欢迎访问作物学报,今天是

作物学报

• •    

不同马铃薯淀粉含量差异的转录组学解析

赵娜1,2,刘宇曦1,2,张朝澍1,2,*,石瑛1,2,*   

  1. 1 东北农业大学农学院,黑龙江哈尔滨 150030;2 寒地粮食作物种质创新与生理生态教育部重点实验室,黑龙江哈尔滨 150030
  • 收稿日期:2023-10-20 修回日期:2024-01-31 接受日期:2024-01-31 网络出版日期:2024-02-21
  • 基金资助:
    本研究由黑龙江省“揭榜挂帅”科技攻关项目(2022ZXJ06B02)和黑龙江省自然科学基金项目(LH2021C027)资助。

Transcriptomic analysis of differences in the starch content of different potatoes

ZHAO Na1,2,LIU Yu-Xi1,2,ZHANG Chao-Shu1,2,*,SHI Ying1,2,*   

  1. 1 College of Agronomy, Northeast Agricultural University, Harbin 150030, Heilongjiang, China; 2 Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Harbin 150030, Heilongjiang, China
  • Received:2023-10-20 Revised:2024-01-31 Accepted:2024-01-31 Published online:2024-02-21
  • Supported by:
    This study was supported by the “Open bidding for selecting the best candidates” Scientific and Technological Research Project of Heilongjiang Province (2022ZXJ06B02) and the Natural Science Foundation of Heilongjiang Province (LH2021C027).

摘要:

淀粉是马铃薯重要的品质性状之一,广泛应用于食品、医药、石油化工等行业,市场上对高淀粉马铃薯品种的需求逐年提高。为探究马铃薯块茎淀粉积累特性及调控的关键基因,本研究通过RNA测序分析,分别对高、低淀粉含量马铃薯品种大西洋(DXY)、定薯1(DS1)的匍匐茎(a)、块茎膨大前期(b)、块茎膨大中期(c)、块茎膨大后期(d)及成熟期(e)进行转录组谱分析,5个时期共获得9494个差异表达基因(DEGs),结合功能注释发现差异基因主要富集在结合绑定和催化活性等分子功能中,代谢通路分析发现差异基因主要富集在碳水化合物途径中,其中有137DEGs与淀粉和蔗糖代谢相关。筛选获得9个调控淀粉合成关键基因,其中蔗糖合酶基因PGSC0003DMG400013547在大西洋整个生育期表达量较高,且在各时期表达量均高于定薯1号;果糖激酶基因PGSC0003DMG400026916ab时期大西洋的表达量显著高于定薯1;定薯1号中淀粉酶基因PGSC0003DMG400009891PGSC0003DMG400001549和葡聚糖内切-1,3-β-葡萄糖苷酶基因PGSC0003DMG400024642PGSC0003DMG400003181分别在ce时期表达量显著高于高淀粉品种大西洋。上述基因可能是参与淀粉的合成与积累的关键调控基因。本研究为不同类型马铃薯品种块茎淀粉代谢调控机制研究提供参考。

关键词: 马铃薯, 发育时期, 淀粉合成积累, 转录组测序

Abstract:

Starch is one of the most important quality characteristics of potatoes, which is widely used in the food, medical, petrochemical and other industries. The demand for starchy potato varieties in the market is increasing year by year. To explore the characteristics and key genes of starch accumulation and regulation of potato tuber, in this study, transcriptome profiling of creeping stems (a), pre-tuber expansion (b), mid-tuber expansion (c), late tuber expansion (d), and mature stage (e) of high and low starch potato cultivars DXY and DS1 by RNA sequencing analysis, and a total of 9494 differentially expressed genes (DEGs) were identified at five stages. Binding function annotation revealed that the differential genes were mainly enriched in molecular functions such as binding and catalytic activity. Metabolic pathway analysis revealed that the differential genes were mainly enriched in carbohydrate-related metabolic pathways, of which 137 DEGs were associated with starch and sucrose metabolism. Nine key genes regulating starch synthesis were examined, and the relative expression level of the sucrose synthase gene PGSC0003DMG400013547 was higher during growth period of DXY than that at any stage. The relative expression level of the fructokinase gene PGSC0003DMG400026916 was significantly higher in DXY than in DS1 during the a and b periods. The relative expression level of amylase gene PGSC0003DMG400009891, PGSC0003DMG400001549, and glucan endo-1,3-β-glucosidase gene PGSC0003DMG400024642, PGSC0003DMG400003181 in DS1 was significantly higher than that in DXY with starch-rich cultivars during the c and e periods. The described gene might be a key regulatory gene for starch synthesis and accumulation. This study provides a clue for the investigation of the regulatory mechanism of tuber starch metabolism in different potato cultivars.

