Bot Boreali-Occident Sin, 2009, 29: 2213-2220 (in Chinese with English abstract).
[12] Young V R, Scrimshaw N S. Significance of Dietary Protein Source in Human Nutrition:Animal and/or Plant Proteins? online edn. New York: Oxford Academic, 1998. pp 205-221.
[13] Misra P S, Jambunathan R, Mertz E T, Glover D V, Barbosa H M, McWhirter K S. Endosperm protein synthesis in maize mutants with increased lysine content. Science, 1972, 176: 1425-1427.
pmid: 17834650
[14] 张述宽, 滕辉升, 苏琪, 杨耀迥. 应用SSR辅助选择技术选育优质蛋白糯玉米自交系. 广西农业科学, 2009, 40: 1279-1283.
Zhang S K, Teng H S, Su Q, Yang Y J. Application of SSR-assisted selection technology to select high-quality protein glutinous maize inbred lines. J Guangxi Agric Sci, 2009, 40: 1279-1283 (in Chinese with English abstract).
[15] Sinkangam B, Stamp P, Srinives P, Jompuk P, Mongkol W, Porniyom A, Dang N C, Jompuk C. Integration of quality protein in waxy maize by means of simple sequence repeat markers. Crop Sci, 2011, 51: 2499-2504.
doi: 10.2135/cropsci2011.05.0271
[16] Zhou Z Q, Song L Y, Zhang X X, Li X H, Yan N, Xia R P, Zhu H, Weng J F, Hao Z F, Zhang D G, Yong H J, Li M S, Zhang S H. Introgression of opaque2 into waxy maize causes extensive biochemical and proteomic changes in endosperm. PLoS One, 2016, 11: e0161924.
doi: 10.1371/journal.pone.0161924
[17] Dang N C, Munsch M, Aulinger I, Renlai W, Stamp P. Inducer line generated double haploid seeds for combined waxy and opaque 2 grain quality in subtropical maize (Zea may L.). Euphytica, 2012, 183: 153-160.
doi: 10.1007/s10681-011-0423-0
[18] Jia H W, Nettleton D, Peterson J M, Vazquez-Carrillo G, Jannink J L, Scott M P. Comparison of transcript profiles in wild-type and o2 maize endosperm in different genetic backgrounds. Crop Sci, 2007, 47(S1): 45-59.
doi: 10.2135/cropsci2006.03.0207
[19] Frizzi A, Caldo R A, Morrell J A, Wang M, Lutfiyya L L, Brown W E, Malvar T M, Huang S S. Compositional and transcriptional analyses of reduced zein kernels derived from the opaque2 mutation and RNAi suppression. Plant Mol Biol, 2010, 73: 569-585.
doi: 10.1007/s11103-010-9644-1
[20] Jia M, Wu H, Clay K L, Jung R, Larkins B A, Gibbon B C. Identification and characterization of lysine-rich proteins and starch biosynthesis genes in the opaque2mutant by transcriptional and proteomic analysis. BMC Plant Biol, 2013, 13: 60.
doi: 10.1186/1471-2229-13-60 pmid: 23586588
[21] Li C B, Qiao Z Y, Qi W W, Wang Q, Yuan Y, Yang X, Tang Y P, Mei B, Lyu Y D, Zhao H, Xiao H, Song R. Genome-wide characterization of cis-acting DNA targets reveals the transcriptional regulatory framework of Opaque2 in maize. Plant Cell, 2015, 27: 532-545.
doi: 10.1105/tpc.114.134858
[22] Zhang Z Y, Zheng X X, Yang J, Messing J, Wu Y R. Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis. Proc Natl Acad Sci USA, 2016, 113: 10842-10847.
doi: 10.1073/pnas.1613721113
[23] Zhan J P, Li G S, Ryu C-H, Ma C, Zhang S S, Lloyd A, Hunter B G, Larkins B A, Drews G N, Wang X F, Yadegari R. Opaque-2 regulates a complex gene network associated with cell differentiation and storage functions of maize endosperm. Plant Cell, 2018, 30: 2425-2446.
doi: 10.1105/tpc.18.00392
[24] 陈亮, 张德贵, 史振声, 赵刚, 白丽, 张世煌, 李明顺. Opaque- 2突变基因(o2)对玉米产量和产量配合力的影响. 玉米科学, 2011, 19(1): 8-13.