Key words: potato, developmental period, accumulation of starch synthesis, transcriptome sequencing

[1] 李扬, 王靖, 唐建昭, 张君, 胡琦, 潘志华, 潘学标. 中国马铃薯主产区生产特点、限制因子和对策分析. 中国马铃薯, 2020, 34: 374–382.
Li Y, Wang J, Tang J Z, Zhang J, Hu Q, Pan Z H, Pan X B. Analysis of production characteristics, restrictive factors, and strategies for main potato production areas in China. Chine Potato J, 2020, 34: 374–382 (in Chinese with English abstract).

[2] 田甲春, 胡新元, 田世龙, 葛霞, 李梅. 19个品种马铃薯营养成分分析. 营养学报, 2017, 39(1): 102–104.
Tian J C, Hu X Y, Tian S L, Ge X, Li M. Analysis of nutrient composition of 19 variety potatoes. Acta Nutr Sin, 2017, 39(1): 102–104 (in Chinese).

[3] 周平, 王海玲, 陆燚, 陈军, 吴显, 马杰, 杨姣, 马维. 马铃薯块茎营养品质分析鉴评. 农业科技通讯, 2021, (8): 132–136.
Zhou P, Wang H L, Lu Y, Chen J, Wu X, Ma J, Yang J, Ma W. Analysis and evaluation of nutritional quality of potato tubers. Bull Agric Sci Technol, 2021, (8): 132–136 (in Chinese).

[4] 李志新. 高淀粉马铃薯新品种克新22的选育及配套栽培技术. 黑龙江农业科学, 2011, (1): 142–143.
Li Z X. Breeding and supporting cultivation technology of new high-starch potato variety Kexin 22. Heilongjiang Agric Sci, 2011, (1): 142–143 (in Chinese).

[5] 石瑛, 张丽莉, 魏峭嵘, 秦昕. 淀粉加工型马铃薯新品种东农308的选育. 中国蔬菜, 2014, (2): 54–56.
Shi Y, Zhang L L, Wei Q R, Qin X. A new starch processing type potato variety: ‘Dongnong 308’. China Veget, 2014, (2): 54–56 (in Chinese with English abstract).

[6] 王金明, 石瑛, 梁晓丽, 赵媛媛 黄越. 钾肥对高淀粉马铃薯块茎淀粉合成相关酶活性的影响. 作物杂志, 2016, (2): 118–123.
Wang J C, Shi Y, Liang X L, Zhao Y Y, Huang Y. Effects of potassium fertilizer on the related enzymes activity of starch synthesis in tubers of high starch potato varieties. Crops, 2016, (2): 118–123 (in Chinese with English abstract).

[7] 金光辉, 孙秀梅, 台莲梅, 姜丽丽, 杨庆东, 马力, 张志军, 李云成. 淀粉加工型马铃薯新品种垦薯1的选育. 中国马铃薯, 2014, 28: 125–126.
Jin G H, Sun X M, Tai L M, Jiang L L, Yang Q D, Ma L, Zhang Z J, Li Y C. Breeding and selection of starch processing potato variety ‘Kenshu 1’. Chine Potato J, 2014, 28: 125–126 (in Chinese with English abstract).

[8] 王腾, 马爽, 金光辉. 中国马铃薯全粉加工型品种研究进展. 中国马铃薯, 2022, 36: 266–270.
Wang T, Ma S, Jin G H. Research progress in development of potato granule and flake processing varieties in China. Chine Potato J, 2022, 36: 266–270 (in Chinese with English abstract).

[9] 唐珂, 严彩虹, 朱博, 曾子贤. 马铃薯淀粉代谢相关基因及其顺式调控元件的分子研究进展. 农业生物技术学报, 2023, 31: 833–843.
Tang K, Yan C H, Zhu B, Zeng Z X. Advances in molecular research of starch-related genes and their cis regulatory elements in potato (Solanum tuberosum). J Agric Biotechnol, 2023, 31: 833–843 (in Chinese with English abstract).

[10] Tiwari J K, Buckseth T, Challam C, Rasna Z, Nisha B, Dalamu D, Sharmistha N, Anuj K P, Rajesh K S, Satish K L, Vinod K, Manoj K. CRISPR/Cas genome editing in potato: current status and future perspectives. Front Genet, 2022, 13: 827808.