Chen L, Zhang D G, Shi Z S, Zhao G, Bai L, Zhang S H, Li M S. Effect of Opaque-2 mutant gene (o2) on yield and yield fitness of maize. J Maize Sci, 2011, 19(1): 8-13 (in Chinese with English abstract).
[25] 宋丽雅, 陈亮, 何聪芬, 赵刚, 白鹏飞, 陈岩, 常驰. Opaque-2突变基因对玉米组合品质的影响. 安徽农业科学, 2012, 40: 9607-9609.
Song L Y, Chen L, He C F, Zhao G, Bai P F, Chen Y, Chang C. Effect of Opaque-2 mutant gene on the quality of maize combinations. J Anhui Agric Sci, 2012, 40: 9607-9609 (in Chinese with English abstract).
[26] 周昱婕, 韩洁楠, 王美娟, 刘晓丽, 李明顺. Opaque2基因对糯玉米子粒品质的影响分析. 玉米科学, 2021, 29(2): 29-34.
Zhou Y J, Han J N, Wang M J, Liu X L, Li M S. Analysis of the effect of Opaque2 gene on kernel quality of glutinous maize. J Maize Sci, 2021, 29(2): 29-34 (in Chinese with English abstract).
[27] 刘晓丽, 韩洁楠, 李冉, 郭增辉, 张德贵, 李明顺. Opaque2对糯玉米籽粒食味和营养品质的影响分析. 玉米科学, 2023, 31(4): 52-58.
Liu X L, Han J N, Li R, Guo Z H, Zhang D G, Li M S. Analysis of the effect of opaque2 on flavour and nutritional quality of glutinous maize kernels. J Maize Sci, 2023, 31(4): 52-58 (in Chinese with English abstract).
[28] Wang W, Dai Y, Wang M C, Yang W P, Zhao D G. Transcriptome dynamics of double recessive mutant, o2o2o16o16, reveals the transcriptional mechanisms in the increase of its lysine and tryptophan content in maize. Genes, 2019, 10: 316.
doi: 10.3390/genes10040316
[29] 谭华, 邹成林, 吴永升, 郑德波, 莫润秀, 黄爱花, 韦新兴, 蒋维萍, 韦慧, 黄开健. 不同遗传背景普通玉米种质导入opaque-2基因效应探讨. 广东农业科学, 2015, 42(23): 127-132.
Tan H, Zou C L, Wu Y S, Zheng D B, Mo R X, Huang A H, Wei X X, Jiang W P, Wei H, Huang K J. Exploration of the effect of introducing opaque-2 gene in common maize germplasm with different genetic backgrounds. Guangdong Agric Sci, 2015, 42(23): 127-132 (in Chinese with English abstract).
[30] Prioul J L, Mechin V, Lessard P, Thévenot C, Grimmer M, Chateau-Joubert S, Coates S, Hartings H, Kloiber-Maitz M, Murigneux A, Sarda X, Damerval C, Edwards K J. A joint transcriptomic, proteomic and metabolic analysis of maize endosperm development and starch filling. Plant Biotechnol J, 2008, 6: 855-869.
pmid: 19548342
[31] Chen J, Zeng B, Zhang M, Xie S J, Wang G K, Hauck A, Lai J S. Dynamic transcriptome landscape of maize embryo and endosperm development. Plant Physiol, 2014, 166: 252-264.
doi: 10.1104/pp.114.240689 pmid: 25037214
[32] Ji C, Xu L N, Li Y J, Fu Y X, Li S, Wang Q, Zeng X, Zhang Z Q, Zhang Z Y, Wang W Q, Wang J C, Wu Y R. The O2-ZmGRAS11transcriptional regulatory network orchestrates the coordination of endosperm cell expansion and grain filling in maize. Mol Plant, 2022, 15: 468-487.
doi: 10.1016/j.molp.2021.11.013
[33] Li N, Zhang S J, Zhao Y J, Li B, Zhang J R. Over-expression of AGPase genes enhances seed weight and starch content in transgenic maize. Planta, 2011, 233: 241-250.
doi: 10.1007/s00425-010-1296-5 pmid: 20978801
[34] Jiang L L, Yu X M, Qi X, Yu Q, Deng S, Bai B, Li N, Zhang A, Zhu C F, Liu B, Pang J S. Multigene engineering of starch biosynthesis in maize endosperm increases the total starch content and the proportion of amylose. Transgenic Res, 2013, 22: 1133-1142.
doi: 10.1007/s11248-013-9717-4 pmid: 23740205
[35] Hu S T, Wang M, Zhang X, Chen W K, Song X R, Fu X Y, Fang H, Xu J, Xiao Y N, Li Y R, Bai G H, Li J S, Yang X H. Genetic basis of kernel starch content decoded in a maize multi-parent population. Plant Biotechnol J, 2021, 19: 2192-2205.
doi: 10.1111/pbi.13645 pmid: 34077617
[36] Cobb B G, Hannah L C. Shrunken-1 encoded sucrose synthase is not required for sucrose synthesis in the maize endosperm. Plant Physiol, 1988, 88: 1219-1221.
doi: 10.1104/pp.88.4.1219 pmid: 16666447
[37] Deng Y T, Wang J C, Zhang Z Y, Wu Y R. Transactivation of Sus1 and Sus2 by Opaque2 is an essential supplement to sucrose synthase-mediated endosperm filling in maize. Plant Biotechnol J, 2020, 18: 1897-1907.
doi: 10.1111/pbi.v18.9
[38] Denyer K, Dunlap F, Thorbjørnsen T, Keeling P, Smith A M. The major form of ADP-glucose pyrophosphorylase in maize endosperm is extra-plastidial. Plant Physiol, 1996, 112: 779-785.
doi: 10.1104/pp.112.2.779 pmid: 8883389
[39] Jennings P H, McCombs C L. Effects of sugary-1 and shrunken-2 loci on kernel carbohydrate contents, phosphorylase and branching enzyme activities during maize kernel ontogeny. Phytochemistry, 1969, 8: 1357-1363.
doi: 10.1016/S0031-9422(00)85898-7
[40] Tetlow I J, Beisel K G, Cameron S, Makhmoudova A, Liu F, Bresolin N S, Wait R, Morell M K, Emes M J. Analysis of protein complexes in wheat amyloplasts reveals functional interactions among starch biosynthetic enzymes. Plant Physiol, 2008, 146: 1878-1891.
doi: 10.1104/pp.108.116244 pmid: 18263778
[41] Paul M J, Watson A, Griffiths C A. Trehalose 6-phosphate signalling and impact on crop yield. Biochem Soc Trans, 2020, 48: 2127-2137.
doi: 10.1042/BST20200286
[42] Meitzel T, Radchuk R, McAdam E L, Thormählen I, Feil R, Munz E, Hilo A, Geigenberger P, Ross J J, Lunn J E, Borisjuk L. Trehalose 6-phosphate promotes seed filling by activating auxin biosynthesis. New Phytol, 2021, 229: 1553-1565.
doi: 10.1111/nph.v229.3
[43] Kolbe A, Tiessen A, Schluepmann H, Paul M, Ulrich S, Geigenberger P. Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. Proc Natl Acad Sci USA, 2005, 102: 11118-11123.