[11] Andersson M, Turesson H, Olsson N, Fält A, Ohlsson P, Gonzalez M N, Samuelsson M, Hofvander P. Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant, 2018, 164: 378–384.

[12] 宋波涛, 谢从华, 柳俊. 马铃薯sAGP基因表达对块茎淀粉和还原糖含量的影响. 中国农业科学, 2005, 38: 1439–1446.
Song B T, Xie C H, Liu J. Expression of Potato sAGP gene and its effects on contents of starch and reducing sugar of transgenic potato tubers. Sci Agric Sin, 2005, 38: 1439–1446 (in Chinese with English abstract).

[13] Fernie A R, Swiedrych A, Tauberger E, Lytovchenko A, Trethewey R N, Willmitzer L. Potato plants exhibiting combined antisense repression of cytosolic and plastidial isoforms of phosphoglucomutase surprisingly approximate wild type with respectto the rate of starch synthesis. Plant Physiol Biochem, 2002, 40: 921927.

[14] McGettigan P A. Transcriptomics in the RNA-seq era. Curr Opin Chem Biol, 2013, 17: 4–11.

[15] 刘宇曦. 马铃薯块茎淀粉含量分子标记开发与应用. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2023.
Liu Y X. Development and Application of Molecular Markers for Starch Content in Potato Tubers. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2023 (in Chinese with English abstract).

[16] Li J, Baroja-Fernández E, Bahaji A, Muñoz F J, Ovecka M, Montero M, Sesma M T, Alonso-Casajús N, Almagro G, Sánchez-López A M, Hidalgo M, Zamarbide M, Pozueta-Romero J. Enhancing sucrose synthase activity results in increased levels of starch and ADP-glucose in maize (Zea mays L.) Plant Cell Physiol, 2013, 54: 282–294. 

[17] 邓英毅, 郑虚. 作物叶中蔗糖磷酸合成酶的生物学功能与调控的研究进展. 广西科学院学报, 2009, 25(1): 65–71.
Deng Y Y, Zheng X. Advance on biological function and control of sucrose phosphate synthase in crop leaf. J Guangxi Acad Sci, 2009, 25(1): 65–71 (in Chinese with English abstract).

[18] Huber S C, Huber J L. Role and regulation of sucrose-phosphate synthase in higher plants. Annu Rev Plant Biol, 1996, 47: 431–444.

[19] Sun J, Zhang J, Larue C T, Huber S C. Decrease in leaf sucrose synthesis leads to increased leaf starch turnover and decreased RuBP regeneration-limited photosynthesis but not Rubisco-limited photosynthesis in arabidopsis null mutants of SPSA1. Plant Cell Environ, 2011 34: 592–604.

[20] 叶香媛, 周文彬. 植物果糖激酶研究进展. 科学通报, 2021, 66: 2820–2831.
Ye X Y, Zhou W B. Research advances in plant fructokinases. Chin Sci Bull, 2021, 66: 2820–2831 (in Chinese with English abstract).

[21] Geng L, He X Y, Ye L Z, Zhang G P. Identification of the genes associated with β-glucan synthesis and accumulation during grain development in barley. Food Chem-mol Sci, 2022, 5: 100136.

[22] Burton R A, Collins H M, Kibble N A J, Smith J A, Shirley N J, Jobling S A, Henderson M, Singh R R, Pettolino P, Wilson S M, Bird A R, Topping D L, Bacic A, Fincher G B. Over-expression of specific HvCslF cellulose synthase-likegenes in transgenic barley increases the levels of cell wall (1,3;1,4)-beta-d-glucans and alters their fine structure. Plant Biotechnol J, 2011, 9: 117–135.

[23] Tetlow I J, Morell M K, Emes M J. Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot, 2004, 55: 2131–2145.

[24] Kim Y S, Sohn H, Jin U H, Suh S J, Lee S C, Jeon J H, Lee D S, Kim C H, Ko J H. Molecular cloning and analysis of the Thermus caldophilus ADP-glucose pyrophosphorylase. Enzyme Microb Technol, 2007, 41: 423–431.

[25] 贾小霞, 李建武, 齐恩芳, 文国宏, 李高峰, 吕和平, 马胜, 刘石, 黄伟, 张荣. ‘陇薯8马铃薯块茎淀粉积累特性及淀粉-蔗糖代谢途径转录组分析. 中国农业大学学报, 2023, 28(2): 23–34.
Jia X X, Li J B, Qi E F, Wen G H, Li G F, Lyu H P, Ma S, Liu S, Huang W, Zhang R. Starch accumulation pattern and transcriptome analysis of starch-sucrose metabolic pathway in potato ‘Longshu 8’ tuber. J China Agric Univ, 2023, 28(2): 23–34 (in Chinese with English abstract).