doi: 10.1073/pnas.0503410102 pmid: 16046541
[44] Hu S T, Wang M, Zhang X, Chen W K, Song X R, Fu X Y, Fang H, Xu J, Xiao Y N, Li Y R, Bai G H, Li J S, Yang X H. Genetic basis of kernel starch content decoded in a maize multi-parent population. Plant Biotechnol J, 2021, 19: 2192-2205.
doi: 10.1111/pbi.13645 pmid: 34077617
[45] Fernandez O, Vandesteene L, Feil R, Baillieul F, Lunn J E, Clément C. Trehalose metabolism is activated upon chilling in grapevine and might participate in Burkholderia phytofirmans induced chilling tolerance. Planta, 2012, 236: 355-369.
doi: 10.1007/s00425-012-1611-4 pmid: 22367062
[46] Leyman B, Dijck P V, Thevelein J M. An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana. Trends Plant Sci, 2001, 6: 510-513.
doi: 10.1016/s1360-1385(01)02125-2 pmid: 11701378
[47] Davies H V, Shepherd L V, Burrell M M, Carrari F, Urbanczyk-Wochniak E, Leisse A, Hancock R D, Taylor M, Viola R, Ross H, McRae D, Willmitzer L, Fernie A R. Modulation of fructokinase activity of potato (Solanum tuberosum) results in substantial shifts in tuber metabolism. Plant Cell Physiol, 2005, 46: 1103-1115.
pmid: 15890680
[48] Schaffer A A, Petreikov M. Sucrose-to-starch metabolism in tomato fruit undergoing transient starch accumulation. Plant Physiol, 1997, 113: 739-746.
doi: 10.1104/pp.113.3.739 pmid: 12223639
[49] German M A, Dai N, Matsevitz T, Hanael R, Petreikov M, Bernstein N, Ioffe M, Shahak Y, Schaffer A A, Granot D. Suppression of fructokinase encoded by LeFRK2 in tomato stem inhibits growth and causes wilting of young leaves. Plant J, 2003, 34: 837-846.
doi: 10.1046/j.1365-313x.2003.01765.x pmid: 12795703
[50] Urbanowicz B R, Bennett A B, Del Campillo E, Catalá C, Hayashi T, Henrissat B, Höfte H, McQueen-Mason S J, Patterson S E, Shoseyov O, Teeri T T, Rose J K. Structural organization and a standardized nomenclature for plant endo-1,4-beta-glucanases (cellulases) of glycosyl hydrolase family 9. Plant Physiol, 2007, 144: 1693-1696.
pmid: 17687051
[51] 潘利华, 罗建平. β-葡萄糖苷酶的研究及应用进展. 食品科学, 2006, 27: 803-807.
Pan L H, Luo J P. Progress of research and application of β-glucosidase. Food Sci, 2006, 27: 803-807 (in Chinese with English abstract).
[52] 陈凯莉, 许轲, 张贤聪, 王亚楠, 汪志辉, 王迅. 果实中果胶代谢相关酶基因的研究进展. 园艺学报, 2017, 44: 2008-2014.
doi: 10.16420/j.issn.0513-353x.2016-0846
Chen K L, Xu K, Zhang X C, Wang Y N, Wang Z H, Wang X. Progress of pectin metabolism-related enzyme genes in fruits. Acta Hortic Sin, 2017, 44: 2008-2014 (in Chinese with English abstract).
[53] Godoy F D, Bermúdez L, Lira B S, Souza A P D, Elbl P, Dcmarco D, Alseekh S, Insani M, Buckeridge M, Almeida J, Grigioni G, FernieA R, Carrari F, Rossi M. Galacturonosyl transferase 4 silencing alters pectin composition and carbon partitioning in tomato. J Exp Bot, 2013, 64: 2449-2466.
doi: 10.1093/jxb/ert106
[54] 傅海, 赵佳, 李伟, 孙科, 王希信. 果胶酶研究进展及应用. 生物化工, 2020, 6(5): 148-153.
Fu H, Zhao J, Li W, Sun K, Wang X X. Research progress and application of pectinase. Biochemistry, 2020, 6(5): 148-153 (in Chinese with English abstract).
[55] Segonne S M, Bruneau M, Celton J M, Gall S L, Francin-Allami M, Juchaux M, Laurens F, Orsel M, Penou J P. Multiscale investigation of mealiness in apple: an atypical role for a pectin methylesterase during fruit maturation. BMC Plant Biol, 2014, 14: 375.
doi: 10.1186/s12870-014-0375-3 pmid: 25551767
[56] Hennen-Bierwagen T A, Lin Q, Grimaud F, Planchot V, Keeling PL, James M G, Myers A M. Proteins from multiple metabolic pathways associate with starch biosynthetic enzymes in high molecular weight complexes: a model for regulation of carbon allocation in maize amyloplasts. Plant Physiol, 2009, 149: 1541-1559.
doi: 10.1104/pp.109.135293 pmid: 19168640
[57] Wang W, Niu S Z, Dai Y, Wang M C, Li Y, Yang W P, Zhao D G. The Zea mays mutants opaque2 and opaque16 disclose lysine change in waxy maize as revealed by RNA-seq. Sci Rep, 2019, 9: 12265.
doi: 10.1038/s41598-019-48478-6 pmid: 31439855
[58] Lopes M A, Takasaki K, Bostwick D E, Helentjaris T, Larkins B A. Identification of two opaque2 modifier loci in quality protein maize. Mol Gen Genet, 1995, 247: 603-613.
doi: 10.1007/BF00290352
[59] Holding D R, Hunter B G, Chung T, Gibbo B C, Ford C F, Bharti A K, Messing J, Hamaker B R, Larkins B A. Genetic analysis of opaque2 modifier loci in quality protein maize. Theor Appl Genet, 2008, 117: 157-170.
doi: 10.1007/s00122-008-0762-y pmid: 18427771
[60] Holding D R, Hunter B G, Klingler J P, Wu S, Guo X M, Gibbon B C, Wu R L, Schulze J M, Jung R, Larkins B A. Characterization of opaque2 modifier QTLs and candidate genes in recombinant inbred lines derived from the K0326Y quality protein maize inbred. Theor Appl Genet, 2011, 122: 783-794.
doi: 10.1007/s00122-010-1486-3 pmid: 21076810
[61] Li C S, Xiang X L, Huang Y C, Zhou Y, An D, Dong J Q, Zhao C X, Liu H J, Li Y B, Wang Q, Du C G, Messing J, Larkins B A, Wu Y R, Wang W Q. Long-read sequencing reveals genomic structural variations that underlie creation of quality protein maize. Nat Commun, 2020, 11: 17.
doi: 10.1038/s41467-019-14023-2 pmid: 31911615
[62] Guo X M, Ronhovde K, Yuan L L, Yao B, Soundararajan M P, Elthon T, Zhang C, Holding D R. Pyrophosphate-dependent fructose-6-phosphate 1-phosphotransferase induction and attenuation of Hsp gene expression during endosperm modification in quality protein maize. Plant Physiol, 2012, 158: 917-929.
doi: 10.1104/pp.111.191163
[63] Tanabe N, Yoshimura K, Kimura A, Yabuta Y, Shigeoka S. Differential expression of alternatively spliced mRNAs of Arabidopsis SR protein homologs, atSR30 and atSR45a, in response to environmental stress. Plant Cell Physiol, 2007, 48: 1036-1049.
doi: 10.1093/pcp/pcm069
[64] Ohta M, Takaiwa F. Emerging features of ER resident J-proteins in plants. Plant Signal Behav, 2014, 9: e28194.
doi: 10.4161/psb.28194
[1] 娄菲, 左怿平, 李萌, 代鑫萌, 王健, 韩金玲, 吴舒, 李向岭, 段会军. 有机肥替代部分化肥氮对糯玉米产量、品质及氮素利用的影响[J]. 作物学报, 2024, 50(4): 1053-1064.