[26] Yokobayashi K, Misaki A, Harada T. Purification and properties of Pseudomonas isoamylase. Biochim Biophys Acta, 1970, 212: 458–469.

[1] 王瑞, 张福耀, 詹鹏杰, 楚建强, 晋敏姗, 赵威军, 程庆军. 基于RNA-Seq筛选高粱低氮胁迫相关候选基因[J]. 作物学报, 2024, 50(3): 669-685.
[2] 陈天, 李昱樱, 荣二花, 吴玉香. 棉属人工异源四倍体后代性状鉴定及花器转录组学分析[J]. 作物学报, 2024, 50(2): 325-339.
[3] 李万, 李成, 程敏, 吴芳. 磷转运蛋白StPHO1.2提高马铃薯耐热性[J]. 作物学报, 2024, 50(2): 394-402.
[4] 刘洁, 蔡诚诚, 刘石锋, 邓孟胜, 王雪枫, 温和, 李罗品, 严奉君, 王西瑶. 马铃薯StCYP85A3促进萌芽及根系伸长的功能解析[J]. 作物学报, 2023, 49(9): 2462-2471.
[5] 索海翠, 刘计涛, 王丽, 李成晨, 单建伟, 李小波. 马铃薯锌转运蛋白基因StZIP12调控锌吸收功能[J]. 作物学报, 2023, 49(7): 1994-2001.
[6] 赵喜娟, 刘圣宣, 刘腾飞, 郑洁, 杜鹃, 胡新喜, 宋波涛, 何长征. 转录组分析揭示光诱导转录因子StMYB113调控马铃薯块茎表皮叶绿素合成[J]. 作物学报, 2023, 49(7): 1860-1870.
[7] 王硕, 鲍天旸, 刘建刚, 段绍光, 简银巧, 李广存, 金黎平, 徐建飞. 基于RGB颜色空间评价马铃薯块茎绿化程度[J]. 作物学报, 2023, 49(4): 1102-1110.
[8] 李红艳, 李洁雅, 李响, 叶广继, 周云, 王舰. 过表达LrAN2基因对马铃薯中花青素和糖苷生物碱含量的影响[J]. 作物学报, 2023, 49(4): 988-995.
[9] 张卫娜, 余慧芳, 安珍, 柳文凯, 康益晨, 石铭福, 杨昕宇, 张茹艳, 王勇, 秦舒浩. StEFR1正调控马铃薯对晚疫病的抗性[J]. 作物学报, 2023, 49(4): 996-1005.
[10] 赵冬兰, 赵凌霄, 刘洋, 张安, 戴习彬, 周志林, 曹清河. 基于RNA-seq的甘薯芽变株系类胡萝卜素基因代谢差异分析[J]. 作物学报, 2023, 49(12): 3239-3249.
[11] 赵朋, 陈广侠, 张宴萍, 杨晓慧, 刘芳, 董道峰. 马铃薯苗期耐碱性鉴定方法及86份种质资源耐碱性综合评价[J]. 作物学报, 2023, 49(11): 2923-2934.
[12] 朱金勇, 刘震, 曾钰婷, 李志涛, 陈丽敏, 李泓阳, 史田斌, 张俊莲, 白江平, 刘玉汇. 马铃薯PAL基因家族的全基因组鉴定及其在非生物胁迫下和块茎花色素苷合成中的表达分析[J]. 作物学报, 2023, 49(11): 2978-2990.
[13] 巩慧玲, 林红霞, 任小丽, 李彤, 王晨霞, 白江平. StvacINV1负调控马铃薯的耐旱性[J]. 作物学报, 2023, 49(11): 3007-3016.
[14] 赵富贵, 张龙, 李丹, 韩固, 王楠, 侯贤清. 不同气候年型下耕作覆盖对宁南旱区土壤水热及马铃薯产量的影响[J]. 作物学报, 2023, 49(10): 2806-2819.
[15] 杜鹃, 彭晓君, 侯娟, 刘腾飞, 刘增, 宋波涛. 马铃薯淀粉酶StBAM9互作蛋白的鉴定及其互作机制分析[J]. 作物学报, 2023, 49(10): 2643-2653.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!