[2] 肖正午, 胡丽琴, 黎星, 解嘉鑫, 廖成静, 康玉灵, 胡玉萍, 张珂骞, 方升亮, 曹放波, 陈佳娜, 黄敏. 米粉稻早季与晚季种植品质差异研究[J]. 作物学报, 2024, 50(2): 451-463.
[3] 宋旭东, 朱广龙, 张舒钰, 章慧敏, 周广飞, 张振良, 冒宇翔, 陆虎华, 陈国清, 石明亮, 薛林, 周桂生, 郝德荣. 长江中下游地区糯玉米花期耐热性鉴定及评价指标筛选[J]. 作物学报, 2024, 50(1): 172-186.
[4] 南金生, 安江红, 柴明娜, 蒋屿潋, 朱志强, 杨燕, 韩冰. 淀粉特性及其表面结合蛋白与裸燕麦籽粒硬度的关系研究[J]. 作物学报, 2023, 49(9): 2552-2561.
[5] 王媛, 王劲松, 董二伟, 刘秋霞, 武爱莲, 焦晓燕. 施氮量对高粱籽粒灌浆及淀粉累积的影响[J]. 作物学报, 2023, 49(7): 1968-1978.
[6] 高欣, 郭雷, 单宝雪, 肖延军, 刘秀坤, 李豪圣, 刘建军, 赵振东, 曹新有. 淀粉颗粒类型及其比例在小麦品质特性形成与改良中的作用[J]. 作物学报, 2023, 49(6): 1447-1454.
[7] 吴世雨, 陈匡稷, 吕尊富, 徐锡明, 庞林江, 陆国权. 施氮量对甘薯块根膨大过程中淀粉含量及特性的影响[J]. 作物学报, 2023, 49(4): 1090-1101.
[8] 丁敏, 段政勇, 王宇卓, 薛亚鹏, 王海岗, 陈凌, 王瑞云, 乔治军. 糜子GBSSI基因功能标记的开发与验证[J]. 作物学报, 2023, 49(3): 703-718.
[9] 高春华, 冯波, 李国芳, 李宗新, 李升东, 曹芳, 慈文亮, 赵海军. 施氮量对花后高温胁迫下冬小麦籽粒淀粉合成的影响[J]. 作物学报, 2023, 49(3): 821-832.
[10] 李秋平, 张春龙, 杨宏, 王拓, 李娟, 金寿林, 黄大军, 李丹丹, 文建成. 水稻半育突变体sfp10的生理特征分析及基因定位[J]. 作物学报, 2023, 49(3): 634-646.
[11] 赵冬兰, 赵凌霄, 刘洋, 张安, 戴习彬, 周志林, 曹清河. 基于RNA-seq的甘薯芽变株系类胡萝卜素基因代谢差异分析[J]. 作物学报, 2023, 49(12): 3239-3249.
[12] 杜鹃, 彭晓君, 侯娟, 刘腾飞, 刘增, 宋波涛. 马铃薯淀粉酶StBAM9互作蛋白的鉴定及其互作机制分析[J]. 作物学报, 2023, 49(10): 2643-2653.
[13] 黄婷苗, 詹昕, 陆乃昆, 乔月静, 陈杰, 杨珍平, 高志强. 叶喷有机硒对黑糯玉米硒吸收及籽粒花青素和铁锰铜锌的影响[J]. 作物学报, 2023, 49(10): 2845-2853.
[14] 王锐璞, 董振营, 高悦欣, 鲍建喜, 殷芳冰, 李金萍, 龙艳, 万向元. 玉米籽粒淀粉含量全基因组关联分析和候选基因预测[J]. 作物学报, 2023, 49(1): 140-152.
[15] 吴旭莉, 吴正丹, 晚传芳, 杜叶, 高艳, 李賾萱, 王志前, 唐道彬, 王季春, 张凯. 甘薯糖转运蛋白IbSWEET15的功能研究[J]. 作物学报, 2023, 49(1): 129-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!